JPS63112488A - Growth method for single crystal silicon - Google Patents

Growth method for single crystal silicon

Info

Publication number
JPS63112488A
JPS63112488A JP25696486A JP25696486A JPS63112488A JP S63112488 A JPS63112488 A JP S63112488A JP 25696486 A JP25696486 A JP 25696486A JP 25696486 A JP25696486 A JP 25696486A JP S63112488 A JPS63112488 A JP S63112488A
Authority
JP
Japan
Prior art keywords
crystal
crucible
oxygen concentration
long
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25696486A
Other languages
Japanese (ja)
Inventor
Tetsuo Fukuda
哲生 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP25696486A priority Critical patent/JPS63112488A/en
Publication of JPS63112488A publication Critical patent/JPS63112488A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To readily obtain a single crystal silicon having an uniform density of defect occurrence, by controlling the thermal history which is applied to the single crystal silicon grown by the Czochralski process with oxygen concentration of the silicon. CONSTITUTION:A long crystal 21 of a single crystal silicon is pulled up from a melt 32 in a crucible 31 by the Czochralski process. In the process, the crucible 31 is rotated in the direction opposite to the rotational direction of the chuck 33 and the rotational speed (Rc) of the crucible 31 is set so to slowly increase in proportion to the growth of the long crystal 21, i.e. satisfy the condition of dRc/dt>0. Thereby oxygen is separated in the head part of the crystal 21 using latent nuclei as nuclei by utilizing the oxygen concentration of the long crystal 21 proportional to the rotational speed (Rc) of the crucible 31 and separation of the oxygen is promoted in the tail part by increasing the rotational speed of the crucible 31 for a few nuclei to provide a high oxygen concentration.

Description

【発明の詳細な説明】 〔概要〕 チョクラルスキー(CZ)法によって育成された単結晶
シリコンが成長過程で受けた熱履歴を酸素濃度によって
制御する。
[Detailed Description of the Invention] [Summary] The thermal history that single-crystal silicon, grown by the Czochralski (CZ) method, receives during the growth process is controlled by oxygen concentration.

〔産業上の利用分野〕[Industrial application field]

本発明は単結晶シリコンの成長方法に関し、さらに詳し
く言えば、CZ法によって単結晶シリコンの長尺結晶を
育成する段階において当該長尺結晶の全体にわたって欠
陥発生密度を均一にする方法に関するものである。
The present invention relates to a method for growing single-crystal silicon, and more specifically, to a method for making the density of defects uniform over the entire length of a long crystal of single-crystal silicon in the step of growing a long crystal of single-crystal silicon by the CZ method. .

〔従来の技術〕[Conventional technology]

超LSI用基盤として用いられるシリコン結晶はイント
リンシック・ゲッタリング(IG)処理によって著しく
歩留りが上昇する。かかるIGを第3図を参照して説明
すると、11はC2法によって育成した単結晶シリコン
の長尺結晶から加工した(切出した)ウェハである。超
LSIにおいては、デバイス12(不純物拡散領域など
)はウェハ11の表面に近い部分に浅く形成されるが、
これらのデバイス12が形成されるウェハ11の表面に
近いデバイス形成層13に結晶欠陥が存在しないことが
必要である。
The yield of silicon crystals used as substrates for VLSIs is significantly increased by intrinsic gettering (IG) processing. To explain such an IG with reference to FIG. 3, 11 is a wafer processed (cut out) from a long crystal of single crystal silicon grown by the C2 method. In VLSI, devices 12 (such as impurity diffusion regions) are formed shallowly near the surface of wafer 11;
It is necessary that no crystal defects exist in the device forming layer 13 near the surface of the wafer 11 on which these devices 12 are formed.

