JPH06295912A - Manufacture of silicon wafer and silicon wafer - Google Patents

Manufacture of silicon wafer and silicon wafer

Info

Publication number
JPH06295912A
JPH06295912A JP8355893A JP8355893A JPH06295912A JP H06295912 A JPH06295912 A JP H06295912A JP 8355893 A JP8355893 A JP 8355893A JP 8355893 A JP8355893 A JP 8355893A JP H06295912 A JPH06295912 A JP H06295912A
Authority
JP
Japan
Prior art keywords
wafer
bmd
heat treatment
temperature
hydrogen gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8355893A
Other languages
Japanese (ja)
Other versions
JP3022044B2 (en
Inventor
Kouji Sensai
宏治 泉妻
Hiroshi Shirai
宏 白井
Atsushi Yoshikawa
淳 吉川
Kazuhiko Kashima
一日兒 鹿島
Yoshio Kirino
好生 桐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP5083558A priority Critical patent/JP3022044B2/en
Publication of JPH06295912A publication Critical patent/JPH06295912A/en
Application granted granted Critical
Publication of JP3022044B2 publication Critical patent/JP3022044B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/322Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections
    • H01L21/3221Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections of silicon bodies, e.g. for gettering
    • H01L21/3225Thermally inducing defects using oxygen present in the silicon body for intrinsic gettering

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To make defectless the active layer of a device and to make low the density of oxygen deposits of the bulk part of a wafer by a method wherein a silicon wafer having a specified interstitial oxygen concentration is subjected to heat treatment in a hydrogen gas atomsphere under specified heat-treating conditions and is formed into the wafer having the distribution of the specified density of oxygen deposits. CONSTITUTION:A silicon wafer having an interstitial oxygen concentration Oi of 1.5 to 1.8X10<18>atoms/cm<3> is subjected to heat treatment in a hydrogen gas atmosphere under conditions that a heat-treating temperature is 1100 to 1300 deg.C, a heat-treating time is one minute to 48 hours and a heating-up speed within a temperature range of 1000 to 1300 deg.C in a heat-treating process is 15 to 100 deg.C/min. By this method, a wafer, which has a defect less layer containing 10<3>piece/cm<3> or less of BMDs of a size of 20nm or larger extending over at least a depth of 10mum or deeper from the surface of the wafer and has the density BMD of oxygen deposits, which is set under the conditions of BMD>=1X10<3>piece/cm<3> and BMD<=exp{9.210X10<-18>XOi+3.244}piece/cm<3>, of the internal bulk part of the wafer, can be manufactured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超LSIなどの半導体
のデバイス用のシリコンウエハおよびその製造方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon wafer for semiconductor devices such as VLSI and a method for manufacturing the same.

【0002】[0002]

【従来の技術】超LSI用半導体デバイスの製造プロセ
スにおいて、ウエハに混入している微量金属不純物およ
びウエハのデバイス活性領域(ウエハ表面から深さ10
μm程度)内に存在する微小欠陥が製造される半導体デ
バイスの特性および信頼性劣化の原因となることがあ
る。そのため、従来よりこれらの金属不純物および微小
欠陥を極力低減するためにさまざまな対策がなされてい
る。
2. Description of the Related Art In a manufacturing process of a semiconductor device for VLSI, a trace amount of metal impurities mixed in a wafer and a device active region of the wafer (a depth of 10 from a wafer surface).
Micro defects existing in the range of about μm may cause deterioration in the characteristics and reliability of the manufactured semiconductor device. Therefore, various measures have been conventionally taken to reduce these metal impurities and minute defects as much as possible.

【0003】金属不純物を低減させる方法としては、金
属不純物を捕獲(ゲッタリング)するためにサンドブラ
ストなどにより、ウエハ裏面に微小な歪みを設けるバッ
クサイドダメージ法(BSD法)がある。また、ウエハ
裏面に多結晶シリコンを堆積する方法も用いられてい
る。
As a method of reducing metal impurities, there is a backside damage method (BSD method) in which a minute strain is provided on the back surface of a wafer by sandblasting or the like for capturing (gettering) metal impurities. A method of depositing polycrystalline silicon on the back surface of the wafer is also used.

【0004】また、後者の対策としては、デバイス活性
領域に微小欠陥を有さない、気相成長させた単結晶シリ
コン層をもつエピタキシャルウエハが用いられている。
As a measure against the latter, an epitaxial wafer having a vapor-grown single crystal silicon layer having no microdefects in the device active region is used.

【0005】さらに、両者の対策を同時に行うためにイ
ントリンシックゲッタリング法(IG法)が開発され
た。IG法はウエハを高温熱処理することにより、ウエ
ハ表面の酸素を外方に拡散させて微小欠陥の核となる格
子間酸素を減少させ、デバイス活性領域に微小欠陥のな
いdenuded zone(DZ層)を形成させる。
さらにDZ層以下の深い領域(バルク部)では含まれて
いる過剰な格子間酸素が高温熱処理によって析出し、微
小なSiO2 析出物に代表されるBMDを生成する。こ
れらのBMDがバルク部のシリコンマトリックスに歪み
を及ぼして二次的な転位や積層欠陥を誘起し、金属不純
物をゲッタリングする。
Further, an intrinsic gettering method (IG method) has been developed in order to simultaneously take measures against both. The IG method heat-treats a wafer at a high temperature to diffuse outward oxygen on the wafer surface to reduce interstitial oxygen, which is a nucleus of microdefects, and to form a depleted zone (DZ layer) having no microdefects in a device active region. Let it form.
Further, in the deep region (bulk portion) below the DZ layer, the excess interstitial oxygen contained is precipitated by the high temperature heat treatment, and BMD typified by minute SiO 2 precipitates is generated. These BMDs exert strain on the silicon matrix in the bulk portion to induce secondary dislocations and stacking faults, and getter metal impurities.

【0006】IG法においては、引き上げられた単結晶
シリコンインゴットの熱履歴に影響を受けないこと、お
よびより広い含有酸素濃度範囲のウエハを利用すること
を目的として、複数段の熱処理を施している。まず、前
熱処理においては、酸素含有の不活性ガス雰囲気中で高
温(〜1200℃)で熱処理を施してウエハ表面から酸
素を外方に拡散させ、もともと存在していた酸素に起因
するBMD核を縮小・消滅させる。次に酸素雰囲気中の
中段の低温(500〜900℃)の熱処理を施してバル
ク部にBMD核を生成させる。そして最終的に酸素雰囲
気中の中温(〜1000℃)熱処理により、BMD核を
成長させてBMDを生成・成長させている。中段の熱処
理には種々の工夫がなされており、例えば等温アニー
ル、低温からの多段階アニールおよび低温からのランピ
ングアニールなどが代表的である。
In the IG method, a plurality of stages of heat treatment are carried out for the purpose of not being affected by the thermal history of the pulled single crystal silicon ingot and utilizing a wafer having a wider oxygen concentration range. . First, in the pre-heat treatment, heat treatment is performed at a high temperature (up to 1200 ° C.) in an oxygen-containing inert gas atmosphere to diffuse oxygen outward from the wafer surface to remove BMD nuclei originally present from oxygen. Reduce and eliminate. Next, heat treatment at a low temperature (500 to 900 ° C.) in the middle stage in an oxygen atmosphere is performed to generate BMD nuclei in the bulk part. Finally, the BMD nuclei are grown and BMDs are generated and grown by heat treatment in an oxygen atmosphere at a medium temperature (up to 1000 ° C.). Various ideas have been made for the heat treatment in the middle stage, and for example, isothermal annealing, multi-stage annealing from low temperature, ramping annealing from low temperature, etc. are typical.

