JPS59131597A - Production of high-quality gallium arsenide single crystal - Google Patents

Production of high-quality gallium arsenide single crystal

Info

Publication number
JPS59131597A
JPS59131597A JP518183A JP518183A JPS59131597A JP S59131597 A JPS59131597 A JP S59131597A JP 518183 A JP518183 A JP 518183A JP 518183 A JP518183 A JP 518183A JP S59131597 A JPS59131597 A JP S59131597A
Authority
JP
Japan
Prior art keywords
crystal
gaas
magnetic field
molten
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP518183A
Other languages
Japanese (ja)
Inventor
Kazutaka Terajima
一高 寺嶋
Tsuguo Fukuda
承生 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP518183A priority Critical patent/JPS59131597A/en
Priority to US06/571,091 priority patent/US4637854A/en
Priority to GB08401194A priority patent/GB2136706B/en
Publication of JPS59131597A publication Critical patent/JPS59131597A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/30Mechanisms for rotating or moving either the melt or the crystal
    • C30B15/305Stirring of the melt

Abstract

PURPOSE:To produce a high-quality GaAs single crystal in high stability, by synthesizing molten GaAs in a crucible under high pressure, contacting a seed crystal to the molten liquid, and pulling the crystal under a strong magnetic field. CONSTITUTION:The crucible 3 placed in the pressure vessel 1 contains a molten B2O3 layer 6 as a liquid encapsulation agent and a molten GaAs layer 5 under the encapsulation layer 6. The pressure in the vessel 1 is decreased to <=5atm to distill and purify the molten GaAs 5. The pulling axis 8 is lowered to contact the seed crystal 7 with the molten GaAs 5, and the molten liquid is applied with strong magnetic field by the magnetic field generator 11 to suppress the convection in the molten liquid 5. The seed crystal 7 is pulled up with rotation at a definite rate of rotation in the magnetic field to effect the growth of the GaAs crystal. The interface between the solid and the liquid can be made smooth by this method, and a high-quality semi-insulating GaAs single crystal free from growth stripes can be obtained.

Description

【発明の詳細な説明】 この発明は高品質ガリウム砒素(GaAs )単結晶の
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to a method for manufacturing high quality gallium arsenide (GaAs) single crystals.

m−■族化合物の中でもGapsは電子移動度が大きく
、超高速集積回路、光−電子集積回路の素子用結晶基板
として、広く用いられつつある。
Among the m-■ group compounds, Gaps has a high electron mobility and is being widely used as a crystal substrate for elements of ultrahigh-speed integrated circuits and opto-electronic integrated circuits.

このようにGapsが注目を浴びているのは高品質のG
aksの比抵抗が10′0.crn以上と高絶縁性であ
ること、結晶内の欠陥が少く、分布が均一であるものが
得られること、大型ウェハーの製造が容易であること等
が挙げられる。このような要求を満すGaAs単結晶の
製造方法としては液体封止引き上げ法(LEC法)が注
目を浴びている。この封止引き上げ法は低圧封止引き上
げ法と高圧封止引き上げ法とが知られている。低圧封止
引き上げ法はポート成長法で作成したGaps多結晶を
原料とするため、原料純度が低く、半絶縁性とするため
のクロムの添加を必要として好ましく々い。また直接原
料の合成を行う高圧封止引き上げ法はクロムの添加は不
要であるが、結晶原料であるGaとA8及び液体封止剤
である酸化ボロン(B20B)を高圧下で加熱、合成す
るため、ルツボ内で溶融している結晶原料融液は熱対流
によシ極めて不安定な状態となシ、そのようなr態で結
晶成長操作を行っているため固液界面の形状が激しく変
化し、生成する結晶には熱変勲による微少な成長縞が発
生する。このような結晶基板を用いて素子を形成すると
、結晶基板に形成している欠陥は制御出来ないため、電
気特性、素子特性が均一である集頼回路を再現性良く製
造することは困難であった。
Gaps is attracting attention because of its high quality G.
The specific resistance of aks is 10'0. It has high insulating properties of crn or higher, it has few defects in the crystal and has a uniform distribution, and it is easy to manufacture large wafers. As a method for manufacturing GaAs single crystals that satisfies such requirements, the liquid-encapsulation pulling method (LEC method) is attracting attention. This sealing pulling method is known as a low pressure sealing pulling method and a high pressure sealing pulling method. The low-pressure sealing pulling method uses Gaps polycrystals produced by the port growth method as a raw material, so the purity of the raw material is low and chromium needs to be added to make it semi-insulating, which is preferable. In addition, the high-pressure sealing pulling method, which directly synthesizes raw materials, does not require the addition of chromium, but because Ga and A8, which are crystal raw materials, and boron oxide (B20B), which is a liquid sealant, are heated and synthesized under high pressure. The crystal raw material melt melting in the crucible is in an extremely unstable state due to thermal convection, and since the crystal growth operation is performed in such an R state, the shape of the solid-liquid interface changes drastically. , minute growth striations occur in the resulting crystals due to thermal deterioration. When devices are formed using such crystal substrates, it is difficult to manufacture integrated circuits with uniform electrical and device characteristics with good reproducibility because defects formed in the crystal substrate cannot be controlled. Ta.