デバイス形成層13に結晶欠陥がないようにするために
は、前記したIG処理を施すが、それにはつエバ11に
対して熱処理をなし、デバイス形成層13に存在する全
屈14の如き汚染源を同図に矢印で示すようにウェハ外
に放出する一方で、ウェハの内部領域に酸素16を凝集
し、それ自体欠陥である酸素16に欠陥をゲッタリング
させ、このようにしてデバイスの形成されない内部領域
に欠陥を取り込んで(ゲッタリングして)デバイス形成
層13の欠陥がなくなるようにする。以上に説明したウ
ェハの熱処理は、長尺結晶から加工した多数のウェハを
同時に加熱することによってなされる。
In order to make the device forming layer 13 free from crystal defects, the above-mentioned IG treatment is carried out, but at the same time heat treatment is applied to the evaporator 11 to eliminate contamination sources such as the total bending layer 14 present in the device forming layer 13. While being emitted outside the wafer as indicated by the arrow in the figure, the oxygen 16 is aggregated in the internal region of the wafer, causing the oxygen 16, which is itself a defect, to getter the defects, thus causing the inside of the wafer where no devices are formed. Defects are taken into the region (gettered) so that the device forming layer 13 is free of defects. The wafer heat treatment described above is performed by simultaneously heating a large number of wafers processed from long crystals.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記したIG処理のためには、基板となる多数のウェハ
に同一熱処理を施した場合、すべてのウェハに同一密度
の欠陥が生成されなければならない。
For the above-mentioned IG processing, when a large number of wafers serving as substrates are subjected to the same heat treatment, defects must be generated at the same density on all the wafers.

このためには熱処理前の酸素濃度を同一濃度にそろえれ
ば良いとされていたが、それだけでは欠陥の生成を十分
制御できないことが実験的に知られてきた。本発明は、
この原因を検討するところから生れた。
For this purpose, it was thought that it would be sufficient to make the oxygen concentrations the same before the heat treatment, but it has been experimentally known that this alone is not sufficient to control the generation of defects. The present invention
This idea was born from investigating the cause of this problem.

第4図の線図には、同一酸素濃度であっても、ウェハに
よって欠陥生成速度(すなわち酸素減少速度)が異なる
ことが示される。なお、ウェハ中の酸素濃度の測定には
、1100カイザー(cm−”)のレーザー光を照射す
る知られた手法を用いる。
The diagram in FIG. 4 shows that even at the same oxygen concentration, the defect generation rate (that is, the oxygen reduction rate) differs depending on the wafer. Note that, to measure the oxygen concentration in the wafer, a known method of irradiating a laser beam of 1100 Kaiser (cm-'') is used.

同図は酸素濃度が均一(35ppm )であるよう作ら
れた長尺結晶21内の約1.50(mm)離れた場所A
とBから加工したウェハについて700(”C)で熱処
理を行い酸素濃度の減少を調べたもので、横軸にはこの
700℃の熱処理の長さを時間(hr)単位で、また縦
軸に酸素濃度をppmでとり、曲線aとbはそれぞれ長
尺結晶21の部分AとBから加工したウェハの酸素濃度
を示す。曲線a、bの減少速度の違いは通常熱履歴によ
るものと解されているが、これを詳しく検討した結果次
のことがわかった。
The figure shows a location A approximately 1.50 (mm) away within a long crystal 21 made to have a uniform oxygen concentration (35 ppm).
The wafers processed from and B were heat-treated at 700°C ("C) and the decrease in oxygen concentration was investigated. The horizontal axis shows the length of this 700°C heat treatment in hours (hr), and the vertical axis shows The oxygen concentration is measured in ppm, and curves a and b show the oxygen concentrations of wafers processed from portions A and B of the long crystal 21, respectively.The difference in the rate of decrease between curves a and b is usually understood to be due to thermal history. However, after considering this in detail, we found the following.

成長の際結晶は1410(℃〕で固化した後冷却される
過程で酸素の析出が進行し、微小欠陥(あるいは潜在核
)が形成されていると思われ、これは結晶のM部(冷却
時間が長い)の方で頭部とは反対側の尾部よりもより顕
著なものになると理解される。
During growth, the crystal is solidified at 1410 degrees Celsius (°C) and then cooled down, during which oxygen precipitates and forms micro-defects (or latent nuclei). It is understood that the tail (which is longer) is more prominent than the tail on the opposite side of the head.

第5図にはCZ法による長尺結晶の成長が模式的に示さ
れ、同図(a)は成長初期の、また同図fb)は成長の
終期で尾部23が作られる段階をそれぞれ示し、先ず長
尺結晶21の頭部22が種結晶20の近くに作られ(同
図(a))、それから例えば10時間(hr)の成長時
間が経過して同図(b)の尾部23が作られるのである
が、この10時間程度の時間が経過する間に頭部22で
の酸素の析出が発生すると解される。なお同図において
31はるつぼ、32は融液、33はチャックを示す。
FIG. 5 schematically shows the growth of a long crystal by the CZ method, and FIG. 5(a) shows the initial stage of growth, and FIG. First, the head portion 22 of the long crystal 21 is formed near the seed crystal 20 (FIG. 2(a)), and then, after a growth time of, for example, 10 hours (hr) has elapsed, the tail portion 23 shown in FIG. 2(b) is formed. However, it is understood that precipitation of oxygen occurs at the head 22 during the elapse of about 10 hours. In the figure, 31 indicates a crucible, 32 indicates a melt, and 33 indicates a chuck.