【0007】上記IG法においては、実際には前段の熱
処理による酸素の外方拡散が十分でなくデバイス活性領
域に微小な酸素析出物(BMDなど)が残ってしまうこ
とがある。また、複数の熱処理工程が必要なため、作業
性の問題およびコストの問題などにより実用化があまり
進んでいない。
In the IG method described above, the outward diffusion of oxygen due to the heat treatment in the preceding stage is not sufficient in practice, and minute oxygen precipitates (such as BMD) may remain in the device active region. Further, since a plurality of heat treatment steps are required, practical application has not progressed so much due to workability problems and cost problems.

【0008】最近、このような多段階の熱処理を必要と
する方法に代わり、100%還元性ガスまたは100%
不活性ガスあるいは還元性ガスと不活性ガスの混合ガス
雰囲気中で高温の熱処理を施すことにより、ウエハ表面
にDZ層、バルク部にBMDを形成し、イントリンシッ
クゲッタリング効果(IG効果)をもたせるウエハの製
造方法も行われている。これらの製造方法に関して本出
願人は特開昭60−247935号、特開昭61−19
3458号、特開昭61−193459号、特開昭61
−193456号、特開昭62−123098号、特開
平2−177541号などの出願を行っている。
Recently, instead of the method requiring such multi-step heat treatment, 100% reducing gas or 100% is used.
By performing high-temperature heat treatment in an inert gas atmosphere or a mixed gas atmosphere of a reducing gas and an inert gas, a DZ layer is formed on the wafer surface and a BMD is formed on the bulk portion, and an intrinsic gettering effect (IG effect) is provided. Wafer manufacturing methods are also used. The applicant of the present invention relates to these production methods in JP-A-60-247935 and JP-A-61-19.
3458, JP-A-61-193459, JP-A-61
Nos. 193456, 62-123098, and 2-177541 are filed.

【0009】この方法の代表的な水素雰囲気での熱処理
は、次のような温度プロセスによって行われている。熱
処理温度まで昇温する昇温プロセスは、室温から100
0℃までは約10℃/min程度、1000℃から12
00℃までは3℃/min以下、熱処理は約1200℃
において1時間以上、降温プロセスは1200℃から9
00℃程度まで3℃/min以下である。図1に代表的
な温度プロセスを示す。図1の熱処理操作は、昇温プロ
セスは室温から1000℃までは10℃/min、10
00℃から1200℃の間は3℃/min、熱処理は1
200℃で1時間、降温プロセスは1200℃から10
00℃まで3℃/min、1000℃以下は10℃/m
inで行っている。
The typical heat treatment in a hydrogen atmosphere of this method is performed by the following temperature process. The temperature raising process for raising the temperature to the heat treatment temperature is from room temperature to 100
About 10 ℃ / min up to 0 ℃, from 1000 ℃ to 12 ℃
Up to 00 ° C, 3 ° C / min or less, heat treatment: about 1200 ° C
For more than 1 hour, the cooling process is from 1200 ℃ to 9 ℃
It is 3 ° C./min or less up to about 00 ° C. A typical temperature process is shown in FIG. In the heat treatment operation of FIG. 1, the temperature rising process is 10 ° C./min from room temperature to 1000 ° C.
3 ° C / min between 00 ° C and 1200 ° C, 1 heat treatment
1 hour at 200 ℃, cooling process from 1200 ℃ to 10 ℃
3 ° C / min up to 00 ° C, 10 ° C / m below 1000 ° C
I'm going in.

【0010】この熱処理操作において、1000℃以上
の領域の昇温プロセスでは昇温速度を3℃/min程度
より高くすると処理中のウエハにスリップが発生してし
まう恐れがある。また、通常使用されている熱処理炉は
断熱や発熱体の制約のため、早い速度で昇温を行うこと
はされていなかった。
In this heat treatment operation, in the temperature raising process in the region of 1000 ° C. or higher, if the temperature raising rate is higher than about 3 ° C./min, slip may occur on the wafer being processed. In addition, the heat treatment furnace that is usually used has not been heated at a high speed because of heat insulation and restrictions of heating elements.

【0011】上記熱処理過程によるウエハ構造の形成の
メカニズムについて以下のように推測できる。昇温プロ
セス中では昇温速度が遅いため、バルク部ではBMDの
成長が起こるとともに同時に表層部では酸素の外方拡散
が起こり、表層部の酸素濃度は低下する。熱処理温度に
到達後は、表層部の酸素の外方拡散がより行われ表層部
のBMD核となる格子間酸素が減少し表層部のBMDの
消滅が加速される。バルク部では高温熱処理のため酸素
がウエハ内を拡散しBMDの収縮が生じる。しかし酸素
減少量が少ないためBMDの消滅は生じない。降温プロ
セス中では、昇温速度が遅いため、理論上はウエハ表層
部でもBMDの成長が生じるが表層部の酸素は外方拡散
により減少しているためBMDは形成されずにDZ層と
なる。これに対し、バルク部では再びBMDの成長・析
出が生じる。
The mechanism of forming the wafer structure by the above heat treatment process can be estimated as follows. Since the temperature rising rate is slow during the temperature raising process, BMD growth occurs in the bulk portion, and at the same time, outward diffusion of oxygen occurs in the surface layer portion, and the oxygen concentration in the surface layer portion decreases. After reaching the heat treatment temperature, outward diffusion of oxygen in the surface layer portion is further performed, interstitial oxygen that becomes BMD nuclei in the surface layer portion is reduced, and disappearance of BMD in the surface layer portion is accelerated. In the bulk portion, oxygen is diffused in the wafer due to the high temperature heat treatment and BMD contraction occurs. However, since the amount of oxygen decrease is small, BMD disappears. Since the temperature rising rate is slow during the temperature lowering process, theoretically, BMD growth also occurs in the wafer surface layer portion, but oxygen in the surface layer portion is reduced by outward diffusion, so that BMD is not formed but becomes a DZ layer. On the other hand, BMD growth / precipitation occurs again in the bulk portion.

【0012】図2にウエハに水素ガス100%中、図1
に示す様な熱処理を行った場合のウエハ初期酸素濃度と
熱処理後のウエハのバルク部のBMD密度との関係を●
で示す。図2より熱処理後のバルク部のBMD密度はウ
エハの初期酸素濃度に依存し、初期酸素濃度が高くなる
につれバルク部のBMD密度が大きくなることが理解さ
れる。
FIG. 2 shows a wafer in 100% hydrogen gas, and FIG.
The relation between the initial oxygen concentration of the wafer and the BMD density of the bulk portion of the wafer after the heat treatment when the heat treatment as shown in
Indicate. It is understood from FIG. 2 that the BMD density of the bulk portion after the heat treatment depends on the initial oxygen concentration of the wafer, and the BMD density of the bulk portion increases as the initial oxygen concentration increases.

【0013】近年、高集積化の進むメモリーデバイスな
どではその特性向上のため、出発原料としてのシリコン
ウエハには表面のデバイス活性層を無欠陥にすることの
ほうが、デバイス製造プロセス中に混入する金属不純物
をゲッタリングすることよりも必要かつ重要となってい
る。
In recent years, in order to improve the characteristics of a highly integrated memory device and the like, it is better to make the device active layer on the surface of a silicon wafer as a starting material defect-free because the metal mixed in during the device manufacturing process. It is more necessary and important than gettering impurities.

