JPH01313384A - Method for growing silicon single crystal - Google Patents

Method for growing silicon single crystal

Info

Publication number
JPH01313384A
JPH01313384A JP14526088A JP14526088A JPH01313384A JP H01313384 A JPH01313384 A JP H01313384A JP 14526088 A JP14526088 A JP 14526088A JP 14526088 A JP14526088 A JP 14526088A JP H01313384 A JPH01313384 A JP H01313384A
Authority
JP
Japan
Prior art keywords
single crystal
silicon single
silicon
pulled
residence time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14526088A
Other languages
Japanese (ja)
Other versions
JP2612033B2 (en
Inventor
Ichiro Yamashita
一郎 山下
Kotaro Shimizu
光太郎 清水
Yoshiaki Banba
番場 義明
Yasushi Shimanuki
島貫 康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Silicon Corp
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Japan Silicon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp, Japan Silicon Co Ltd filed Critical Mitsubishi Metal Corp
Priority to JP63145260A priority Critical patent/JP2612033B2/en
Priority to US07/313,799 priority patent/US4981549A/en
Priority to DE3905626A priority patent/DE3905626B4/en
Publication of JPH01313384A publication Critical patent/JPH01313384A/en
Priority to US07/933,879 priority patent/US5264189A/en
Application granted granted Critical
Publication of JP2612033B2 publication Critical patent/JP2612033B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To make it possible to grow a silicon single crystal without causing a stacking fault when a seed crystal is dipped in molten silicon and a single crystal is pulled to grow a silicon single crystal, by regulating the residence time of the pulled silicon single crystal in a specified temp. range. CONSTITUTION:When a seed crystal is dipped in molten silicon and a single crystal is pulled to grow a silicon single crystal, the residence time of the pulled silicon single crystal in the temp. range of 850-1,050 deg.C is regulated to <=140min.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、CZ法によるシリコン単結晶育成方法に係わ
り、特に積層欠陥の発生を効果的に抑えることのできる
改良に関する。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a silicon single crystal growth method using the CZ method, and particularly relates to improvements that can effectively suppress the occurrence of stacking faults.

「従来の技術」 CZ法により製造されたシリコン単結晶においては、半
導体デバイス工程で種々の高温処理が施される際に積層
欠陥が発生し、これら積層欠陥が半導体デバイスの絶縁
耐圧不良や、キャリアのライフタイム減少を引き起こす
ことが知られている。
``Prior art'' In silicon single crystals manufactured by the CZ method, stacking faults occur when various high-temperature treatments are performed in the semiconductor device process, and these stacking faults cause dielectric breakdown voltage defects in semiconductor devices and carrier failure. is known to cause a decrease in the lifetime of

従来、上記積層欠陥発生の主因は、単結晶中に過飽和に
固溶する酸素であると考えられている。
Conventionally, it has been thought that the main cause of the above-mentioned stacking faults is oxygen dissolved in supersaturated solid solution in the single crystal.

すなわち、C2単結晶に高温処理を施すと、この固溶酸
素から微細なSin、等の酸素析出物が発生して粗大化
し、この酸素析出物から放出された格子間シリコンによ
り、二次欠陥としての積層欠陥が発生するのである。
In other words, when a C2 single crystal is subjected to high-temperature treatment, fine oxygen precipitates such as Sin are generated from the solid solution oxygen and become coarse, and interstitial silicon released from the oxygen precipitates causes secondary defects to form. Stacking faults occur.

本出願人らは先に、特開昭61−201692号公報に
おいて、酸素析出物の発生を抑えることのできるシリコ
ン単結晶育成方法を提案した。
The present applicants previously proposed a silicon single crystal growth method capable of suppressing the generation of oxygen precipitates in Japanese Patent Application Laid-Open No. 61-201692.

この方法は、引き上げ中のシリコン単結晶の所定帯域に
温度制御装置を設け、シリコン単結晶をその全長に亙っ
て、1100〜900℃の温度範囲で3時間以上保持す
ることを特徴とし、これにより酸素析出物の発生を抑え
、ひいては半導体デバイス工程における高温処理時の積
層欠陥発生を低減するというものであった。
This method is characterized by providing a temperature control device in a predetermined zone of the silicon single crystal being pulled, and maintaining the silicon single crystal over its entire length at a temperature range of 1100 to 900°C for 3 hours or more. The idea was to suppress the generation of oxygen precipitates and, in turn, reduce the occurrence of stacking faults during high-temperature processing in semiconductor device processes.

「発明が解決しようとする課題」 ところが、本発明者らのその後の研究によると、前記育
成方法では確かに酸素析出物の発生は抑えられるものの
、高温処理後の積層欠陥密度はむしろ増大することが確
認された。
``Problems to be Solved by the Invention'' However, subsequent research by the present inventors revealed that although the growth method described above does indeed suppress the generation of oxygen precipitates, the stacking fault density after high-temperature treatment actually increases. was confirmed.

そこで本発明者らは、積層欠陥発生機構について再び詳
細な検討を試み、この場合に生じる積層欠陥は、酸素析
出物の粗大化で放出された格子間シリコンにより形成さ
れたものではないことを突き止めた。
Therefore, the present inventors once again conducted a detailed study on the stacking fault generation mechanism, and found that the stacking faults generated in this case were not formed by interstitial silicon released due to coarsening of oxygen precipitates. Ta.

そこで、本発明者らは新たに、種々異なる温度条件で単
結晶育成を試み、シリコン単結晶が850〜i o s
 o ’cの温度範囲を通過するのに要する滞留時間を
140分以下とした場合には、単結晶中の積層欠陥密度
を低減可能であることを突き止めた。
Therefore, the present inventors newly attempted to grow single crystals under various temperature conditions, and the silicon single crystals grew from 850 to 100 s.
It has been found that the stacking fault density in the single crystal can be reduced if the residence time required to pass through the o'c temperature range is 140 minutes or less.

「課題を解決するための手段」 本発明は上記の知見に基づいてなされたもので、引き上
げられるシリコン単結晶の所定帯域に温度調節機構を設
ける等の手段により、この単結晶の850〜1oso℃
の温度範囲での滞留時間を140分以下とすることを特
徴とする。
"Means for Solving the Problems" The present invention has been made based on the above knowledge, and by means such as providing a temperature control mechanism in a predetermined zone of the silicon single crystal to be pulled,
The residence time in the temperature range is 140 minutes or less.

なお、850〜1050℃での滞留時間が140分を超
えた場合、または滞留時間が140分以下であっても温
度範囲が上下にずれた場合には、いずれも高温処理時に
発生する積層欠陥の密度が高くなり、従来の問題が解決
できない。
In addition, if the residence time at 850 to 1050℃ exceeds 140 minutes, or if the temperature range shifts up or down even if the residence time is 140 minutes or less, stacking faults that occur during high-temperature processing may occur. Due to the increased density, conventional problems cannot be solved.

「実施例」 次に、実施例を挙げて本発明の効果を実証する。"Example" Next, examples will be given to demonstrate the effects of the present invention.

図は、実験で使用したシリコン単結晶育成装置を示し、
図中符号1は容器、2は回転軸、3はシリコン溶湯Yを
保持する石英ルツボ、4はヒータ、5は保温筒、6は引
き上げ軸、7は種結晶である。
The figure shows the silicon single crystal growth equipment used in the experiment.
In the figure, numeral 1 is a container, 2 is a rotating shaft, 3 is a quartz crucible for holding the molten silicon Y, 4 is a heater, 5 is a heat-insulating tube, 6 is a pulling shaft, and 7 is a seed crystal.

また8は冷却機構で、引き上げ中の単結晶Tの所定帯域
を適宜冷やし、冷却速度を調節す、る役目を果を二す。
Further, 8 is a cooling mechanism, which serves to appropriately cool a predetermined zone of the single crystal T being pulled and adjust the cooling rate.

以上の装置を用いて、1 mm1分の引き上げ速度で、
155mmdX600mm長のシリコン単結晶を製造し
た。なお、冷却機構8としては、リング状の金属反射板
や水冷ジャケット等を温度により選択して使用した。そ
して、600〜850℃、850〜1050°c、to
so〜1400℃の各温度範囲における単結晶の滞留時
間を、全長に互って均一となるように調節した。
Using the above device, at a pulling speed of 1 mm/minute,
A silicon single crystal with a length of 155 mm and a length of 600 mm was manufactured. As the cooling mechanism 8, a ring-shaped metal reflection plate, a water cooling jacket, etc. were selected and used depending on the temperature. and 600-850°C, 850-1050°C, to
The residence time of the single crystal in each temperature range from so to 1400° C. was adjusted so as to be uniform over the entire length.

次に、こうして得られた8本の単結晶からウェハを切り
出し、これらウェハを2℃/分で1100℃まで加熱し
、1時間保持後、冷却する高温処理を施し、ウェハに生
じた積層欠陥密度を測定しtこ 。
Next, wafers were cut from the eight single crystals obtained in this way, and these wafers were heated at 2°C/min to 1100°C, held for 1 hour, and then cooled. Measure it.

上表の結果から明らかなように、実施例1.2により製
造された単結晶では、ウェハにおける積層欠陥の発生が
著しく少ないのに対して、850〜1050℃の範囲で
の滞留時間が140分より長い、あるいは滞留時間が1
40分以下の温度範囲が上下にずれたものでは、いずれ
も高い密度で積層欠陥が発生している。
As is clear from the results in the table above, in the single crystal manufactured in Example 1.2, the occurrence of stacking faults in the wafer was extremely small, while the residence time in the range of 850 to 1050°C was 140 minutes. longer or residence time 1
In all cases where the temperature range of 40 minutes or less is shifted upward or downward, stacking faults occur at a high density.

「発明の効果」 以上説明したように、本発明のシリコン単結晶育成方法
によれば、半導体デバイス工程での高温処理を施しても
、積層欠陥の発生が少ない高品質のシリコン単結晶を製
造することが可能である。
"Effects of the Invention" As explained above, according to the silicon single crystal growth method of the present invention, high-quality silicon single crystals with few stacking faults can be produced even when subjected to high-temperature treatment in the semiconductor device process. Is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

図は、本発明の実施例で使用したシリコン単結晶育成装
置を示す縦断面図である。 3・・・石英ルツボ、  4・・・ヒータ、6・・・引
き上げ軸、  7・・・種結晶、8・・・冷却機構、 
 T・・・シリコン単結晶。
The figure is a longitudinal cross-sectional view showing a silicon single crystal growth apparatus used in an example of the present invention. 3... Quartz crucible, 4... Heater, 6... Pulling shaft, 7... Seed crystal, 8... Cooling mechanism,
T...Silicon single crystal.

Claims (1)

【特許請求の範囲】  シリコン溶湯に種結晶を浸し、単結晶を引き上げるシ
リコン単結晶育成方法において、 引き上げられたシリコン単結晶の850〜1050℃の
温度範囲における滞留時間を、140分以下とすること
を特徴とするシリコン単結晶育成方法。
[Claims] In a silicon single crystal growth method in which a seed crystal is immersed in molten silicon and the single crystal is pulled up, the residence time of the pulled silicon single crystal in a temperature range of 850 to 1050°C is 140 minutes or less. A silicon single crystal growth method characterized by:
JP63145260A 1988-02-23 1988-06-13 Silicon single crystal growth method Expired - Lifetime JP2612033B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP63145260A JP2612033B2 (en) 1988-06-13 1988-06-13 Silicon single crystal growth method
US07/313,799 US4981549A (en) 1988-02-23 1989-02-22 Method and apparatus for growing silicon crystals
DE3905626A DE3905626B4 (en) 1988-02-23 1989-02-23 Device for growing silicon crystals
US07/933,879 US5264189A (en) 1988-02-23 1992-08-21 Apparatus for growing silicon crystals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63145260A JP2612033B2 (en) 1988-06-13 1988-06-13 Silicon single crystal growth method

Publications (2)

Publication Number Publication Date
JPH01313384A true JPH01313384A (en) 1989-12-18
JP2612033B2 JP2612033B2 (en) 1997-05-21

Family

ID=15381018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63145260A Expired - Lifetime JP2612033B2 (en) 1988-02-23 1988-06-13 Silicon single crystal growth method

Country Status (1)

Country Link
JP (1) JP2612033B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006315950A (en) * 1996-09-12 2006-11-24 Siltronic Ag Method for manufacturing silicon semiconductor wafer having low defect density

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101555520B1 (en) * 2014-01-28 2015-09-24 주식회사 엘지실트론 A method of growing a single crystal and a epitaxial wafer made of the single crystal using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5051083A (en) * 1973-09-05 1975-05-07
JPS5645894A (en) * 1979-09-25 1981-04-25 Nippon Telegr & Teleph Corp <Ntt> Reducing method for defect of silicon single crystal
JPS57160996A (en) * 1981-03-31 1982-10-04 Toshiba Corp Method and apparatus for growing si single crystal
JPS60191095A (en) * 1984-03-07 1985-09-28 Toshiba Corp Method and device for manufacturing silicon single crystal
JPS63285187A (en) * 1987-05-15 1988-11-22 Toshiba Ceramics Co Ltd Apparatus for pulling up silicon single crystal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5051083A (en) * 1973-09-05 1975-05-07
JPS5645894A (en) * 1979-09-25 1981-04-25 Nippon Telegr & Teleph Corp <Ntt> Reducing method for defect of silicon single crystal
JPS57160996A (en) * 1981-03-31 1982-10-04 Toshiba Corp Method and apparatus for growing si single crystal
JPS60191095A (en) * 1984-03-07 1985-09-28 Toshiba Corp Method and device for manufacturing silicon single crystal
JPS63285187A (en) * 1987-05-15 1988-11-22 Toshiba Ceramics Co Ltd Apparatus for pulling up silicon single crystal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006315950A (en) * 1996-09-12 2006-11-24 Siltronic Ag Method for manufacturing silicon semiconductor wafer having low defect density

Also Published As

Publication number Publication date
JP2612033B2 (en) 1997-05-21

Similar Documents

Publication Publication Date Title
US4868133A (en) Semiconductor wafer fabrication with improved control of internal gettering sites using RTA
US4851358A (en) Semiconductor wafer fabrication with improved control of internal gettering sites using rapid thermal annealing
JP2001181090A (en) Method for producing single crystal
JPS59190300A (en) Method and apparatus for production of semiconductor
US6673147B2 (en) High resistivity silicon wafer having electrically inactive dopant and method of producing same
JPH05194083A (en) Method for manufacture of silicon rod
JPH11314997A (en) Production of semiconductor silicon single crystal wafer
CN110730831A (en) Method for producing silicon single crystal, method for producing epitaxial silicon wafer, silicon single crystal, and epitaxial silicon wafer
US20020009862A1 (en) Method of treating a semiconductor wafer thermally and semiconductor wafer fabricated by the same
JP3172389B2 (en) Manufacturing method of silicon wafer
KR20050120707A (en) Process for producing single crystal
JPH01313384A (en) Method for growing silicon single crystal
JPH0367994B2 (en)
JP2004175620A (en) Manufacturing method of single crystal
JPH0474320B2 (en)
JPS6344720B2 (en)
JP2004269335A (en) Production method for single crystal
JPH04175300A (en) Heat treatment of silicon single crystal
JPH05121319A (en) Manufacture of semiconductor device
JP2612033C (en)
JP4414012B2 (en) Heat treatment method for silicon single crystal wafer
JPH01145391A (en) Device for pulling up single crystal
JPH0798715B2 (en) Method for producing silicon single crystal
CN115821395A (en) Annealing method of silicon carbide crystal and melt for annealing
JPS59131597A (en) Production of high-quality gallium arsenide single crystal

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 12