第7図は同一酸素濃度を持つ結晶21の頭部22と尾部
23から加工した試料を1350(”C〕で1  (h
r)処理した後の酸素濃度の増加址を示し、横軸に長尺
結晶の位置を、縦軸に増加酸素濃度をppmでとる。先
に述べた潜在核が形成されているならば、1350(”
C)でこれが溶解し酸素濃度が増えるはずである。第7
図より、結晶の頭部はど潜在核が多いと解される。以上
より欠陥発生密度を同じにするには、酸素濃度をそろえ
るよりもむしろ潜在核密度を同じにする必要がある。と
ころが長尺結晶を育成すると尾部は頭部よりも必ず熱履
歴が短くなるために潜在核密度を同一にすることは不可
能である。
Figure 7 shows a sample processed from the head 22 and tail 23 of a crystal 21 with the same oxygen concentration at 1350 ("C") and 1 (h
r) Shows the increase in oxygen concentration after treatment, with the horizontal axis representing the position of the long crystal and the vertical axis representing the increased oxygen concentration in ppm. If the aforementioned latent nucleus is formed, 1350 ("
In C), this should dissolve and the oxygen concentration should increase. 7th
From the figure, it is understood that there are many latent nuclei in the head of the crystal. From the above, in order to make the defect generation density the same, it is necessary to make the potential nucleus density the same rather than making the oxygen concentration the same. However, when growing long crystals, the tail always has a shorter thermal history than the head, so it is impossible to make the potential nucleus density the same.

本発明はこのような点に鑑みて創作されたもので、C2
法によるシリコンの長尺結晶成育において、長尺結晶の
全体にわたって欠陥発生密度を均一にする結晶成長方法
を提供することを目的とする。
The present invention was created in view of these points, and C2
An object of the present invention is to provide a crystal growth method that makes the density of defects uniform over the entire length of the long crystal in the growth of long silicon crystals by the method.

〔問題点を解決するための手段〕[Means for solving problems]

第1図は本発明実施例の図(本発明の方法を実施する装
置の模式的な図)で、図中、31はるつぼ、32は融液
、33はチャックで、育成中の長尺結晶は21で示され
、またRcとRsはそれぞれるつぼ31とチャック33
の回転速度を表すもので、Rc、l!:Rsの回転方向
は互いに逆である。
FIG. 1 is a diagram of an embodiment of the present invention (a schematic diagram of an apparatus for carrying out the method of the present invention), in which 31 is a crucible, 32 is a melt, 33 is a chuck, and long crystals are being grown. is indicated by 21, and Rc and Rs are respectively the crucible 31 and the chuck 33.
It represents the rotational speed of Rc, l! : The rotation directions of Rs are opposite to each other.

本発明においては、Rcは成長開始時から成長が終る段
階までに、δRc/δ1>0なる条件で長尺結晶21の
回転を早めつつ引き上げる。
In the present invention, Rc is raised while accelerating the rotation of the long crystal 21 under the condition that δRc/δ1>0 from the start of growth to the stage where growth ends.

〔作用〕[Effect]

上記した方法では、長尺結晶の酸素濃度がRcに比例す
ることに着目し、成長が進むにつれて尾部がより速く回
転するようにして、尾部を頭部よりも高酸素濃度にする
ことによって酸素の析出を第2図に示されるように促進
する。すなわち頭部では潜在核を核として酸素を析出さ
せるのに対し、尾部では少ない潜在核に対し、るつぼの
回転を成長の終りに近付くにつれて増大することにより
周囲に酸素を大量に分布させて析出を助長するようにし
たものである。
The above method focuses on the fact that the oxygen concentration in long crystals is proportional to Rc, and as the growth progresses, the tail rotates faster, making the tail a higher oxygen concentration than the head. Precipitation is promoted as shown in FIG. In other words, in the head part, oxygen is precipitated from the latent nucleus, whereas in the tail part, oxygen is precipitated by distributing a large amount of oxygen around the small latent nucleus by increasing the rotation of the crucible as it approaches the end of growth. It is designed to encourage this.