【0014】また、初期酸素濃度が高い(1.6×10
18atoms/cm3 以上)ウエハは、図2より従来の
還元性または不活性ガス中の高温熱処理で109 個/c
3以上のBMDが形成される。このようなBMDの形
成されたウエハは金属不純物のゲッタリング効果という
面では優れているが、過剰のBMDが形成されるとウエ
ハの機械的強度が低下するだけでなくデバイス活性層ま
たはその近傍にもBMDが形成されることになるためデ
バイス特性を悪化させる恐れがある。
The initial oxygen concentration is high (1.6 × 10
18 atoms / cm 3 or more) As shown in FIG. 2, the number of wafers is 10 9 / c in the conventional high temperature heat treatment in a reducing or inert gas.
A BMD of m 3 or more is formed. The wafer on which such a BMD is formed is excellent in terms of gettering effect of metal impurities, but if excessive BMD is formed, not only the mechanical strength of the wafer is lowered but also the device active layer or its vicinity is formed. However, since BMD is formed, the device characteristics may be deteriorated.

【0015】このような状況のため、最近ではより完全
な無欠陥層をもつウエハが要求され、したがってウエハ
はより低酸素濃度(1.4×1018atoms/cm3
未満)のものが要求され始めているが、このようなウエ
ハは従来の製造方法・条件では製造が難しく生産性、コ
ストなどの面から問題が多い。
Due to such a situation, a wafer having a more perfect defect-free layer has recently been required, and therefore, the wafer has a lower oxygen concentration (1.4 × 10 18 atoms / cm 3).
However, such wafers are difficult to manufacture by conventional manufacturing methods and conditions, and there are many problems in terms of productivity and cost.

【0016】本発明は、以上のような問題を解決するた
めになされたものであり、比較的高い酸素濃度範囲のウ
エハであっても、デバイス活性層はより無欠陥に、かつ
バルク部のBMDは低密度であるシリコンウエハの製造
方法およびそのようなシリコンウエハを提供することを
目的とする。
The present invention has been made in order to solve the above problems. Even in a wafer having a relatively high oxygen concentration range, the device active layer is more defect-free and the BMD of the bulk portion is BMD. Aims to provide a method for manufacturing a silicon wafer having a low density and such a silicon wafer.

【0017】[0017]

【課題を解決するための手段と作用】本願の第1の発明
は、チョクラルスキー法により製造された単結晶シリコ
ンインゴットから製造された格子間酸素濃度[Oi]が
1.5〜1.8×1018atoms/cm3 のシリコン
ウエハを、水素ガス雰囲気中あるいは水素ガスと不活性
ガスの混合ガス雰囲気中で、熱処理温度を1100℃〜
1300℃、熱処理時間を1分間〜48時間、熱処理過
程中1000℃から1300℃の温度範囲内における昇
温速度を15〜100℃/minの条件で熱処理を施す
ことによって、ウエハ表面から少なくとも深さ10μm
以上にわたって大きさが20nm以上のBMDが103
個/cm3 以下である無欠陥層を有し、ウエハ内部バル
ク部の酸素析出物密度[BMD]が、[BMD]≧1×
103 個/cm3 、かつ[BMD]≦exp{9.21
0×10-18 ×[Oi]+3.224}個/cm3 であ
るウエハを製造することを特徴とするシリコンウエハの
製造方法を要旨とする。また、本願の第2の発明は、チ
ョクラルスキー法により製造された単結晶シリコンイン
ゴットから製造された格子間酸素濃度[Oi]が1.5
〜1.8×1018atoms/cm3 のシリコンウエハ
を、水素ガス雰囲気中あるいは水素ガスと不活性ガスの
混合ガス雰囲気中で、熱処理温度を1100℃〜130
0℃、熱処理時間を1分間〜48時間、熱処理過程中1
000℃から1300℃の温度範囲内における昇温速度
を15〜100℃/minの条件で熱処理を施すことに
よって製造された、ウエハ表面から少なくとも深さ10
μm以上にわたって大きさが20nm以上のBMDが1
3 個/cm3 以下である無欠陥層を有し、ウエハ内部
バルク部の酸素析出物密度[BMD]が、[BMD]≧
1×103 個/cm3 、かつ[BMD]≦exp{9.
210×10-18 ×[Oi]+3.224}個/cm3
であることを特徴とするシリコンウエハを要旨とする。
According to the first invention of the present application, the interstitial oxygen concentration [Oi] produced from a single crystal silicon ingot produced by the Czochralski method is 1.5 to 1.8. The heat treatment temperature of a silicon wafer of × 10 18 atoms / cm 3 in a hydrogen gas atmosphere or a mixed gas atmosphere of hydrogen gas and an inert gas is set to 1100 ° C.
The heat treatment is performed at a temperature of 1300 ° C., a heat treatment time of 1 minute to 48 hours, and a temperature increase rate of 15 to 100 ° C./min in the temperature range of 1000 ° C. to 1300 ° C. during the heat treatment process. 10 μm
The BMD having a size of 20 nm or more is 10 3
Has a defect-free layer which is the number / cm 3 or less, the oxygen precipitate density of the wafer inside the bulk portion [BMD] is, [BMD] ≧ 1 ×
10 3 pieces / cm 3 and [BMD] ≦ exp {9.21
A gist of a method for manufacturing a silicon wafer is to manufacture a wafer having 0 × 10 −18 × [Oi] +3.224} pieces / cm 3 . The second invention of the present application has an interstitial oxygen concentration [Oi] of 1.5 produced from a single crystal silicon ingot produced by the Czochralski method.
˜1.8 × 10 18 atoms / cm 3 of a silicon wafer in a hydrogen gas atmosphere or in a mixed gas atmosphere of hydrogen gas and an inert gas at a heat treatment temperature of 1100 ° C. to 130 ° C.
0 ° C, heat treatment time 1 minute to 48 hours, 1 during heat treatment process
At least a depth of 10 from the wafer surface, which is produced by performing heat treatment at a temperature rising rate of 15 to 100 ° C./min in a temperature range of 000 ° C. to 1300 ° C.
1 BMD with a size of 20 nm or more over μm
Oxygen precipitate density [BMD] in the bulk portion inside the wafer has a defect-free layer of 0 3 / cm 3 or less, and [BMD] ≧
1 × 10 3 pieces / cm 3 , and [BMD] ≦ exp {9.
210 × 10 -18 × [Oi] +3.224} pieces / cm 3
The gist of the invention is a silicon wafer.

【0018】また、本明細書中の酸素濃度はすべてOl
d ASTMによる換算係数による値である。
Further, all oxygen concentrations in this specification are Ol.
d It is a value based on a conversion coefficient according to ASTM.

【0019】一般的にウエハを熱処理する際のBMDの
挙動について説明する。
Generally, the behavior of BMD during heat treatment of a wafer will be described.

【0020】古典的核形成理論によれば、BMDは酸素
クラスタを均一核として過飽和な酸素が付着および脱離
することによりそれぞれ成長および収縮する。
According to the classical nucleation theory, BMD grows and contracts by attaching and detaching supersaturated oxygen with oxygen clusters as uniform nuclei.

【0021】ある時点で存在するBMDが成長するか縮
小・消滅するかは、その時点でのBMDの大きさ、およ
びそのときの温度(および酸素濃度)によって定まる臨
界核半径によってきまる。臨界核半径は温度に依存し、
高温になれば臨界核半径は増大する。ある温度にウエハ
を保持すると、その温度での臨界核半径よりも既に大き
く成長しているBMDは成長を続け、臨界核半径より小
さい径のBMDは縮小・消滅する。
Whether the BMD existing at a certain time point grows or shrinks / disappears depends on the size of the BMD at that time point and the critical nucleus radius determined by the temperature (and oxygen concentration) at that time point. Critical nucleus radius depends on temperature,
The critical nucleus radius increases with increasing temperature. When a wafer is held at a certain temperature, BMDs that have already grown larger than the critical nucleus radius at that temperature continue to grow, and BMDs having a diameter smaller than the critical nucleus radius contract and disappear.