この発明の目的は成長する結晶の品質を制御して高品質
で無添加(アンドーグ)半絶縁性GaAs単結晶を再現
性良く製造する方法を提供する。
An object of the present invention is to provide a method for manufacturing a high-quality, additive-free (undoated) semi-insulating GaAs single crystal with good reproducibility by controlling the quality of the growing crystal.

このため、本発明による高品質半絶縁性Ga、As単結
晶の製造方法は高圧液体封止引き上げ法にてGa、As
単結晶を製造する方法において、高圧下でルツボ内に結
晶原料融液が合成したら、1200ガウス以上の磁界を
印加しながら、種結晶を上記結晶原料融液に接触、引き
上げて結晶成長を行うことを特徴とする。このように磁
界を印加すると結晶原料融液の対流は抑制され、固液界
面は安定な状態で結晶成長が行われるため成長縞の発生
もなく高品質なGcLAs単結晶が形成されることにな
る。
Therefore, the method for producing high-quality semi-insulating Ga, As single crystals according to the present invention uses a high-pressure liquid sealing pulling method to produce Ga, As single crystals.
In a method for producing a single crystal, once a crystal raw material melt is synthesized in a crucible under high pressure, a seed crystal is brought into contact with and pulled up from the crystal raw material melt while applying a magnetic field of 1200 Gauss or more to perform crystal growth. It is characterized by When a magnetic field is applied in this way, the convection of the crystal raw material melt is suppressed, and crystal growth occurs in a stable state at the solid-liquid interface, resulting in the formation of high-quality GcLAs single crystals without the generation of growth stripes. .

これまでGaks単結晶の直接合成法として知られてい
る高圧液体封止引き上げ法を実施するための装置を第1
図により説明すると、lは高圧容器であって、この高圧
容器l内にはその外周を炭素材料等の支持部材グで覆れ
た石英、窒化ボロン等のルツボ3を設け、このルツボ3
を回を支持軸?によシ回転且つ上下動できるように、ト
持し、ルツボ3の周囲には加熱炉コを設けて、Aルツボ
を所定の温度に加熱、維持する。ルツボ−3の上部には
下端に種結晶7を取付けた引き上げ軸rを設け、この引
き上げ軸は回転すると共に上下動するように構成する。
The first equipment was installed to carry out the high-pressure liquid-sealed pulling method, which has been known as the direct synthesis method for Gaks single crystals.
To explain with a diagram, l is a high-pressure container, and a crucible 3 made of quartz, boron nitride, etc., whose outer periphery is covered with a supporting material ring such as a carbon material, is provided in this high-pressure container l.
The times the support axis? A heating furnace is provided around the crucible 3 to heat and maintain the crucible A at a predetermined temperature. A pulling shaft r with a seed crystal 7 attached to the lower end is provided in the upper part of the crucible 3, and this pulling shaft is configured to rotate and move up and down.