〔実施例〕〔Example〕

以下、図面を参照して本発明実施例を詳細に説明する。 Embodiments of the present invention will be described in detail below with reference to the drawings.

本発明においては、前記した如くに、長尺結晶の尾部の
酸素濃度を頭部の酸素濃度よりも大にすることによって
、酸素の析出が第2図に示される状態になるようにする
。そのためには、育成中の長尺結晶内の酸素濃度は長尺
結晶の回転に比例することを利用する。
In the present invention, as described above, the oxygen concentration at the tail of the elongated crystal is made higher than the oxygen concentration at the head, so that the state of oxygen precipitation as shown in FIG. 2 is achieved. For this purpose, it is utilized that the oxygen concentration within the long crystal being grown is proportional to the rotation of the long crystal.

再び第1図を参照すると、育成中の長尺結晶はチャック
33を同図上方に示される矢印方向に15〜25rpm
の速度で回転する。そこで、第5図(b)に示す如く尾
部23が成長されるまでの間に、るつぼ31を同図の下
方に画いた矢印の示す方向に、すなわちチャック33の
回転方向とは反対方向に回転させる。さらに、このるつ
ぼの回転は、長尺結晶の成長に比例して徐々に大になる
よう、すなわちδRc/δ1>0の条件を満たすように
設定する。
Referring again to FIG. 1, the long crystal being grown is rotated by the chuck 33 at 15 to 25 rpm in the direction of the arrow shown in the upper part of the figure.
rotates at a speed of Therefore, as shown in FIG. 5(b), until the tail portion 23 is grown, the crucible 31 is rotated in the direction indicated by the arrow drawn at the bottom of the figure, that is, in the opposite direction to the rotation direction of the chuck 33. let Further, the rotation of the crucible is set to gradually increase in proportion to the growth of the long crystal, that is, to satisfy the condition δRc/δ1>0.

本発明者の行った実験の結果は第2図に示され、結晶直
径4インチ(約10cm)の長尺結晶を成長した実例で
ある。第1図に示したチャック33の回転Rs= −2
5(rpm )に設定した。同図の横軸には成長結晶の
結晶長を(mm)で、また縦軸には酸素濃度を(ppm
 )でとった。るつぼ31の直径は14インチ(約36
cm) 、チャージ量は30(Kg)であった。
The results of experiments conducted by the present inventor are shown in FIG. 2, which is an example of growing a long crystal with a crystal diameter of 4 inches (approximately 10 cm). Rotation Rs of the chuck 33 shown in FIG. 1 = -2
5 (rpm). The horizontal axis of the figure shows the crystal length of the grown crystal (mm), and the vertical axis shows the oxygen concentration (ppm).
) was taken. The diameter of the crucible 31 is 14 inches (approximately 36
cm), and the charge amount was 30 (Kg).

図示の曲線において、Δ印を結ぶ曲線はRc −8+ 
0.75 (rpm/ hr)の場合、黒塗り丸印を結
ぶ曲線はRc = 8 + 0.62 (rpm/ h
r)の場合、白抜丸印を結ぶ曲線はRc = 8 + 
0.50 (rpm/ hr)の場合、X印を結ぶ曲線
はRc = 8 (rpm )の場合の結果を表す。
In the illustrated curve, the curve connecting the Δ marks is Rc −8+
0.75 (rpm/hr), the curve connecting the black circles is Rc = 8 + 0.62 (rpm/hr)
In the case of r), the curve connecting the white circles is Rc = 8 +
0.50 (rpm/hr), the curve connecting the X marks represents the result when Rc = 8 (rpm).

ここで、Rc = 8 + 0.75 (rpm/ h
r)とは、8(rpm)より毎時0.75 (rpm 
)の割合で回転速度が上昇したことを示し、Rc = 
8 (rpm )は、最初から最後まで8(rpm)の
回転速度が維持され、回転速度の変化がなかったことを
表す。
Here, Rc = 8 + 0.75 (rpm/h
r) means 0.75 (rpm) per hour from 8 (rpm)
) indicates that the rotational speed has increased at a rate of Rc =
8 (rpm) represents that the rotational speed of 8 (rpm) was maintained from the beginning to the end and there was no change in the rotational speed.