【0022】本発明者らは以上の知見に基づきこれをウ
エハの製造方法に応用することによってBMDを制御
し、高集積デバイス製造に適したウエハが製造できるこ
とを知得して本発明をなし得たものである。
Based on the above findings, the present inventors can realize the present invention by knowing that the BMD can be controlled by applying this to a wafer manufacturing method and a wafer suitable for manufacturing highly integrated devices can be manufactured. It is a thing.

【0023】本発明は通常のチョクラルスキー法で製造
されたシリコンインゴットから製造されるシリコンウエ
ハで一般的に得ることができる、含有酸素濃度が比較的
高い領域である1.5〜1.8×1018atoms/c
3 のウエハの熱処理に適用される。これより低い酸素
濃度を有するウエハは前に述べたように本発明の熱処理
を施さなくてもBMD密度を低くできる。
The present invention is a region in which the oxygen concentration is relatively high, which is generally obtained in a silicon wafer manufactured from a silicon ingot manufactured by the ordinary Czochralski method, which is 1.5 to 1.8. × 10 18 atoms / c
Applied for heat treatment of m 3 wafers. A wafer having an oxygen concentration lower than this can have a low BMD density without the heat treatment of the present invention as described above.

【0024】本発明の熱処理は、100%水素ガス雰囲
気中か、水素ガスと不活性ガスの混合ガス雰囲気中で行
われる。100%水素ガス雰囲気中で行うことが無欠陥
層の形成、酸素の外方拡散のしやすさおよび熱処理の際
の面荒れが生じにくいなどの面から好ましい。
The heat treatment of the present invention is performed in a 100% hydrogen gas atmosphere or a mixed gas atmosphere of hydrogen gas and an inert gas. It is preferable to perform the treatment in a 100% hydrogen gas atmosphere from the viewpoints of forming a defect-free layer, facilitating outward diffusion of oxygen, and preventing surface roughness during heat treatment.

【0025】本発明の熱処理は1100℃〜1300℃
で行われる。1100℃以下では本発明による効果が得
られず、1300℃以上では酸素の外方拡散効果は優れ
ているが、装置の安全性と信頼性に問題がある。
The heat treatment of the present invention is performed at 1100 ° C to 1300 ° C.
Done in. At 1100 ° C or lower, the effect of the present invention is not obtained, and at 1300 ° C or higher, the outward diffusion effect of oxygen is excellent, but there is a problem in safety and reliability of the device.

【0026】本発明の熱処理時間は1分間〜48時間で
ある。1分間未満では本発明の効果が得られず、48時
間を越えて熱処理を行っても効果の向上は見込めない。
The heat treatment time of the present invention is 1 minute to 48 hours. If it is less than 1 minute, the effect of the present invention cannot be obtained, and if the heat treatment is performed for more than 48 hours, the effect cannot be expected to be improved.

【0027】本発明の熱処理過程中、1000℃以上か
ら熱処理温度に到るまでの温度範囲内では昇温速度を1
5〜100℃/minで昇温する事が必要である。
During the heat treatment process of the present invention, the rate of temperature rise is 1 within the temperature range from 1000 ° C. to the heat treatment temperature.
It is necessary to raise the temperature at 5 to 100 ° C / min.

【0028】1000℃以上の領域において昇温速度を
15℃/minとすることにより、前述した臨界核半径
の増大速度の方を、既に存在するBMDのその温度にお
ける成長速度よりも大きくすることができる。その結
果、臨界核半径が存在するBMDの径より大きくなり、
BMDは成長せず縮小の方向に向かう。ただし、実際に
は昇温過程の時間は短いので昇温過程中に完全に消滅に
致るものはほとんど存在しない。好ましくは昇温速度は
20℃/min以上、さらに好ましくは30℃/min
以上である熱処理温度においては、表面領域では酸素の
外方拡散が進むため、表面近傍のBMDの周りの酸素濃
度が低くなりよりいっそう消滅は進みDZ層が形成され
る。バルク部でもBMDは縮小の方向に進み、消滅する
こともある。しかし、バルク部では直接、酸素の外方拡
散による酸素濃度の低下の影響は少なく、また、BMD
の縮小によりBMDの周りに融け出した固溶酸素濃度が
高くなるため完全に消滅するには時間がかかる。
By setting the rate of temperature rise to 15 ° C./min in the range of 1000 ° C. or higher, the rate of increase of the critical nucleus radius described above can be made higher than the growth rate of the existing BMD at that temperature. it can. As a result, the critical nucleus radius becomes larger than the existing BMD diameter,
BMD does not grow, but tends to shrink. However, in reality, there is almost nothing that completely disappears during the temperature rising process because the time of the temperature rising process is short. The rate of temperature rise is preferably 20 ° C / min or more, more preferably 30 ° C / min
At the heat treatment temperature as described above, outward diffusion of oxygen progresses in the surface region, so that the oxygen concentration around the BMD near the surface becomes low and the disappearance further progresses to form the DZ layer. Even in the bulk part, BMD may progress in the direction of reduction and disappear. However, in the bulk part, there is little influence of the decrease in oxygen concentration due to the outward diffusion of oxygen, and the BMD
Is reduced, the concentration of dissolved oxygen dissolved around the BMD is increased, so that it takes time to completely disappear.

【0029】降温プロセス中は、すでにBMDの大きさ
および密度ならびに表層部では酸素濃度が小さくなって
いるため降温速度を変化させてもBMDはそれほど成長
しないと考えられる。ただし、降温速度は生産性、ウエ
ハの品質(スリップ、面荒れ発生の防止)、および使用
する炉の構造上の問題などから2〜300℃/minで
あることが望ましい。
During the temperature lowering process, it is considered that the BMD does not grow so much even if the temperature lowering rate is changed because the size and density of BMD and the oxygen concentration in the surface layer portion are already small. However, the temperature lowering rate is preferably 2 to 300 ° C./min in view of productivity, wafer quality (preventing occurrence of slippage and surface roughness), structural problems of the furnace used, and the like.

【0030】このような熱処理を施すことによって、初
期酸素濃度が1.5〜1.8×1018atoms/cm
3 のシリコンウエハを使用して、ウエハ表面から10μ
m以上の深さにわたって大きさが20nm以上のBMD
が103 個/cm3 以下であるDZ層を有し、かつ、D
Z層より深い領域のバルク部のBMD密度[BMD]≧
1×103 個/cm3 以上かつ[BMD]≦exp
{9.210×10-18 ×[Oi]+3.224}であ
るウエハを製造することができる。
By performing such heat treatment, the initial oxygen concentration is 1.5 to 1.8 × 10 18 atoms / cm 3.
10μ from the wafer surface using 3 silicon wafer
BMD with a size of 20 nm or more over a depth of m or more
Has a DZ layer of less than 10 3 / cm 3 and D
BMD density [BMD] of bulk part in region deeper than Z layer ≧
1 × 10 3 pieces / cm 3 or more and [BMD] ≦ exp
A wafer having {9.210 × 10 −18 × [Oi] +3.224} can be manufactured.

【0031】このようなウエハは図2のグラフ中の領域
A+B+Cで示される。
Such a wafer is indicated by the area A + B + C in the graph of FIG.