高圧容器/の外周°には磁界印加装置//を設け、ルツ
ボ=内の結晶−原料融液jに磁界が印加されるようにす
る。
A magnetic field applying device // is provided on the outer periphery of the high-pressure container /, so that a magnetic field is applied to the crystal-raw material melt j inside the crucible.

上記の如き構成の装置において、ルツボ3にはGaとA
sをそれぞれ所定量入れ、更に液体封止剤としてB2O
3を入れた上、ルツボを高圧容器/内に設置し、アルゴ
ン、窒素等の不活性ガスによシ容器内を加圧し、加熱炉
コにより結晶原料の溶融温度以上の温度で加熱してルツ
ボ内の結晶原料及び封止剤を溶融させる。
In the apparatus configured as above, the crucible 3 contains Ga and A.
Add a predetermined amount of s, and add B2O as a liquid sealant.
3, place the crucible in a high-pressure container, pressurize the container with an inert gas such as argon or nitrogen, and heat the crucible in a heating furnace to a temperature higher than the melting temperature of the crystal raw material. The crystal raw material and sealant inside are melted.

上述の加熱処理によりルツボ3内に於ては上層に液体封
止剤としてB20g溶融液層6が、下層にはGaps融
液層融液層成する。ルツボ内の原料が完全に溶融しだら
引き上げ軸とを下降させ種結晶7をルツボ3内の融液層
と接触させ、種結晶7を所定の速度で回転させながら引
き上げてGaAs結晶10を成長させるのであるが、容
器内は20〜60気圧、約1260℃でおって、ルツボ
内のGaAs融液は熱対流が激しく起っており、不安定
な状態で、このような状態下で結晶成長を行うと熱変動
により生成した結晶に成長縞が形成し易くなる。
In the crucible 3, by the above heat treatment, a 20g B melt layer 6 as a liquid sealant is formed in the upper layer, and a Gaps melt layer is formed in the lower layer. When the raw material in the crucible is completely melted, the pulling shaft is lowered to bring the seed crystal 7 into contact with the melt layer in the crucible 3, and the seed crystal 7 is pulled up while rotating at a predetermined speed to grow the GaAs crystal 10. However, the temperature inside the container is 20 to 60 atm and about 1260°C, and the GaAs melt inside the crucible is in an unstable state with intense thermal convection, making it difficult for crystal growth to occur under such conditions. If this is done, growth streaks are likely to be formed on the crystals generated due to thermal fluctuations.

そこでこの発明においては、種結晶7をルツボ3内のG
aAs融液に接触した時点で、融液に対し、磁界印加装
置//より磁界を印加する(矢印%B//)。印加する
磁界の強さは1200ガウス以上であって、高ければそ
れだけ効果が顕著となる。
Therefore, in this invention, the seed crystal 7 is
At the time of contact with the aAs melt, a magnetic field is applied to the melt by the magnetic field application device // (arrow %B//). The strength of the applied magnetic field is 1200 Gauss or more, and the higher the strength, the more pronounced the effect.

このようにGcLAs融液に磁界を印加テると、GaA
s融液中に起っていた熱対流は抑制され、種結晶をGa
As融液に接触、引き上げて結晶成長を行うと、固液界
面は穏やかな状態となっているため、成長縞の発生もな
く、半絶縁性Gaks単結晶が生成する。
When a magnetic field is applied to the GcLAs melt in this way, GaA
s The thermal convection that was occurring in the melt is suppressed, and the seed crystal is
When crystal growth is performed by contacting and pulling up the As melt, the solid-liquid interface is in a gentle state, so that no growth stripes occur and a semi-insulating Gaks single crystal is generated.