第2図から、Rc = 8 + 0.75 (rpm/
 hr)の条件で長尺結晶を引き上げると、長尺結晶か
ら加工したウェハを例えば第4図に示す条件で熱処理し
た場合に、そのウェハが長尺結晶のどこから切り出され
たものであっても、同一の酸素濃度減少量を示すと予測
される。
From Figure 2, Rc = 8 + 0.75 (rpm/
When a long crystal is pulled under the conditions of hr), when a wafer processed from the long crystal is heat-treated under the conditions shown in FIG. 4, no matter where on the long crystal the wafer is cut, It is predicted that the same amount of oxygen concentration reduction will be shown.

なお、上述した数値は上記の条件の下での値であって、
成長する結晶の寸法、るつぼの大きさ、チャージ量が異
なるときはその都度Rcを適宜設定するものであり、本
発明の適用範囲は上記の具体例に限定されるものでない
In addition, the above-mentioned numerical values are values under the above conditions,
When the dimensions of the crystal to be grown, the size of the crucible, and the amount of charge differ, Rc is set appropriately each time, and the scope of application of the present invention is not limited to the above-mentioned specific examples.

〔発明の効果〕〔Effect of the invention〕

以上述べてきたように本発明によれば、結晶のどこから
加工したウェハも同一の熱処理特性を示すので、半導体
集積回路製造の歩留り向上に寄与するところ大である。
As described above, according to the present invention, wafers processed from any part of the crystal show the same heat treatment characteristics, which greatly contributes to improving the yield of semiconductor integrated circuit manufacturing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例の図、 第2図は本発明実施例の線図、 第3図はIGを説明するためのウェハの断面図、第4図
はウェハ内の酸素減少速度を示す線図、第5図はCZ法
による長尺結晶の成長を示す図、第6図はウェハ熱処理
後の増加酸素濃度を示す線図である。 第1図ないし第6図において、 11はウェハ、 12はデバイス、 13はデバイス形成層、 14は金属、 l5は内部領域、 16は酸素、 20は種結晶、 21は長尺結晶、 22は長尺結晶の頭部、 23は長尺結晶の尾部、 31はるつぼ、 32は融液、 33はチャックである。 代理人  弁理士  久木元   彰 復代理人 弁理士  大 菅 義 之 李支明更憎渕め酌 第7図 IGtvL1114 T4r=/+cf7xハrat1
面圀第3図 第2図 70σ1%理IF’l (hrン ウニへ四/l叡」1戒り1度を禾す稈凹第4図 (a)          (b) C7范Jユよ不長尺沢1ルのへ″長色示す図第5図
Fig. 1 is a diagram of an embodiment of the present invention, Fig. 2 is a line diagram of an embodiment of the present invention, Fig. 3 is a cross-sectional view of a wafer to explain IG, and Fig. 4 shows the rate of oxygen reduction within the wafer. FIG. 5 is a diagram showing the growth of long crystals by the CZ method, and FIG. 6 is a diagram showing the increased oxygen concentration after wafer heat treatment. 1 to 6, 11 is a wafer, 12 is a device, 13 is a device forming layer, 14 is a metal, 15 is an internal region, 16 is oxygen, 20 is a seed crystal, 21 is a long crystal, and 22 is a long crystal. The head of the long crystal, 23 the tail of the long crystal, 31 the crucible, 32 the melt, and 33 the chuck. Agent Patent attorney: Hajime Kuki Agent: Yoshi Osuga Patent attorney: IGtvL1114 T4r=/+cf7xharat1
Menku Figure 3 Figure 2 70σ1% りIF'l (hrununihe4/l叡) 1 commandment and 1 degree of culm concave Figure 4 (a) (b) C7 Fan Jyu, non-length Diagram 5 showing the long color of the stream 1

Claims (2)