【0032】上述のような初期酸素濃度を有するウエハ
であって、表層部に良好なDZ層を有し、バルク部のB
MD密度が上述の範囲内にあるウエハは従来存在せず、
本発明によって初めて提供されるものである。
A wafer having an initial oxygen concentration as described above, which has a good DZ layer on the surface layer and B of the bulk portion.
Conventionally, there is no wafer whose MD density is within the above range,
It is provided for the first time by the present invention.

【0033】より好ましいBMD密度の範囲としては、
1×103 ≦[BMD]≦1×108 、かつ[BMD]
≦exp{9.210×10-18 ×[Oi]+3.22
4}個/cm3 (図2中の領域B+C)であり、さらに
好ましくは[BMD]≦exp{5.757×10-18
×[Oi]+3.224}個/cm3 (図2中の領域
C)である。
A more preferable range of BMD density is as follows.
1 × 10 3 ≦ [BMD] ≦ 1 × 10 8 and [BMD]
≤ exp {9.210 × 10 -18 × [Oi] +3.22
4} / cm 3 (region B + C in FIG. 2), and more preferably [BMD] ≦ exp {5.757 × 10 −18
× [Oi] +3.224} / cm 3 (region C in FIG. 2).

【0034】このような範囲のBMD密度を有するウエ
ハはゲッタリング機能を有し、かつ表層のデバイス活性
層は良好な無欠陥のDZ層となり機械的強度も低下しな
いものである。
A wafer having a BMD density in such a range has a gettering function, and the device active layer as the surface layer is a good defect-free DZ layer and the mechanical strength is not lowered.

【0035】表層部のDZ層中のBMDは実質的に0で
あることが好ましい。DZ層中のBMDを上記のように
規定した理由は、現在の装置のBMDの大きさの検出限
界が20nmであるからであり、BMD密度が103
/cm3 を越えるともはや無欠陥とはいえず、製造され
るデバイスの特性に悪影響を及ぼすためである。
The BMD in the DZ layer of the surface layer portion is preferably substantially 0. The reason why the BMD in the DZ layer is defined as described above is that the detection limit of the BMD size of the present device is 20 nm, and when the BMD density exceeds 10 3 pieces / cm 3 , it is no longer defective. This is because the characteristics of the manufactured device are adversely affected.

【0036】[0036]

【実施例】以下、本発明の実施例を説明する使用したウ
エハはすべてチョクラルスキー法によって引き上げられ
たシリコンインゴットから切り出し、通常の方法によっ
て製造され、鏡面加工を施したシリコンウエハを用い
た。これらのウエハは、Nタイプ、面方位(100)、
比抵抗1〜1000Ω/cm、初期格子間酸素濃度[O
i]は1.45〜1.74×1018atoms/cm3
である。
EXAMPLES Hereinafter, the wafers used for explaining the examples of the present invention were all silicon wafers cut from a silicon ingot pulled up by the Czochralski method, manufactured by a usual method, and subjected to mirror finishing. These wafers are N type, plane orientation (100),
Specific resistance 1 to 1000 Ω / cm, initial interstitial oxygen concentration [O
i] is 1.45 to 1.74 × 10 18 atoms / cm 3
Is.

【0037】また、使用する炉は断熱性を向上し、加熱
源の発生熱量を多くした。例えば赤外線加熱方式の炉を
使用した。
Further, the furnace used has improved heat insulation, and the amount of heat generated by the heating source is increased. For example, an infrared heating type furnace was used.

【0038】実施例1 前記ウエハのうち、[Oi]が1.70×1018ato
ms/cm3 のウエハを100%水素ガス雰囲気中、1
200℃で1時間熱処理を行った。ただし、1000℃
から1200℃の範囲の昇温速度を30℃/min、降
温速度を300℃/minとした。
Example 1 Among the above wafers, [Oi] was 1.70 × 10 18 ato.
1 ms / cm 3 wafer in 100% hydrogen gas atmosphere
Heat treatment was performed at 200 ° C. for 1 hour. However, 1000 ° C
To 1200 ° C., the temperature rising rate was 30 ° C./min, and the temperature lowering rate was 300 ° C./min.

【0039】実施例2 [Oi]が1.61×1018atoms/cm3 のウエ
ハを使用した以外は実施例1と同一の条件で熱処理を施
した。
Example 2 Heat treatment was performed under the same conditions as in Example 1 except that a wafer having [Oi] of 1.61 × 10 18 atoms / cm 3 was used.

【0040】実施例3 [Oi]が1.51×1018atoms/cm3 のウエ
ハを使用した以外は実施例1と同一の条件で熱処理を施
した。
Example 3 Heat treatment was performed under the same conditions as in Example 1 except that a wafer having [Oi] of 1.51 × 10 18 atoms / cm 3 was used.

【0041】実施例4 1000℃から1200℃の範囲の昇温速度を30℃/
min、降温速度を3.8℃/minとした以外は実施
例1と同一の条件で熱処理を施した。
Example 4 A temperature rising rate in the range of 1000 ° C. to 1200 ° C. was 30 ° C. /
The heat treatment was performed under the same conditions as in Example 1 except that the temperature was set to min and the temperature lowering rate was set to 3.8 ° C./min.

【0042】実施例5 1000℃から1200℃の範囲の昇温速度を30℃/
min、降温速度を30℃/minとした以外は実施例
1と同一の条件で熱処理を施した。
Example 5 A temperature rising rate in the range of 1000 ° C. to 1200 ° C. was 30 ° C. /
Heat treatment was performed under the same conditions as in Example 1 except that the temperature was set to min and the rate of temperature decrease was 30 ° C./min.

【0043】比較例1 前記ウエハのうち、[Oi]が1.51×1018ato
ms/cm3 のウエハを100%水素ガス雰囲気中、1
200℃で1時間熱処理を行った。ただし、1000℃
から1200℃の範囲の昇温速度を6.3℃/min、
降温速度を10℃/minとした。
Comparative Example 1 Among the above wafers, [Oi] was 1.51 × 10 18 ato
1 ms / cm 3 wafer in 100% hydrogen gas atmosphere
Heat treatment was performed at 200 ° C. for 1 hour. However, 1000 ° C
To 1200 ° C., the heating rate is 6.3 ° C./min,
The temperature lowering rate was 10 ° C./min.

【0044】比較例2 前記ウエハのうち、[Oi]が1.61×1018ato
ms/cm3 のウエハを100%水素ガス雰囲気中、1
200℃で1時間熱処理を行った。ただし、1000℃
から1200℃の範囲の昇温速度を6.3℃/min、
降温速度を10℃/minとした。
Comparative Example 2 Among the above wafers, [Oi] was 1.61 × 10 18 ato
1 ms / cm 3 wafer in 100% hydrogen gas atmosphere
Heat treatment was performed at 200 ° C. for 1 hour. However, 1000 ° C
To 1200 ° C., the heating rate is 6.3 ° C./min,
The temperature lowering rate was 10 ° C./min.

【0045】比較例3 前記ウエハのうち、[Oi]が1.70×1018ato
ms/cm3 のウエハを100%水素ガス雰囲気中、1
200℃で1時間熱処理を行った。ただし、1000℃
から1200℃の範囲の昇温速度を3.8℃/min、
降温速度を3.8℃/minとした。
Comparative Example 3 Among the above wafers, [Oi] was 1.70 × 10 18 ato.
1 ms / cm 3 wafer in 100% hydrogen gas atmosphere
Heat treatment was performed at 200 ° C. for 1 hour. However, 1000 ° C
To 1200 ° C, the heating rate is 3.8 ° C / min,
The temperature lowering rate was 3.8 ° C./min.