この発明によるQaAs単結晶の製造方法は上述の説明
で明らかなように、結晶成長工程中に、GaAB融液に
対して磁界を印加するのみであシ、既知のGaps単結
晶の製造方法に組合せて実施することによって、更に高
品質なGa、As単結晶が得られることになる。
As is clear from the above explanation, the method for producing a QaAs single crystal according to the present invention only involves applying a magnetic field to the GaAB melt during the crystal growth process, and is combined with the known method for producing a Gaps single crystal. By carrying out this method, even higher quality Ga, As single crystals can be obtained.

次にこの発明の実施例を述べる。Next, embodiments of this invention will be described.

実施例1 第1図に示すような構造の単結晶製造装置に2いて、内
径100m、深さ100mn  のパイロリテツク窒化
ボロン製ルツボにガリウム500f、砒$60Of、酸
化ボロン1801を入れ、高圧容器内1止設置してアル
ゴンガスを圧入し約50気圧にし素抜、ルツボを150
0℃に加熱して、上部にB2O3゛1−融液層が、下部
にGaAs融液層が形成した時点で容器内の圧力を5気
圧にして30分間放置し、蒸溜精製を行った後に20気
圧に加圧し、1250ガヴ、スの磁界を印加した。Ga
As融液内での熱変動”は15℃であったが、上記の磁
界の印加によシ0゜1℃以下となった。次に、磁界を印
加した状態で種結晶をGaAs融液に接触させ、種結晶
を1分間6回転の割合で回転させながら1時間9111
I+の速度で約10時間引き上げ操作を行い、直径約5
0闇、長さ約90teaのGaAs単結晶を得た。
Example 1 In a single crystal production apparatus having the structure shown in FIG. 1, 500 f of gallium, $60 of arsenic, and 1801 boron oxide were placed in a pyrolithic boron nitride crucible with an inner diameter of 100 m and a depth of 100 m. Place the crucible at 150 bar, pressurize argon gas to about 50 atm, and remove the crucible to 150 bar.
After heating to 0°C and forming a B2O3゛1-melt layer at the top and a GaAs melt layer at the bottom, the pressure inside the container was set to 5 atm and left for 30 minutes. It was pressurized to atmospheric pressure and a magnetic field of 1250 gv.s was applied. Ga
The thermal fluctuation in the As melt was 15°C, but by applying the above magnetic field, it became less than 0°1°C.Next, the seed crystal was placed in the GaAs melt while the magnetic field was applied. 9111 for 1 hour while rotating the seed crystal at a rate of 6 revolutions per minute.
The pulling operation was carried out at the speed of I+ for about 10 hours, and the diameter of about 5
A GaAs single crystal with 0 darkness and a length of about 90 tea was obtained.

この結晶を成長方向と平行な方向に切断して成長縞の観
察を行ったところ、融液の熱対流による不規則な成長縞
は見られず、極めて安定した状態で結晶が成長していた
ことが示されていた。
When this crystal was cut in a direction parallel to the growth direction and the growth stripes were observed, no irregular growth stripes due to thermal convection of the melt were observed, indicating that the crystal was growing in an extremely stable state. was shown.

実施例2 実施例1と同様な方法にてGaAs融液を形成した彼に
蒸溜精製を行わずに、1250ガウスの磁界を印加して
、直接結晶成長を行った。結晶成長条件は実施例1と同
じであって、結晶が約20m生成した時点で磁界の印加
のみを停止し、更に15m生成した時点で再び1250
ガウスの磁界を印加して、長さ約60閣のGaAs単結
晶を得た。
Example 2 A GaAs melt was formed in the same manner as in Example 1, and without distillation purification, a magnetic field of 1250 Gauss was applied to directly grow crystals. The crystal growth conditions were the same as in Example 1, and only the application of the magnetic field was stopped when about 20 m of crystals had been formed, and the application of the magnetic field was stopped again when about 15 m of crystals had been formed.
A Gaussian magnetic field was applied to obtain a GaAs single crystal with a length of about 60 mm.

この結晶の成長方向の抵抗値を測定したら第2図のグラ
フに示すような結果が得られた(曲線a、)。即ち、磁
界を印加した状態で生成させ’に結晶の抵抗値は低くな
り、磁界の印加を停止して生成させた結晶の抵抗値は著
し、く高くなった。
When the resistance value of this crystal in the growth direction was measured, the results shown in the graph of FIG. 2 were obtained (curve a). That is, the resistance value of the crystal that was generated while a magnetic field was applied was low, and the resistance value of the crystal that was generated when the magnetic field was stopped was significantly high.

上記の原因を探索するため、結晶をフォトルミネセンス
によシ測定した結果、磁界中で作成した結晶は深い欠陥
準位(GcLAs固有の結晶欠陥で’ EL、 #と称
されている。)の濃度が著しく減少していることが判っ
た。またSi濃度は2次イオン質量分析法で測定したら
磁界を印加した結晶で8 X I D’′/iであシ、
通常の引き上げによる結晶(3X10’ン1)よりも多
少高くなった。上記より、不純物の実効偏析系数が多少
変化することとGaksの固有欠陥密度が減少すること
が判った。
To investigate the cause of the above, we measured crystals using photoluminescence and found that crystals created in a magnetic field had deep defect levels (crystal defects unique to GcLAs, called 'EL, #). It was found that the concentration decreased significantly. In addition, the Si concentration was measured using secondary ion mass spectrometry and was found to be 8 X I D''/i in a crystal to which a magnetic field was applied.
It was slightly higher than the crystal (3×10'n1) obtained by normal pulling. From the above, it was found that the effective segregation coefficient of impurities changes somewhat and the intrinsic defect density of Gaks decreases.

比較のため、GaAs融液を実施例1と同様な方法で蒸
溜精製行った後に上記と全く同じ方法で結晶成長を行い
、生成した結晶の抵抗を同様に測定した結果、第2図の
グラフの曲線すで示すような値が得られた。
For comparison, a GaAs melt was purified by distillation in the same manner as in Example 1, and then crystal growth was performed in exactly the same manner as above, and the resistance of the resulting crystal was measured in the same manner. Values as shown in the curve were obtained.

この結果よシ、結晶生成を行う前の融液は精製して不純
物を除去した後に磁場を印加して結晶成長を行うと著し
く効果が向上することが判る。
The results show that the effect is significantly improved if the melt before crystal growth is purified to remove impurities and then a magnetic field is applied to grow the crystal.

以上の結果よl) 、GcLAs結晶内の不純物濃度、
欠陥濃度を制御することができ、電子移動度も高く、均
一で、高品質なGaAB単結晶を再現性良く製造するこ
とができた。
Based on the above results, the impurity concentration in the GcLAs crystal is
It was possible to control the defect concentration and produce a uniform, high-quality GaAB single crystal with high electron mobility and high reproducibility.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施するだめの単結晶製造装置の一例
を示す概略断面図、第2図は生成したGaAs単結晶の
抵抗分布を示すグラフ。 図中、lは高圧容器、コは加熱炉、3はルツボ、jはG
aAs融液、6は液体封止剤、7は種結晶、10は生成
結晶、/lは磁界印加装置を示す。 特許出願人 工業技術院長 石板域− 一58[ 手続補正書(自発) 昭和5′8年c月17日    。 特許庁長官 若 杉 和 夫  殿 A 事件の光示 昭和58年特許願第5181号 39.?lil正をする名 よ 補正の対象 明細書中、特許請求の範囲の欄、発明の詳細な説明内 
  容 二汐 特許請求の範囲を別紙の通9訂正する、卆i 発
明の詳細な説明中を次の様に補正する。 □□− (1)2頁ig行、「結晶基板を」を「方法で製造した
結晶を基板として」に訂正。 (2)3頁9〜IO行、「7200ガウス以上」を「融
液の対流を実質的に抑制するような強度」に訂正。 (3)5頁13行、「印加する磁界の強さ」を「磁界の
印加は融液の対流を実質的に抑制することにあり、従っ
て印加する磁界の強さは結晶成長装置の構造、結晶引き
上げ条件などにより異なるが、例えばルツボ径が約10
0111RI 、u晶原料融液の深さく厚み)が−〇m
m程度の場合」に訂正。 (4)5頁I行の次に下記の文を挿入する。 [なお、ルツボ円の原料が完全に溶融して上部にB2O
3溶融液層が形成し、下部にGaA S融液層が形成し
た時点で、高圧容器内の圧力のみをS気圧以下に減圧す
る。その結果、GaA3融液層から多数の気泡が発生し
、融液内を上昇して容器内の雰囲気中に発散する。この
とき融液内の水分、不純物などは気泡に伴って除去され
る。このようにGa人S融液を結晶引き上げ操作前に蒸
溜精製を行うことによυ形成されるGaAs単結晶の品
質は更に向上する。」以   上 特許請求の範囲 手続補正書C方式) %式% A 事件の表示 昭和58年特許願第5181号 !1発明の名称 偶品質ガリウム砒素単結晶の製造方法 3、補正する者 よ 補正の対象     図 面 =5)
FIG. 1 is a schematic sectional view showing an example of a single crystal manufacturing apparatus for carrying out the present invention, and FIG. 2 is a graph showing the resistance distribution of the produced GaAs single crystal. In the figure, l is a high-pressure vessel, c is a heating furnace, 3 is a crucible, and j is G.
aAs melt, 6 a liquid sealant, 7 a seed crystal, 10 a generated crystal, /l a magnetic field applying device. Patent Applicant: Agency of Industrial Science and Technology Director-General's Board - 158 [Written amendment (spontaneous), dated c. 17, 1932. Director of the Japan Patent Office Kazuo Wakasugi A. Case 1981 Patent Application No. 5181 39. ? Please make corrections in the specification to be amended, in the scope of claims, and in the detailed description of the invention.
Yong Ershio The scope of the claims is amended in Appendix 9, 卆i The detailed description of the invention is amended as follows. □□- (1) On page 2, line ig, "crystal substrate" was corrected to "crystal produced by the method as a substrate." (2) On page 3, line 9 to IO, "7200 Gauss or more" was corrected to "intensity that substantially suppresses convection of the melt." (3) On page 5, line 13, ``Strength of applied magnetic field'' is changed to ``The purpose of applying a magnetic field is to substantially suppress the convection of the melt. Although it varies depending on the crystal pulling conditions, for example, if the crucible diameter is about 10
0111RI, the depth and thickness of the u-crystal raw material melt is -〇m
Corrected to "If it is about m". (4) Insert the following sentence next to line I on page 5. [Please note that the raw materials in the crucible circle are completely melted and B2O is present at the top.]
When the third melt layer is formed and the GaAs melt layer is formed at the bottom, only the pressure inside the high-pressure container is reduced to below S atmosphere. As a result, many bubbles are generated from the GaA3 melt layer, rise within the melt, and diffuse into the atmosphere within the container. At this time, moisture, impurities, etc. in the melt are removed along with bubbles. In this way, by distilling and refining the GaS melt before the crystal pulling operation, the quality of the GaAs single crystal formed is further improved. ” Claims Procedure Amendment C Method) % Formula % A Case Indication Patent Application No. 5181 of 1982! 1. Title of the invention: Process for producing even-quality gallium arsenide single crystal 3. Persons making amendments: Subject of amendment Drawing = 5)

Claims (1)

【特許請求の範囲】[Claims] 液体封止引き上げ法にてガリウム砒素単結晶を製造する
方法において、1200ガウス以上の磁° 界を結晶原
料融液に印加しながら、種結晶の引き上げにより結晶成
長を行うことを%徴とするガリウム砒素単結晶の製造方
法。
In a method of producing a gallium arsenide single crystal by a liquid confinement pulling method, the gallium arsenide single crystal is grown by pulling a seed crystal while applying a magnetic field of 1200 Gauss or more to the crystal raw material melt. Method for producing arsenic single crystal.
JP518183A 1983-01-18 1983-01-18 Production of high-quality gallium arsenide single crystal Pending JPS59131597A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP518183A JPS59131597A (en) 1983-01-18 1983-01-18 Production of high-quality gallium arsenide single crystal
US06/571,091 US4637854A (en) 1983-01-18 1984-01-16 Method for producing GaAs single crystal
GB08401194A GB2136706B (en) 1983-01-18 1984-01-17 Liquid encapsulated crystal growth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP518183A JPS59131597A (en) 1983-01-18 1983-01-18 Production of high-quality gallium arsenide single crystal

Publications (1)

Publication Number Publication Date
JPS59131597A true JPS59131597A (en) 1984-07-28

Family

ID=11604058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP518183A Pending JPS59131597A (en) 1983-01-18 1983-01-18 Production of high-quality gallium arsenide single crystal

Country Status (1)

Country Link
JP (1) JPS59131597A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61151094A (en) * 1984-12-26 1986-07-09 Agency Of Ind Science & Technol Production of single crystal of compound semiconductor
JPS61247694A (en) * 1985-04-24 1986-11-04 Agency Of Ind Science & Technol High pressure vessel for crystal growth by pulling method
US4816240A (en) * 1985-03-28 1989-03-28 Kabushiki Kaisha Toshiba Method of synthesizing Group III element-phosphorus compound

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS577895A (en) * 1980-06-13 1982-01-16 Toshiba Corp Manufacture of single crystal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS577895A (en) * 1980-06-13 1982-01-16 Toshiba Corp Manufacture of single crystal

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61151094A (en) * 1984-12-26 1986-07-09 Agency Of Ind Science & Technol Production of single crystal of compound semiconductor
US4816240A (en) * 1985-03-28 1989-03-28 Kabushiki Kaisha Toshiba Method of synthesizing Group III element-phosphorus compound
JPS61247694A (en) * 1985-04-24 1986-11-04 Agency Of Ind Science & Technol High pressure vessel for crystal growth by pulling method
JPH0314799B2 (en) * 1985-04-24 1991-02-27 Kogyo Gijutsuin

Similar Documents

Publication Publication Date Title
US3615261A (en) Method of producing single semiconductor crystals
JPS6065787A (en) Manufacture of dislocation-free silicon single crystal rod
US4637854A (en) Method for producing GaAs single crystal
US5667585A (en) Method for the preparation of wire-formed silicon crystal
JPS59131597A (en) Production of high-quality gallium arsenide single crystal
JPS6117798B2 (en)
EP0355833B1 (en) Method of producing compound semiconductor single crystal
JPH07206597A (en) Method for producing znse bulk single crystal
JPS59182298A (en) Production of single crystal of compound semiconductor
JPS6065794A (en) Production of high-quality gallium arsenide single crystal
JPH0124760B2 (en)
JPS59203794A (en) Preparation of semiinsulative gaas single crystal
JP2531875B2 (en) Method for producing compound semiconductor single crystal
JPS606918B2 (en) Method for producing Group 3-5 compound single crystal
JPS6090897A (en) Method and apparatus for manufacturing compound semiconductor single crystal
JP2700145B2 (en) Method for manufacturing compound semiconductor single crystal
JPS58167500A (en) Preparation of single crystal of gallium arsenic
JPS6389497A (en) Production of silicon-added gallium arsenic single crystal
JPH0524964A (en) Production of compound semiconductor single crystal
JPS6153186A (en) Heater for resistance heating
JPS60122791A (en) Pulling up method of crystal under liquid sealing
JP2885452B2 (en) Boat growth method for group III-V compound crystals
JP2005047797A (en) InP SINGLE CRYSTAL, GaAs SINGLE CRYSTAL, AND METHOD FOR PRODUCING THEM
JP2002029881A (en) Method of producing compound semiconductor single crystal
JPS61117198A (en) Melt for growth of inp single crystal and method for using said melt