【特許請求の範囲】[Claims] (1)チョクラルスキー法によって育成された単結晶シ
リコンが成長過程で受けた熱履歴を、当該シリコンの酸
素濃度によって制御することを特徴とした単結晶シリコ
ンの成長方法。
(1) A method for growing single-crystal silicon, characterized in that the thermal history that single-crystal silicon, grown by the Czochralski method, receives during the growth process is controlled by the oxygen concentration of the silicon.
(2)るつぼ(31)内の融液(32)から長尺結晶(
21)を引き上げるにおいて、るつぼ(31)をチャッ
ク(33)の回転方向と逆方向に、dRc/dt>0な
る条件(ただしRcはるつぼの回転速度)で回転するこ
とを特徴とする特許請求の範囲第1項記載の方法。
(2) From the melt (32) in the crucible (31) to a long crystal (
21), the crucible (31) is rotated in the opposite direction to the rotational direction of the chuck (33) under the condition that dRc/dt>0 (where Rc is the rotational speed of the crucible). The method described in Scope 1.
JP25696486A 1986-10-30 1986-10-30 Growth method for single crystal silicon Pending JPS63112488A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25696486A JPS63112488A (en) 1986-10-30 1986-10-30 Growth method for single crystal silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25696486A JPS63112488A (en) 1986-10-30 1986-10-30 Growth method for single crystal silicon

Publications (1)

Publication Number Publication Date
JPS63112488A true JPS63112488A (en) 1988-05-17

Family

ID=17299815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25696486A Pending JPS63112488A (en) 1986-10-30 1986-10-30 Growth method for single crystal silicon

Country Status (1)

Country Link
JP (1) JPS63112488A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0532480A (en) * 1991-02-20 1993-02-09 Sumitomo Metal Ind Ltd Method for growing crystal
WO1994016124A1 (en) * 1993-01-06 1994-07-21 Nippon Steel Corporation Method and apparatus for predicting crystal quality of single-crystal semiconductor
GB2279586A (en) * 1993-01-06 1995-01-11 Nippon Steel Corp Method and apparatus for predicting crystal quality of single-crystal semiconductor
KR100835293B1 (en) 2006-12-29 2008-06-09 주식회사 실트론 Manufacturing method of silicon single crystal ingot

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0532480A (en) * 1991-02-20 1993-02-09 Sumitomo Metal Ind Ltd Method for growing crystal
WO1994016124A1 (en) * 1993-01-06 1994-07-21 Nippon Steel Corporation Method and apparatus for predicting crystal quality of single-crystal semiconductor
GB2279586A (en) * 1993-01-06 1995-01-11 Nippon Steel Corp Method and apparatus for predicting crystal quality of single-crystal semiconductor
US5485803A (en) * 1993-01-06 1996-01-23 Nippon Steel Corporation Method of predicting crystal quality of semiconductor single crystal and apparatus thereof
KR100835293B1 (en) 2006-12-29 2008-06-09 주식회사 실트론 Manufacturing method of silicon single crystal ingot

Similar Documents

Publication Publication Date Title
JP5439305B2 (en) Silicon substrate manufacturing method and silicon substrate
WO2010119614A1 (en) Anneal wafer, method for manufacturing anneal wafer, and method for manufacturing device
JP2001181090A (en) Method for producing single crystal
JP2010040587A (en) Method of manufacturing silicon wafer
WO2001027362A1 (en) Silicon single-crystal wafer for epitaxial wafer, epitaxial wafer, methods for producing them, and evaluating method
US7125608B2 (en) Single-crystal silicon ingot and wafer having homogeneous vacancy defects, and method and apparatus for making same
US6277715B1 (en) Production method for silicon epitaxial wafer
JP2002145697A (en) Single crystal silicon wafer, ingot and manufacturing method thereof
JP4196602B2 (en) Epitaxial growth silicon wafer, epitaxial wafer, and manufacturing method thereof
JPH11180800A (en) Production of silicon single crystal having low crystal defect and silicon single crystal wafer produced therewith
JP2005015313A (en) Method for manufacturing single crystal, and single crystal
JPH06295912A (en) Manufacture of silicon wafer and silicon wafer
JPS63112488A (en) Growth method for single crystal silicon
JP2002145698A (en) Single crystal silicon wafer, ingot and manufacturing method thereof
JP2002198375A (en) Method of heat treatment of semiconductor wafer and semiconducor wafer fabricated therby
JPH1192283A (en) Silicon wafer and its production
JP4463950B2 (en) Method for manufacturing silicon wafer
JPH0367994B2 (en)
JPH06295913A (en) Manufacture of silicon wafer and silicon wafer
JPH08250506A (en) Silicon epitaxial wafer and its manufacture
JPS58197716A (en) Silicon wafer
JP3171308B2 (en) Silicon wafer and method for manufacturing the same
JPS6097619A (en) Manufacture of semiconductor
US7122082B2 (en) Silicon wafer and manufacturing method thereof
JPS6344720B2 (en)