【0046】比較例4 前記ウエハのうち、[Oi]が1.70×1018ato
ms/cm3 のウエハを100%水素ガス雰囲気中、1
200℃で1時間熱処理を行った。ただし、1000℃
から1200℃の範囲の昇温速度を3.8℃/min、
降温速度を300℃/minとした。
Comparative Example 4 Among the above wafers, [Oi] was 1.70 × 10 18 atoms.
1 ms / cm 3 wafer in 100% hydrogen gas atmosphere
Heat treatment was performed at 200 ° C. for 1 hour. However, 1000 ° C
To 1200 ° C, the heating rate is 3.8 ° C / min,
The temperature lowering rate was 300 ° C./min.

【0047】比較例5 前記ウエハのうち、[Oi]が1.50×1018ato
ms/cm3 のウエハを100%水素ガス雰囲気中、1
200℃で1時間熱処理を行った。ただし、1000℃
から1200℃の範囲の昇温速度を2〜3℃/min、
降温速度を2〜3℃/minとした。
Comparative Example 5 Among the above wafers, [Oi] was 1.50 × 10 18 ato.
1 ms / cm 3 wafer in 100% hydrogen gas atmosphere
Heat treatment was performed at 200 ° C. for 1 hour. However, 1000 ° C
To 1200 ° C. in the range of 2 to 3 ° C./min,
The rate of temperature decrease was 2-3 ° C / min.

【0048】比較例6 前記ウエハのうち、[Oi]が1.56×1018ato
ms/cm3 のウエハを100%水素ガス雰囲気中、1
200℃で1時間熱処理を行った。ただし、1000℃
から1200℃の範囲の昇温速度を2〜3℃/min、
降温速度を2〜3℃/minとした。
Comparative Example 6 Among the above wafers, [Oi] was 1.56 × 10 18 ato
1 ms / cm 3 wafer in 100% hydrogen gas atmosphere
Heat treatment was performed at 200 ° C. for 1 hour. However, 1000 ° C
To 1200 ° C. in the range of 2 to 3 ° C./min,
The rate of temperature decrease was 2-3 ° C / min.

【0049】比較例7 前記ウエハのうち、[Oi]が1.60×1018ato
ms/cm3 のウエハを100%水素ガス雰囲気中、1
200℃で1時間熱処理を行った。ただし、1000℃
から1200℃の範囲の昇温速度を2〜3℃/min、
降温速度を2〜3℃/minとした。
Comparative Example 7 Among the above wafers, [Oi] was 1.60 × 10 18 ato
1 ms / cm 3 wafer in 100% hydrogen gas atmosphere
Heat treatment was performed at 200 ° C. for 1 hour. However, 1000 ° C
To 1200 ° C. in the range of 2 to 3 ° C./min,
The rate of temperature decrease was 2-3 ° C / min.

【0050】比較例8 前記ウエハのうち、[Oi]が1.74×1018ato
ms/cm3 のウエハを100%水素ガス雰囲気中、1
200℃で1時間熱処理を行った。ただし、1000℃
から1200℃の範囲の昇温速度を2〜3℃/min、
降温速度を2〜3℃/minとした。
Comparative Example 8 Among the above wafers, [Oi] was 1.74 × 10 18 atoms.
1 ms / cm 3 wafer in 100% hydrogen gas atmosphere
Heat treatment was performed at 200 ° C. for 1 hour. However, 1000 ° C
To 1200 ° C. in the range of 2 to 3 ° C./min,
The rate of temperature decrease was 2-3 ° C / min.

【0051】比較例9 前記ウエハのうち、[Oi]が1.45×1018ato
ms/cm3 のウエハを100%水素ガス雰囲気中、1
200℃で1時間熱処理を行った。ただし、1000℃
から1200℃の範囲の昇温速度を8.5℃/min、
降温速度を3.8℃/minとした。
Comparative Example 9 Among the above wafers, [Oi] was 1.45 × 10 18 ato
1 ms / cm 3 wafer in 100% hydrogen gas atmosphere
Heat treatment was performed at 200 ° C. for 1 hour. However, 1000 ° C
To 1200 ° C, the heating rate is 8.5 ° C / min,
The temperature lowering rate was 3.8 ° C./min.

【0052】これらの実施例および比較例の熱処理を行
ったウエハを断面((110)面)から赤外線トモグラ
フ法により生成したBMDの密度を測定した。使用した
赤外線トモグラフ法における、検出可能なBMD最小サ
イズは20nmである。この方法は測定領域によりBM
D密度の検出限界が異なる。本測定ではウエハ表面上で
4×200μm、深さ185μmの直方体形状の領域で
測定を行った。この場合のBMD密度の測定限界は6.
8×106 個/cm3 である。このような条件では本発
明で規定する、大きさ20nm以上のBMDが103
/cm3 以下のDZ層の厚さは典型的視野で初めてBM
Dが検出される表面からの深さに相当する。
The densities of BMDs produced by the infrared tomography method were measured from the cross section ((110) plane) of the heat-treated wafers of these Examples and Comparative Examples. The minimum detectable BMD size in the infrared tomography method used is 20 nm. This method depends on the measurement area
The detection limit of D density is different. In this measurement, the measurement was performed in a rectangular parallelepiped region having a depth of 185 μm and a surface of 4 × 200 μm. The measurement limit of the BMD density in this case is 6.
It is 8 × 10 6 pieces / cm 3 . Under such conditions, the thickness of the DZ layer having a size of 20 nm or more and having a BMD size of 10 3 pieces / cm 3 or less, which is defined in the present invention, is the first time in a typical field of view that the BM
D corresponds to the depth from the surface where it is detected.

【0053】測定結果を熱処理条件と併せて表1、表2
に示す。また、図2にウエハの初期酸素濃度とBMD密
度の関係をグラフにしたものを示す。
The measurement results are shown in Tables 1 and 2 together with the heat treatment conditions.
Shown in. FIG. 2 is a graph showing the relationship between the initial oxygen concentration of the wafer and the BMD density.

【0054】[0054]

【表1】 [Table 1]

【表2】 表1、表2および図2から明らかなように、本発明の熱
処理を施したウエハは初期酸素濃度[Oi]が高いもの
であっても良好なDZ層が形成され、更にバルク部に形
成されるBMDを低密度とすることができる。すなわ
ち、表面から少なくとも深さ10μm以上にわたって大
きさが20nm以上のBMDが103 個/cm3 以下で
ある無欠陥層を有し、ウエハ内部バルク部の酸素析出物
密度[BMD]が、[BMD]≧1×103 個/c
3 、かつ[BMD]≦exp{9.210×10-18
×[Oi]+3.224}個/cm3 であるウエハを製
造することができる。
[Table 2] As is clear from Tables 1 and 2, and FIG. 2, the wafer subjected to the heat treatment of the present invention has a good DZ layer formed even if the initial oxygen concentration [Oi] is high, and further formed in the bulk portion. The BMD can have a low density. That is, it has a defect-free layer having a BMD of 10 3 pieces / cm 3 or less having a size of 20 nm or more at least 10 μm or more deep from the surface, and the oxygen precipitate density [BMD] of the wafer internal bulk part is [BMD ] ≧ 1 × 10 3 pieces / c
m 3 , and [BMD] ≦ exp {9.210 × 10 −18
Wafers of × [Oi] +3.224} / cm 3 can be manufactured.

【0055】これに対し、比較例から理解されるよう
に、本発明の範囲外の条件で熱処理を行ったウエハは初
期酸素濃度が高いほど形成されるBMDも多いことがわ
かる。比較例では無欠陥層は形成されるもののウエハ内
部のバルク部にBMDが多量に形成されてしまい、表面
の無欠陥層近傍にも多くのBMDが形成されてしまう。
結果としてウエハ表面のデバイス活性層に近い部分にB
MDが存在することになるので製造されるデバイスの特
性に悪影響を及ぼす。また、ウエハの機械的強度も低下
する。
On the other hand, as can be seen from the comparative example, it can be seen that the wafers that have been subjected to the heat treatment under the conditions outside the scope of the present invention form more BMD as the initial oxygen concentration increases. In the comparative example, although the defect-free layer is formed, a large amount of BMD is formed in the bulk portion inside the wafer, and a large amount of BMD is also formed in the vicinity of the defect-free layer on the surface.
As a result, B is formed on the surface of the wafer near the device active layer.
The presence of MD adversely affects the characteristics of the manufactured device. In addition, the mechanical strength of the wafer is also reduced.

【0056】また、本発明のウエハは、上記のように構
成されているのでデバイス活性層が無欠陥となり、活性
層近傍のBMDが少ないので、良好な特性を有するデバ
イスを歩留まりよく製造することができる。
Since the wafer of the present invention is constructed as described above, the device active layer is defect-free, and the BMD in the vicinity of the active layer is small, so that devices having good characteristics can be manufactured with high yield. it can.

【0057】本発明の熱処理において、昇温プロセス、
熱処理、降温プロセスにわたって同一のガス雰囲気で行
うことが好ましいが、それぞれにおいて雰囲気ガスの組
成を変化させてもよい。ただし、熱処理は、水素ガス雰
囲気あるいは水素ガスと不活性ガスとの混合雰囲気中で
行うことが必要である。
In the heat treatment of the present invention, the temperature raising process,
It is preferable to perform the heat treatment and the temperature lowering process in the same gas atmosphere, but the composition of the atmosphere gas may be changed in each case. However, the heat treatment needs to be performed in a hydrogen gas atmosphere or a mixed atmosphere of hydrogen gas and an inert gas.

【0058】[0058]

【発明の効果】本発明により初期酸素濃度の高いウエハ
でも形成されるBMD密度を低くできるので、良好な特
性を有する高集積デバイスを歩留まりよく製造すること
ができる。また、そのようなウエハを提供することがで
きる。また、高酸素濃度のウエハでも高集積デバイスの
製造に適するウエハとすることができるのでウエハの歩
留まりも向上することができる。
According to the present invention, the BMD density formed even on a wafer having a high initial oxygen concentration can be lowered, so that a highly integrated device having good characteristics can be manufactured with a high yield. Further, such a wafer can be provided. Further, even a wafer having a high oxygen concentration can be used as a wafer suitable for manufacturing highly integrated devices, so that the yield of wafers can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の熱処理の温度プロセスを示す図。FIG. 1 is a diagram showing a temperature process of conventional heat treatment.

【図2】ウエハの初期酸素濃度と熱処理後のBMD密度
の関係を示す図。
FIG. 2 is a diagram showing the relationship between the initial oxygen concentration of a wafer and the BMD density after heat treatment.

フロントページの続き (72)発明者 鹿島 一日兒 神奈川県秦野市曽屋30番地 東芝セラミッ クス株式会社開発研究所内 (72)発明者 桐野 好生 神奈川県秦野市曽屋30番地 東芝セラミッ クス株式会社開発研究所内Front page continuation (72) Inventor Kashima Hitotsu, Soya 30 Hadano City, Kanagawa Prefecture, Toshiba Ceramics Co., Ltd.Development Laboratory (72) Inventor Yoshio Kirino 30 Soya, Hadano City, Kanagawa Prefecture, Toshiba Ceramics Co.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 チョクラルスキー法により製造された単
結晶シリコンインゴットから製造された格子間酸素濃度
[Oi]が1.5〜1.8×1018atoms/cm3
のシリコンウエハを、水素ガス雰囲気中あるいは水素ガ
スと不活性ガスの混合ガス雰囲気中で、熱処理温度を1
100℃〜1300℃、熱処理時間を1分間〜48時
間、熱処理過程中1000℃から1300℃の温度範囲
内における昇温速度を15〜100℃/minの条件で
熱処理を施すことによって、ウエハ表面から少なくとも
深さ10μm以上にわたって大きさが20nm以上のB
MDが103 個/cm3 以下である無欠陥層を有し、ウ
エハ内部バルク部の酸素析出物密度[BMD]が、[B
MD]≧1×103 個/cm3 、かつ[BMD]≦ex
p{9.210×10-18 ×[Oi]+3.224}個
/cm3 であるウエハを製造することを特徴とするシリ
コンウエハの製造方法。
1. An interstitial oxygen concentration [Oi] produced from a single crystal silicon ingot produced by the Czochralski method is 1.5 to 1.8 × 10 18 atoms / cm 3.
The silicon wafer of No. 1 is heated at a heat treatment temperature of 1 in a hydrogen gas atmosphere or a mixed gas atmosphere of hydrogen gas and an inert gas.
The heat treatment is performed at a temperature of 100 ° C. to 1300 ° C., a heat treatment time of 1 minute to 48 hours, and a temperature rising rate of 15 ° C. to 100 ° C./min in the temperature range of 1000 ° C. to 1300 ° C. during the heat treatment process. B having a size of 20 nm or more over at least 10 μm in depth
The wafer has a defect-free layer having an MD of 10 3 pieces / cm 3 or less, and the density of oxygen precipitates [BMD] in the bulk portion inside the wafer is [BMD]
MD] ≧ 1 × 10 3 pieces / cm 3 and [BMD] ≦ ex
A method of manufacturing a silicon wafer, which comprises manufacturing a wafer having p {9.210 × 10 −18 × [Oi] +3.224} / cm 3 .
【請求項2】 チョクラルスキー法により製造された単
結晶シリコンインゴットから製造された格子間酸素濃度
[Oi]が1.5〜1.8×1018atoms/cm3
のシリコンウエハを、水素ガス雰囲気中あるいは水素ガ
スと不活性ガスの混合ガス雰囲気中で、熱処理温度を1
100℃〜1300℃、熱処理時間を1分間〜48時
間、熱処理過程中1000℃から1300℃の温度範囲
内における昇温速度を15〜100℃/minの条件で
熱処理を施すことによって製造された、ウエハ表面から
少なくとも深さ10μm以上にわたって大きさが20n
m以上のBMDが103 個/cm3 以下である無欠陥層
を有し、ウエハ内部バルク部の酸素析出物密度[BM
D]が、[BMD]≧1×103 個/cm3 、かつ[B
MD]≦exp{9.210×10-18 ×[Oi]+
3.224}個/cm3であることを特徴とするシリコ
ンウエハ。
2. The interstitial oxygen concentration [Oi] produced from a single crystal silicon ingot produced by the Czochralski method is 1.5 to 1.8 × 10 18 atoms / cm 3.
The silicon wafer of No. 1 is heated in a hydrogen gas atmosphere or a mixed gas atmosphere of hydrogen gas and an inert gas at a heat treatment temperature of
It is manufactured by performing a heat treatment at a temperature of 100 to 1300 ° C., a heat treatment time of 1 minute to 48 hours, and a heating rate of 15 to 100 ° C./min in a temperature range of 1000 to 1300 ° C. during the heat treatment process. The size is 20n at least from the wafer surface to a depth of 10 μm or more.
The density of oxygen precipitates in the bulk part inside the wafer [BM has a defect-free layer in which the BMD of m or more is 10 3 / cm 3 or less.
D] is [BMD] ≧ 1 × 10 3 pieces / cm 3 and [B
MD] ≦ exp {9.210 × 10 −18 × [Oi] +
3.224} / cm 3 silicon wafer.
JP5083558A 1993-04-09 1993-04-09 Method for manufacturing silicon wafer and silicon wafer Expired - Fee Related JP3022044B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5083558A JP3022044B2 (en) 1993-04-09 1993-04-09 Method for manufacturing silicon wafer and silicon wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5083558A JP3022044B2 (en) 1993-04-09 1993-04-09 Method for manufacturing silicon wafer and silicon wafer

Publications (2)

Publication Number Publication Date
JPH06295912A true JPH06295912A (en) 1994-10-21
JP3022044B2 JP3022044B2 (en) 2000-03-15

Family

ID=13805850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5083558A Expired - Fee Related JP3022044B2 (en) 1993-04-09 1993-04-09 Method for manufacturing silicon wafer and silicon wafer

Country Status (1)

Country Link
JP (1) JP3022044B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0897222A (en) * 1994-09-26 1996-04-12 Toshiba Ceramics Co Ltd Manufacture of silicon wafer, and silicon wafer
DE19609107A1 (en) * 1995-03-09 1996-09-12 Toshiba Ceramics Co Prodn. of silicon@ wafers with defect-free surface layer
US6245311B1 (en) 1998-06-09 2001-06-12 Shin-Etsu Handotai Co., Ltd. Method for heat treatment of silicon wafer and silicon wafer
US6531416B1 (en) 1997-10-30 2003-03-11 Shin-Etsu Handotai Co., Ltd. Method for heat treatment of silicon wafer and silicon wafer heat-treated by the method
US6573159B1 (en) 1998-12-28 2003-06-03 Shin-Etsu Handotai Co., Ltd. Method for thermally annealing silicon wafer and silicon wafer
KR20030052464A (en) * 2001-12-21 2003-06-27 주식회사 실트론 A method for heat-treatment of silicon wafer in high temperature
EP0917188A3 (en) * 1997-11-05 2004-02-11 Shin-Etsu Handotai Company Limited Method for heat treatment of SOI wafer and SOI wafer heat-treated by the method
KR100423752B1 (en) * 2001-11-12 2004-03-22 주식회사 실트론 A Semiconductor Silicon Wafer and a Method for making thereof
WO2006030699A1 (en) * 2004-09-13 2006-03-23 Shin-Etsu Handotai Co., Ltd. Soi wafer manufacturing method and soi wafer
JP2006080461A (en) * 2004-09-13 2006-03-23 Shin Etsu Handotai Co Ltd Soi wafer and manufacturing method thereof
JP2006086305A (en) * 2004-09-15 2006-03-30 Shin Etsu Handotai Co Ltd Manufacturing method of soi wafer
US9899297B1 (en) 2016-09-30 2018-02-20 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device having a through-silicon via and manufacturing method thereof

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0897222A (en) * 1994-09-26 1996-04-12 Toshiba Ceramics Co Ltd Manufacture of silicon wafer, and silicon wafer
DE19609107A1 (en) * 1995-03-09 1996-09-12 Toshiba Ceramics Co Prodn. of silicon@ wafers with defect-free surface layer
DE19609107B4 (en) * 1995-03-09 2006-07-27 Toshiba Ceramics Co., Ltd. Method for producing silicon wafers
US6531416B1 (en) 1997-10-30 2003-03-11 Shin-Etsu Handotai Co., Ltd. Method for heat treatment of silicon wafer and silicon wafer heat-treated by the method
EP0917188A3 (en) * 1997-11-05 2004-02-11 Shin-Etsu Handotai Company Limited Method for heat treatment of SOI wafer and SOI wafer heat-treated by the method
US6245311B1 (en) 1998-06-09 2001-06-12 Shin-Etsu Handotai Co., Ltd. Method for heat treatment of silicon wafer and silicon wafer
US6809015B2 (en) 1998-12-28 2004-10-26 Shin-Etsu Handotai Co., Ltd. Method for heat treatment of silicon wafers and silicon wafer
US7011717B2 (en) 1998-12-28 2006-03-14 Shin-Etsu Handotai Co., Ltd. Method for heat treatment of silicon wafers and silicon wafer
US6573159B1 (en) 1998-12-28 2003-06-03 Shin-Etsu Handotai Co., Ltd. Method for thermally annealing silicon wafer and silicon wafer
KR100423752B1 (en) * 2001-11-12 2004-03-22 주식회사 실트론 A Semiconductor Silicon Wafer and a Method for making thereof
KR20030052464A (en) * 2001-12-21 2003-06-27 주식회사 실트론 A method for heat-treatment of silicon wafer in high temperature
WO2006030699A1 (en) * 2004-09-13 2006-03-23 Shin-Etsu Handotai Co., Ltd. Soi wafer manufacturing method and soi wafer
JP2006080461A (en) * 2004-09-13 2006-03-23 Shin Etsu Handotai Co Ltd Soi wafer and manufacturing method thereof
US7902042B2 (en) 2004-09-13 2011-03-08 Shin-Etsu Handotai Co., Ltd. Method of manufacturing SOI wafer and thus-manufactured SOI wafer
JP2006086305A (en) * 2004-09-15 2006-03-30 Shin Etsu Handotai Co Ltd Manufacturing method of soi wafer
JP4696510B2 (en) * 2004-09-15 2011-06-08 信越半導体株式会社 Manufacturing method of SOI wafer
US9899297B1 (en) 2016-09-30 2018-02-20 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device having a through-silicon via and manufacturing method thereof
TWI628774B (en) * 2016-09-30 2018-07-01 台灣積體電路製造股份有限公司 Semiconductor device and manufacturing method thereof

Also Published As

Publication number Publication date
JP3022044B2 (en) 2000-03-15

Similar Documents

Publication Publication Date Title
JP5256195B2 (en) Silicon wafer and manufacturing method thereof
US8231852B2 (en) Silicon wafer and method for producing the same
JP6044660B2 (en) Silicon wafer manufacturing method
JP6115651B2 (en) Silicon wafer manufacturing method
JPH07321120A (en) Heat treatment of silicon wafer
JPH06295912A (en) Manufacture of silicon wafer and silicon wafer
WO2005014898A1 (en) Process for producing wafer
JP2003002785A (en) Silicon single crystal wafer having layer free from void defect at surface layer part and diameter of not less than 300 mm, and method for producing the same
KR100847925B1 (en) Anneal wafer manufacturing method and anneal wafer
WO2010131412A1 (en) Silicon wafer and method for producing the same
JPH06295913A (en) Manufacture of silicon wafer and silicon wafer
JP3294723B2 (en) Silicon wafer manufacturing method and silicon wafer
JPH08208374A (en) Silicon single crystal and its production
JPH10223641A (en) Manufacture of semiconductor silicon epitaxial wafer and semiconductor device
JP3294722B2 (en) Method for manufacturing silicon wafer and silicon wafer
JP7188299B2 (en) Carbon-doped silicon single crystal wafer and its manufacturing method
JPH11283987A (en) Silicon epitaxial wafer and manufacture thereof
JP3171308B2 (en) Silicon wafer and method for manufacturing the same
JP5211550B2 (en) Manufacturing method of silicon single crystal wafer
JP2005064254A (en) Method of manufacturing annealed wafer
JPH0897220A (en) Manufacture of silicon epitaxial wafer, and silicon epitaxial wafer
JP3944958B2 (en) Silicon epitaxial wafer and manufacturing method thereof
JPH09199507A (en) Semiconductor substrate and its manufacture
JP3172390B2 (en) Silicon wafer and method for manufacturing the same
JP2652346B2 (en) Manufacturing method of silicon wafer

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20080114

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20080114

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080114

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20080114

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20090114

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20100114

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120114

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120114

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130114

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees