JPS6117798B2 - - Google Patents
Info
- Publication number
- JPS6117798B2 JPS6117798B2 JP1761282A JP1761282A JPS6117798B2 JP S6117798 B2 JPS6117798 B2 JP S6117798B2 JP 1761282 A JP1761282 A JP 1761282A JP 1761282 A JP1761282 A JP 1761282A JP S6117798 B2 JPS6117798 B2 JP S6117798B2
- Authority
- JP
- Japan
- Prior art keywords
- single crystal
- crystal
- melt
- liquid
- grown
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000013078 crystal Substances 0.000 claims description 131
- 239000000155 melt Substances 0.000 claims description 33
- 239000002775 capsule Substances 0.000 claims description 21
- 239000007788 liquid Substances 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 19
- 150000001875 compounds Chemical class 0.000 claims description 14
- 239000004065 semiconductor Substances 0.000 claims description 14
- 238000001514 detection method Methods 0.000 claims description 13
- 238000004519 manufacturing process Methods 0.000 claims description 13
- 238000005538 encapsulation Methods 0.000 claims description 5
- 238000002844 melting Methods 0.000 claims description 2
- 230000008018 melting Effects 0.000 claims description 2
- 238000007789 sealing Methods 0.000 claims description 2
- 239000000565 sealant Substances 0.000 description 18
- 238000010494 dissociation reaction Methods 0.000 description 17
- 230000005593 dissociations Effects 0.000 description 17
- 230000000694 effects Effects 0.000 description 10
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 9
- 239000011261 inert gas Substances 0.000 description 5
- 230000007547 defect Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 229910000673 Indium arsenide Inorganic materials 0.000 description 1
- 244000124853 Perilla frutescens Species 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000008393 encapsulating agent Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 description 1
- 239000002932 luster Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000005499 meniscus Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B27/00—Single-crystal growth under a protective fluid
- C30B27/02—Single-crystal growth under a protective fluid by pulling from a melt
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は熱歪に敏感な化合物半導体単結晶を、
育成する際、転位の発生源となる結晶表面の粗れ
を最小限にし、又、出来るだけ熱歪を受けない状
態で引上げ育成する製造方法および製造装置に関
するもので単結晶表面からAs等の揮発性成分元
素の解離を抑止し、かつ歪を小さくして低転位密
度の単結晶を得ようとするものである。[Detailed Description of the Invention] (Industrial Application Field) The present invention provides a compound semiconductor single crystal sensitive to thermal strain.
This relates to a manufacturing method and manufacturing equipment that minimizes the roughness of the crystal surface, which is a source of dislocations, and that pulls and grows with as little thermal strain as possible during growth. The aim is to obtain a single crystal with a low dislocation density by suppressing the dissociation of the sexual component elements and by reducing the strain.
(従来の技術)
周期律表のb族、b族に属する元素の化合
物である、謂ゆる−族化合物半導体は族元
素が揮発性であるために、大形単結晶を得るには
液体カプセル封止引上げ法(Liquid
Encapsulation Czochralski pulling method法:
通称LEC法)が用いられる。その概略図を第3
図に示す。なお、加熱ヒータ及び加圧ガス導入口
等を省略してある。るつぼ4に得ようとする半導
体結晶の融液2と圧力チヤンバ5内の空間8に加
えられる不活性ガスの圧力を静水圧的に融液2に
与え、かつ融液2の表面から揮発性成分の解離を
抑える目的で用いられる液体封止カプセル剤(通
常はB2O3)3とを入れて溶融し、回転引上軸6に
つけた種子結晶9を上記液体封止カプセル剤3を
通して融液2に浸けた後に引上げを開始して単結
晶1を得る方法である。(Prior art) In so-called group compound semiconductors, which are compounds of elements belonging to group B and group B of the periodic table, the group elements are volatile, so liquid encapsulation is required to obtain large single crystals. Stop lifting method (Liquid
Encapsulation Czochralski pulling method:
(commonly known as the LEC method) is used. The schematic diagram is shown in the third
As shown in the figure. Note that the heater, pressurized gas inlet, etc. are omitted. The pressure of the inert gas applied to the melt 2 of the semiconductor crystal to be obtained in the crucible 4 and the space 8 in the pressure chamber 5 is hydrostatically applied to the melt 2, and volatile components are removed from the surface of the melt 2. A liquid-sealed capsule (usually B 2 O 3 ) 3 used for the purpose of suppressing the dissociation of the liquid is added and melted, and a seed crystal 9 attached to a rotating pull-up shaft 6 is passed through the liquid-sealed capsule 3 to melt the liquid. In this method, the single crystal 1 is obtained by immersing the single crystal in water 2 and then starting pulling.
ところで、このような従来のLEC法において
は液体封止カプセル剤3は単結晶となる融液2の
表面から揮発性成分の解離を抑えるためのみを目
的とするため、その厚さはそのような封止作用を
最低限必要な厚さでよく、このため育成された単
結晶の大部分は第3図に示すように、圧力空間8
に露出していた。このため、圧力空間8内の不活
性ガスの対流が生じ、当該不活性ガスに接する単
結晶表面には引上軸方向に、例えば80〜150℃/
cm程度の大きな温度勾配が生じてしまう。このよ
うな温度勾配が大きな場合には、熱歪が結晶中に
導入されて、結晶欠陥である転位が発生し104〜
105cm-2もの高転位密度となつてしまう。 By the way, in such a conventional LEC method, the liquid-sealed capsule 3 is only intended to suppress the dissociation of volatile components from the surface of the melt 2 that becomes a single crystal, so its thickness is The thickness required for the sealing effect is the minimum required, and for this reason most of the grown single crystals are placed in the pressure space 8 as shown in Figure 3.
was exposed to. For this reason, convection of the inert gas within the pressure space 8 occurs, and the single crystal surface in contact with the inert gas is heated at a temperature of, for example, 80 to 150 degrees Celsius in the direction of the pulling axis.
A large temperature gradient on the order of cm will occur. When such a temperature gradient is large, thermal strain is introduced into the crystal and dislocations, which are crystal defects, occur .
This results in a dislocation density as high as 10 5 cm -2 .
このような欠点に鑑み、従来の装置においても
改良が試みられた。例えば、液体封止カプセル剤
上方にアフターヒータ等予備加熱装置を設置する
ような案も提出されているが、これは、結晶表面
からの揮発性成分(例えば結晶がGaAsの場合に
はAs)の解離を助長し、結晶表面が激しく粗れ
て、逆に欠陥発生の原因となつていた。これは、
アフターヒータにより、引上軸方向の温度勾配が
小さくできたとしても、引上げられた結晶は、高
温の圧力空間にさらされることになり、結晶表面
でAsの解離が生じ、結晶表面に欠陥が多数で
き、これを源ととして転位が結晶内に小さい熱歪
(低温度勾配)でも伝播するという現象であり、
本発明者らが経験的に発見したものである。 In view of these shortcomings, attempts have been made to improve the conventional devices. For example, a proposal has been proposed to install a preheating device such as an after-heater above the liquid-sealed capsule, but this would prevent volatile components (e.g., As if the crystal is GaAs) from the crystal surface. This promoted dissociation and severely roughened the crystal surface, conversely causing defects. this is,
Even if the temperature gradient in the direction of the pulling axis can be reduced by an after-heater, the pulled crystal will be exposed to a high-temperature pressure space, and As will dissociate on the crystal surface, resulting in many defects on the crystal surface. This is a phenomenon in which dislocations propagate within the crystal even with small thermal strain (low temperature gradient) using this as a source.
This was discovered empirically by the present inventors.
一方、アフターヒータ等を設けず、結晶の引上
軸方向の温度勾配を大きくし、引上げられた単結
晶の周囲の圧力空間の温度を低くすれば、第4図
に示すように液体封止カプセル剤3の粘性が増加
し、成長している単結晶1の表面にぬれて外被7
を形成する。しかし、この場合には、熱歪が大き
く、熱歪を原因とする欠陥が多数発生してしまう
し、又、外被7は極めて薄いため、部分的に被覆
されない部分もあり、Asの解離抑止効果も十分
ではなかつた。又、このような状態でアフターヒ
ータを設ければ、外被(液体封止カプセル剤)の
粘性が低下し外被を付着し続けることはできな
い。即ち、従来の製造方法及び製造装置において
は、育成された結晶表面から揮発性成分元素が解
離するのを防止することはできなかつた。又、結
晶成長軸方向の温度勾配を低くすること(即ち、
単結晶部の周囲温度を融液温度に近づけるように
加熱せしめること)と、引上げられた単結晶表面
から揮発性成分の解離を抑止すべく封止剤で取り
囲むことを両立させることはできなかつた。 On the other hand, if an after-heater is not provided, the temperature gradient in the direction of the pulling axis of the crystal is increased, and the temperature of the pressure space around the pulled single crystal is lowered, a liquid sealed capsule can be created as shown in Figure 4. The viscosity of the agent 3 increases and it wets the surface of the growing single crystal 1, forming a coating 7.
form. However, in this case, the thermal strain is large and many defects occur due to thermal strain, and since the outer cover 7 is extremely thin, some parts are not covered, which prevents the dissociation of As. The effect was not sufficient either. Further, if an after-heater is provided in such a state, the viscosity of the outer cover (liquid sealed capsule) decreases and the outer cover cannot continue to adhere. That is, in the conventional manufacturing method and manufacturing apparatus, it has not been possible to prevent the volatile component elements from dissociating from the surface of the grown crystal. Also, by lowering the temperature gradient in the direction of the crystal growth axis (i.e.,
It was not possible to achieve both of heating the single crystal so that the ambient temperature near the melt temperature) and surrounding it with a sealant to prevent the dissociation of volatile components from the surface of the pulled single crystal. .
更に、従来のLEC法では最近、引上軸にロー
ドセルと称する結晶重量検出装置を設け、自動育
成する方法も実験的になされているが、その検出
にはノイズが多く、特に種子結晶と融液との接触
時の検出及び種子結晶から結晶を大きくするとき
の結晶重量変化の検出は正確さを欠いている。こ
れは、第3図の従来例(但し、ロードセル等の結
晶重量検出装置は省略してある)で説明すると、
このように、融液上に薄い液体封止剤があると結
晶は、液体封止剤による浮力を受けながら再び液
体封止剤から出てゆくので、ロードセルによる結
晶重量の変化は、浮力の部分的補正を必要とし、
極めて複雑となる。換言すれば、このような複雑
な補正を簡単な補正で行なえば、正確さを欠くこ
とにになるのである。 Furthermore, in the conventional LEC method, a method has recently been experimentally developed in which a crystal weight detection device called a load cell is installed on the pulling shaft to automatically grow the crystal, but the detection is noisy, especially for seed crystals and melt. Detection of the change in crystal weight during contact with the seed crystal and when growing the crystal from the seed crystal lacks accuracy. This can be explained using the conventional example shown in Figure 3 (however, crystal weight detection devices such as load cells are omitted).
In this way, if there is a thin liquid sealant on the melt, the crystal will come out of the liquid sealant again while receiving the buoyant force from the liquid sealant, so the change in the crystal weight due to the load cell will be due to the buoyant force. requires correction,
It becomes extremely complicated. In other words, if such a complex correction is performed with a simple correction, accuracy will be lacking.
(発明が解決しようとする問題点)
このように、従来技術は育成された結晶表面か
ら揮発性成分元素が解離するのを防止することは
できなかつた。又、結晶成長軸方向の温度勾配を
低く、即ち熱歪を小さくすることと、引上げられ
た単結晶表面から揮発性成分が解離するのを抑止
するために、結晶表面を封止剤で取り囲むことを
両立させることはできなかつた。又、ロードセル
により結晶重量の変化を検出する場合にも、融液
上に設けた薄い液体封止剤の影響で検出精度が向
上できないという欠点があつた。(Problems to be Solved by the Invention) As described above, the conventional techniques have not been able to prevent the volatile component elements from dissociating from the surface of the grown crystal. Furthermore, in order to lower the temperature gradient in the direction of the crystal growth axis, that is, to reduce thermal strain, and to suppress the dissociation of volatile components from the pulled single crystal surface, the crystal surface is surrounded with a sealant. It was not possible to achieve both. Furthermore, when detecting changes in crystal weight using a load cell, there is a drawback in that detection accuracy cannot be improved due to the effect of a thin liquid sealant provided on the melt.
(問題点を解決するための手段)
本発明はこれらの欠点を解決するために、揮発
性成分元素を含む化合物半導体単結晶の液体カプ
セル封止溶融引上げ法(LEC法)において、育
成しようとする該単結晶の長さを越える例えば
B2O3の如き液体封止カプセル剤の厚い層を、前
記単結晶となる融液上方に配置することにより、
該単結晶を常時上記液体封止カプセル剤の中で引
上げ育成するようにしたものである。又、低温度
勾配をより一層効果的に実現するために、厚い液
体封止カプセル剤の温度を単結晶となる融液の温
度とは独立に制御するようにしたものである。(Means for Solving the Problems) In order to solve these drawbacks, the present invention attempts to grow compound semiconductor single crystals containing volatile component elements in a liquid encapsulation melt-pulling method (LEC method). For example, exceeding the length of the single crystal
By placing a thick layer of a liquid-tight capsule, such as B 2 O 3 , above the melt that becomes the single crystal,
The single crystal is constantly pulled up and grown in the liquid-sealed capsule. Furthermore, in order to realize a low temperature gradient even more effectively, the temperature of the thick liquid-sealed capsule is controlled independently of the temperature of the melt that becomes the single crystal.
第1図は本発明の基本概念を説明する図であ
り、2は製造しようとする化合物半導体結晶の融
液、9は種子結晶、10は長さcの化合物半導
体単結晶(但し、単結晶10の肩部10′から融
液面までの長さc′を長として定義しても本発明
の基本概念を逸脱するものではない。)、11は液
体封止カプセル剤のB2O3,12は半導体単結晶
10及び封止剤11を入れる長尺のるつぼであ
る。この構造の特徴は、長尺るつぼ内でのB2O3
の深さeが結晶の長さcよりも大きいこと
で、従つて長尺るつぼの高さはe+m(融液
の深さ)以上となつている。 FIG. 1 is a diagram explaining the basic concept of the present invention, in which 2 is a melt of a compound semiconductor crystal to be manufactured, 9 is a seed crystal, and 10 is a compound semiconductor single crystal of length c (however, the single crystal 10 It does not depart from the basic concept of the present invention even if the length c' from the shoulder 10' of the liquid to the melt surface is defined as the length . is a long crucible in which a semiconductor single crystal 10 and a sealant 11 are placed. The feature of this structure is that B 2 O 3 in a long crucible
Since the depth e is greater than the length c of the crystal, the height of the elongated crucible is therefore equal to or greater than e+m (depth of the melt).
(作用)
液体封止カプセル剤の厚さを育成しようとする
結晶の長さ以上にすることで、結晶は引上げ育成
される段階において、B2O3に代表される揮発性
成分元素の解離を抑止する封止剤で完全に封じら
れて引上げられる。従つて結晶となる融液からの
揮発性元素解離の抑止という従来の作用に加え、
育成された結晶表面から圧力空間へ揮発性元素が
解離する現象をも抑止できるという新たな作用を
付加できる。(Function) By making the thickness of the liquid-sealed capsule equal to or greater than the length of the crystal to be grown, the crystal can prevent the dissociation of volatile component elements such as B 2 O 3 during the pulling and growing stage. It is completely sealed with a deterrent sealant and pulled up. Therefore, in addition to the conventional effect of suppressing the dissociation of volatile elements from the melt that becomes crystals,
A new effect can be added in that it can also suppress the phenomenon of volatile elements dissociating from the surface of the grown crystal into the pressure space.
この場合、従来例のように、圧力空間に充填さ
れた不活性ガスが対流し、その結果、単結晶が引
上げ軸方向に大きな温度勾配(例えば80〜150
℃/cm)が生じることがない。封止剤液体である
ので、ガスよりも対流を起こしにくいからであ
る。 In this case, as in the conventional example, the inert gas filled in the pressure space causes convection, and as a result, the single crystal has a large temperature gradient (for example, 80 to 150
°C/cm) does not occur. This is because since the sealant is a liquid, it is less likely to cause convection than a gas.
更に、熱歪低減化の観点から積極的に低温度勾
配を実現するため、融液を加熱するヒーターの上
部に独立したアフターヒータを設けて低温度勾配
環境を実現しても、単結晶表面は常に揮発性元素
の解離を防止できるB2O3等の封止剤で被われて
いるので、As等の揮発性元素の解離が抑止で
き、結晶表面が粗れず転位の発生を抑止できる。
この場合のアフターヒータは単結晶となる融液の
温度とは独立にB2O3等の封止剤の温度を任意に
設定できるものである。 Furthermore, in order to actively achieve a low temperature gradient from the perspective of reducing thermal distortion, even if an independent after-heater is installed above the heater that heats the melt and a low temperature gradient environment is achieved, the single crystal surface remains Since it is always covered with a sealant such as B 2 O 3 that can prevent the dissociation of volatile elements, the dissociation of volatile elements such as As can be suppressed, and the crystal surface is not roughened and the generation of dislocations can be suppressed.
The after-heater in this case is capable of arbitrarily setting the temperature of the sealant such as B 2 O 3 independently of the temperature of the melt that becomes the single crystal.
第2図は第1図の基本概念を実現するための単
結晶育成装置の全体図の1例を示す実施例であ
る。ここに13は長尺るつぼ12を保持するサセ
プター、14は融液2を主に加熱するヒータ(以
下、下部ヒータと称す)、15は主に液体封止カ
プセル剤11の上部を加熱するヒータ(以下、上
部ヒータと称す)、16は下部重量検出装置、1
7はサセプター13を回転及び上下動させる下部
駆動系、18は上部重量検出装置、19は引上軸
6を回転及び上下動させる上部駆動系、20は上
下重量検出装置からの信号を処理する微分差動増
幅器である。なお第2図には、圧力チヤンバ、上
下重量検出器の信号を処理する外部処理システ
ム、上下ヒータの制御系、上下駆動装置の制御系
は省略してある。 FIG. 2 is an embodiment showing an overall view of a single crystal growth apparatus for realizing the basic concept of FIG. 1. Here, 13 is a susceptor that holds the long crucible 12, 14 is a heater that mainly heats the melt 2 (hereinafter referred to as a lower heater), and 15 is a heater that mainly heats the upper part of the liquid-sealed capsule 11 ( (hereinafter referred to as an upper heater), 16 is a lower weight detection device, 1
7 is a lower drive system that rotates and moves the susceptor 13 up and down, 18 is an upper weight detection device, 19 is an upper drive system that rotates and moves the pulling shaft 6 up and down, and 20 is a differential that processes signals from the up and down weight detection device. It is a differential amplifier. Note that in FIG. 2, the pressure chamber, an external processing system for processing signals from the upper and lower weight detectors, a control system for the upper and lower heaters, and a control system for the vertical drive device are omitted.
従来のLECでは上部ヒータを設けず、又、
B2O3は単に融液からの揮発性成分の解離防止の
みを目的としてものであるゆえ、その厚さは通
常、10〜15mmであることから、第5図Aのような
軸方向(垂直方向)の温度分布となつている。こ
のために融液とB2O3の境界での温度勾配が大き
く、かつ引上げられた単結晶はB2O3より上の圧
力空間に露出し、その中に充填された不活性ガス
の対流により、急激に冷却され、熱歪が大きくな
る。しかるに本発明ではB2O3層は充分厚く、引
上げられた単結晶は常時B2O3中にあるので、対
流は少なく、温度は安定している。更に、第2図
に示すように上部ヒータを設ければ、この上部ヒ
ータでもつて任意にB2O3の温度を設定できるの
で、第5図において曲線Bのように、融液と
B2O3の境界近傍の温度分布は更に和らげられ、
かつ引上げられた単結晶は一定温度のB2O3にあ
るので急激な冷却はさけられるので結晶中に入る
熱歪はAに比べて極端に少なくなる。 Conventional LEC does not have an upper heater, and
Since B 2 O 3 is used solely for the purpose of preventing the dissociation of volatile components from the melt, its thickness is usually 10 to 15 mm. direction). For this reason, the temperature gradient at the boundary between the melt and B 2 O 3 is large, and the pulled single crystal is exposed to a pressure space above the B 2 O 3 , and the inert gas filled therein is convected. This causes rapid cooling and increases thermal strain. However, in the present invention, the B 2 O 3 layer is sufficiently thick and the pulled single crystal is always in B 2 O 3 , so there is little convection and the temperature is stable. Furthermore, if an upper heater is provided as shown in Fig. 2, the temperature of B 2 O 3 can be set arbitrarily with this upper heater, so that the melt and
The temperature distribution near the boundary of B 2 O 3 is further softened,
In addition, since the pulled single crystal is at a constant temperature of B 2 O 3 , rapid cooling is avoided, so thermal strain entering the crystal is extremely small compared to A.
更に本発明によれば、結晶全体が常にB2OC等
の封止剤中にあるため浮力の補正が単純となり、
従つて結晶重量変化が正確に求められる。 Furthermore, according to the present invention, since the entire crystal is always in a sealant such as B 2 OC, correction of buoyancy becomes simple.
Therefore, the change in crystal weight can be determined accurately.
(実施例)
第2図の化合物半導体単結晶製造装置を用いた
実施例につき、詳細に説明する。(Example) An example using the compound semiconductor single crystal manufacturing apparatus shown in FIG. 2 will be described in detail.
直径約7.6cm、深さ約20cmの透明石英製長尺る
つぼ内にGaAs母合金を約1000g及びB2O3を1250g
入れ、上部ヒータ15を加熱しB2O3の温度を約
1100℃にする。次に下部ヒータ14を加熱して
GaAsの融点である1237℃より若干上の1250℃に
上げて、GaAs融液を形成する。このとき、GaAs
融液を形成する。このとき、GaAs融液の深さ
mは約4.4cmB2O3の厚さeは約15cmであり、る
つぼ内に納まる。次に種子結晶9をつけた引上げ
回転軸6を徐々に下降して種子結晶9を融液2に
接触させる。この接触時に融液の温度が最適であ
れば融液と種子結晶との間にいわゆるメニスカス
が形成され、その張力に応じて上下の重量検出器
を通して重量変化が検出されるので、深いるつぼ
を用いても接触を確認できる。融液温度が低いと
種子結晶先端に結晶が急速に成長し、上部重量検
出器の信号は増加し、下部重量検出器の信号は減
少する。融液温度が高い場合には上記現象は逆に
なる。このように上下2つの垂直検出装置を設け
ることで、種子結晶の接触を確実に確認すること
ができ、微分差動増幅器を通して下部ヒータ制御
を容易に行なえた。 Approximately 1000 g of GaAs master alloy and 1250 g of B 2 O 3 were placed in a transparent quartz long crucible with a diameter of approximately 7.6 cm and a depth of approximately 20 cm.
and heat the upper heater 15 to bring the temperature of B 2 O 3 to approx.
Bring to 1100℃. Next, heat the lower heater 14
The temperature is raised to 1250°C, which is slightly higher than the melting point of GaAs, 1237°C, to form a GaAs melt. At this time, GaAs
Forms a melt. At this time, the depth m of the GaAs melt is approximately 4.4 cm, and the thickness e of the B 2 O 3 is approximately 15 cm, which fits within the crucible. Next, the pulling rotation shaft 6 with the seed crystal 9 attached thereto is gradually lowered to bring the seed crystal 9 into contact with the melt 2. If the temperature of the melt is optimal during this contact, a so-called meniscus will be formed between the melt and the seed crystal, and a change in weight will be detected through the upper and lower weight detectors according to the tension, so a deep crucible is used. contact can be confirmed even if When the melt temperature is low, crystals grow rapidly at the tip of the seed crystal, the signal of the upper weight detector increases, and the signal of the lower weight detector decreases. When the melt temperature is high, the above phenomenon is reversed. By providing two vertical detection devices, upper and lower, as described above, it was possible to reliably confirm the contact of the seed crystal, and it was possible to easily control the lower heater through the differential differential amplifier.
次に引上げ軸を毎時10mmの速さで引上げなが
ら、下部ヒータによりGaAs融液の温度を徐々に
下げて、いわゆる結晶の肩部を形成、更に融液温
度を結晶重量及び融液重量の変化に応じて調整す
ることにより、直径約5cm、長さ10cmの単結晶を
引上げ育成した。このとき、該単結晶はその全体
が深さ約15cmの約1100℃に保たれているB2O3中
にあるから、従来のLEC法で生ずる現象である
引上げ中の結晶が漸時冷却されることがない。該
単結晶の引上げが終了した後、上下ヒータを徐々
に冷却し、B2O3の温度が約300℃になつた時に該
単結晶をB2O3中から上方にひき上げて空却し
た。このようにして得られたGaAs単結晶表面
は、この引上げ育成中はB2O3によつて囲まれて
いることから、結晶周囲の温度が約1100℃の高温
であつても結晶表面からAsの解離はなく極めて
平滑で金属光沢を示していた。また、冷却時に
B2O3が結晶表面を覆つていることから、結晶表
面は極めて粗れが少なく、また、酸化等の問題も
さけられた。なお、第2図は圧力チヤンバ内に設
置されていることは云うまでもない。 Next, while pulling the pulling shaft at a speed of 10 mm/hour, the temperature of the GaAs melt is gradually lowered by the lower heater to form a so-called crystal shoulder, and the melt temperature is adjusted to change the crystal weight and melt weight. By making appropriate adjustments, a single crystal with a diameter of approximately 5 cm and a length of 10 cm was pulled and grown. At this time, since the entire single crystal is in B 2 O 3 maintained at about 1100°C to a depth of about 15 cm, the crystal being pulled is gradually cooled, which is a phenomenon that occurs in the conventional LEC method. Never. After the pulling of the single crystal was completed, the upper and lower heaters were gradually cooled, and when the temperature of B 2 O 3 reached approximately 300°C, the single crystal was pulled upward from the B 2 O 3 and emptied. . Since the GaAs single crystal surface obtained in this way is surrounded by B 2 O 3 during this pulling growth, As is removed from the crystal surface even when the temperature around the crystal is as high as approximately 1100°C. There was no dissociation, and the surface was extremely smooth and had a metallic luster. Also, during cooling
Since B 2 O 3 covers the crystal surface, the crystal surface has extremely little roughness and problems such as oxidation were avoided. It goes without saying that the device shown in FIG. 2 is installed inside a pressure chamber.
引上げ軸に垂直に切断した該単結晶のウエハを
KOHでエツチングして、転位に相当するエツチ
ピツトの面内分布を調べた結果、通常のLECに
よる結晶では転位分布はW字形で不均一である
が、本発明によつて育成した結晶のそれはV字形
あるいは皿形で、通常の方法に比べ1〜2桁低い
低転位密度の領域が70〜80%得られた。 The single crystal wafer cut perpendicular to the pulling axis is
As a result of etching with KOH and examining the in-plane distribution of etchipts corresponding to dislocations, it was found that the dislocation distribution in conventional LEC crystals is W-shaped and non-uniform, but the dislocation distribution in the crystal grown by the present invention is V-shaped. Alternatively, a dish-shaped region with a low dislocation density of 70 to 80%, which is one to two orders of magnitude lower than that obtained using conventional methods, was obtained.
以上の実施例ではGaAs母原料を用いたが、こ
の代り原料であるGaとAsとを化学量論比1:1
に坪量しそB2O3とともに長尺るつぼ内に入れて
行つても同様の効果が得られることは明らかであ
る。また、GaAs以外の例えばGaP,InP,InAs
あるいはそれらの混晶化合物の場合でも本発明の
方法を用いることで表面の解離のない、即ち、転
位発生源となる結晶表面の粗れが極めて少なく、
従つて、低転位の単結晶が得られることは云うま
でもない。 In the above examples, a GaAs base material was used, but instead of this, the raw materials Ga and As were used in a stoichiometric ratio of 1:1.
It is clear that the same effect can be obtained even if it is placed in a long crucible together with the basis weight Shiso B 2 O 3 . In addition, other than GaAs such as GaP, InP, InAs
Alternatively, even in the case of these mixed crystal compounds, by using the method of the present invention, there is no dissociation of the surface, that is, there is extremely little roughness on the crystal surface that becomes a source of dislocation.
Therefore, it goes without saying that a single crystal with low dislocations can be obtained.
(発明の効果)
以上説明ししたように、本発明によれば、液体
カプセル封止剤の厚さを育成しようとする結晶の
長さ以上にすることにより、結晶となる融液から
揮発性元素が解離するのを抑止するとともに、育
成され固体化した結晶の表面から圧力空間に揮発
性元素が解離する現象をも抑止できるという新規
な効果が得られる。(Effects of the Invention) As explained above, according to the present invention, by making the thickness of the liquid encapsulant equal to or greater than the length of the crystal to be grown, volatile elements can be extracted from the melt that becomes the crystal. A novel effect can be obtained in that it is possible to suppress the dissociation of volatile elements from the surface of the grown and solidified crystal and also to suppress the dissociation of volatile elements from the surface of the grown and solidified crystal into the pressure space.
又、結晶引上げ軸方向の温度勾配条件とは独立
して、引上げ結晶を常時B2O3等の封止剤中に存
在させることが可能である。従つて、融液を加熱
するヒーターの上部に、これとは独立に封止剤の
上部のみを主として加熱するヒーターを設け、引
上げ軸方向の温度勾配を積極的に小さくする場合
(これは、引上げられた結晶部の温度を、融液部
温度に近づけるように加熱することに等しいがこ
の場合)でも結晶部表面は常に揮発性元素の解離
防止機能を有するB2O3等の封止剤で被われてい
るので、表面粗れを抑止でき、従つて、発明者ら
が発見した低温度勾配環境下における転位発生現
象をも抑止できるという著しい効果が得られる。 Furthermore, it is possible to make the pulled crystal always exist in a sealant such as B 2 O 3 independently of the temperature gradient conditions in the direction of the crystal pulling axis. Therefore, if a heater that mainly heats only the upper part of the sealant is installed above the heater that heats the melt, and the temperature gradient in the direction of the pulling axis is actively reduced (this is Even in this case, the surface of the crystal is always covered with a sealant such as B 2 O 3 , which has the function of preventing the dissociation of volatile elements. Since it is covered, surface roughness can be suppressed, and therefore, a remarkable effect can be obtained in that it is possible to suppress the phenomenon of dislocation generation under a low temperature gradient environment discovered by the inventors.
更に、本発明によれば結晶全体が常時B2O3等
の封止剤中にあるため、結晶の回転引上げ軸及び
長尺るつぼを保持するサセプタ下端に独立した重
量検出装置を設ければ、浮力の補正が単純化さ
れ、結晶の重量変化が正確に求められるので、結
晶育成プロセスの高精度な自動化が容易に可能に
なるという効果も得られる。 Furthermore, according to the present invention, since the entire crystal is always in a sealant such as B 2 O 3 , if an independent weight detection device is provided at the lower end of the susceptor that holds the rotational pulling shaft of the crystal and the elongated crucible, Since the correction of buoyancy is simplified and the weight change of the crystal can be determined accurately, there is also the effect that highly accurate automation of the crystal growth process can be easily achieved.
第1図は本発明の基本概念を説明するための図
面、第2図は本発明による単結晶製造装置、第3
図は、従来のLEC法における単結晶製造装置
(一般的な場合であ、圧力空間の温度勾配が小さ
い場合)、第4図は従来のLEC法における単結晶
製造装置(圧力空間の温度勾配が大きな場合)、
第5図は従来法と本発明実施例における引上軸方
向の温度分布を比較した図である。
1…単結晶、2…融液、3…液体封止剤、4…
るつぼ、5…圧力チヤンバ、6…引上げ回転軸、
7…カプセル外被、8…圧力空間、9…種子結
晶、10…単結晶、10′…単結晶の肩部、11
…液体封止剤、1…長尺るつぼ、13…サセプ
タ、14…下部ヒータ、15…上部ヒータ、16
…下部重量検出装置、17…回転上下駆動装置、
18…上部重量検出装置、19…回転上下駆動装
置、20…微分差動増幅器。
Figure 1 is a drawing for explaining the basic concept of the present invention, Figure 2 is a single crystal manufacturing apparatus according to the present invention, and Figure 3 is a diagram for explaining the basic concept of the present invention.
The figure shows a single crystal production apparatus using the conventional LEC method (general case, when the temperature gradient in the pressure space is small). Figure 4 shows a single crystal production apparatus using the conventional LEC method (when the temperature gradient in the pressure space is small). if large),
FIG. 5 is a diagram comparing the temperature distribution in the pulling axis direction in the conventional method and the embodiment of the present invention. 1... Single crystal, 2... Melt, 3... Liquid sealant, 4...
Crucible, 5... Pressure chamber, 6... Pulling rotation shaft,
7... Capsule envelope, 8... Pressure space, 9... Seed crystal, 10... Single crystal, 10'... Single crystal shoulder, 11
...Liquid sealant, 1... Long crucible, 13... Susceptor, 14... Lower heater, 15... Upper heater, 16
...Lower weight detection device, 17...Rotating vertical drive device,
18... Upper weight detection device, 19... Rotating vertical drive device, 20... Differential differential amplifier.
Claims (1)
液体カプセル封止溶融引上げ法(LEC法)にお
いて、育成しようとする該単結晶の長さを越える
例えばB2O3の如き液体封止カプセル剤の厚い層
を、前記単結晶となる融液上方に配置することに
より、該単結晶を常時上記液体封止カプセル剤の
中で引上げ育成することを特徴とする化合物半導
体単結晶の製造方法。 2 揮発性成分元素を含む化合物半導体単結晶を
液体封止カプセル封止溶融引上げ法で育成する製
造装置において、単結晶となる融液の上方に配置
され、育成しようとする単結晶の長さを越える厚
さの例えばB2O3の如き液体封止カプセル剤と、
上記厚い液体封止カプセル剤及び単結晶となる融
液を充填する長尺るつぼと、成長育成される単結
晶の周囲を囲む上記厚い液体封止カプセル剤の温
度を制御する手段とを、少なくとも具備すること
を特徴とする化合物半導体単結晶の製造装置。 3 揮発性成分元素を含む化合物半導体単結晶を
液体カプセル封止溶融引上げ法で引上げ育成する
製造装置において、単結晶となる融液の上方に配
置され、育成しようとする単結晶の長さを越える
厚さの例えばB2O3の如き液体封止カプセル剤
と、上記厚い液体封止カプセル剤及び単結晶とな
る融液を充填する長尺るつぼと、成長育成される
単結晶の周囲を囲む上記厚い液体封止カプセル剤
の温度を制御する手段と、結晶の回転引上軸及び
上記るつぼを保持するサセプタ下端に設けた2つ
の独立した重量検出手段とを、少なくとも具備す
ることを特徴とする化合物半導体単結晶の製造装
置。[Claims] 1. In the liquid encapsulation melting and pulling method (LEC method) of compound semiconductor single crystals containing volatile component elements, for example, B 2 O 3 which exceeds the length of the single crystal to be grown. A compound semiconductor single crystal characterized in that a thick layer of a liquid-sealed capsule is placed above the melt that forms the single crystal, so that the single crystal is constantly pulled and grown in the liquid-sealed capsule. manufacturing method. 2. In a manufacturing device that grows compound semiconductor single crystals containing volatile component elements using the liquid-sealed capsule sealing melt-pulling method, a device is placed above the melt that will become the single crystal, and is used to control the length of the single crystal to be grown. liquid-sealed capsules, such as B 2 O 3 , with a thickness exceeding
It comprises at least a long crucible filled with the thick liquid sealed capsule and a melt to form a single crystal, and a means for controlling the temperature of the thick liquid sealed capsule surrounding the single crystal to be grown. A compound semiconductor single crystal manufacturing device characterized by: 3 In manufacturing equipment that pulls and grows compound semiconductor single crystals containing volatile component elements using the liquid encapsulation melt-pulling method, a single crystal is placed above the melt that will become the single crystal, and the length of the single crystal exceeds the length of the single crystal to be grown. A long crucible filled with a thick liquid-sealed capsule such as B 2 O 3 , the thick liquid-sealed capsule and a melt to form a single crystal, and the above-mentioned crucible that surrounds the single crystal to be grown. A compound characterized in that it comprises at least a means for controlling the temperature of the thick liquid-sealed capsule, and two independent weight detection means provided at the lower end of the susceptor that holds the rotational pulling axis of the crystal and the crucible. Semiconductor single crystal manufacturing equipment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1761282A JPS58135626A (en) | 1982-02-08 | 1982-02-08 | Manufacture of compound semiconductor single crystal and manufacturing device thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1761282A JPS58135626A (en) | 1982-02-08 | 1982-02-08 | Manufacture of compound semiconductor single crystal and manufacturing device thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58135626A JPS58135626A (en) | 1983-08-12 |
JPS6117798B2 true JPS6117798B2 (en) | 1986-05-09 |
Family
ID=11948701
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1761282A Granted JPS58135626A (en) | 1982-02-08 | 1982-02-08 | Manufacture of compound semiconductor single crystal and manufacturing device thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58135626A (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59116195A (en) * | 1982-12-23 | 1984-07-04 | Toshiba Corp | Manufacture of compound semiconductor single crystal |
JPS6046993A (en) * | 1983-08-23 | 1985-03-14 | Sumitomo Electric Ind Ltd | Device for pulling up single crystal |
JPS6046998A (en) * | 1983-08-26 | 1985-03-14 | Sumitomo Electric Ind Ltd | Pulling up of single crystal and its device |
JPS6090897A (en) * | 1983-10-25 | 1985-05-22 | Nippon Telegr & Teleph Corp <Ntt> | Method and apparatus for manufacturing compound semiconductor single crystal |
JP2553485B2 (en) * | 1983-11-30 | 1996-11-13 | 住友電気工業株式会社 | Method for producing gallium arsenide single crystal |
JPS60210591A (en) * | 1984-04-05 | 1985-10-23 | Hitachi Cable Ltd | Production of semiinsulating gaas single crystal |
JPS60264390A (en) * | 1984-06-08 | 1985-12-27 | Sumitomo Electric Ind Ltd | Growing method for single crystal |
JPS6131381A (en) * | 1984-07-20 | 1986-02-13 | Nippon Telegr & Teleph Corp <Ntt> | Process for preparing compound semiconductor crystal by pulling |
US5074953A (en) * | 1988-08-19 | 1991-12-24 | Mitsubishi Materials Corporation | Method for monocrystalline growth of dissociative compound semiconductors |
-
1982
- 1982-02-08 JP JP1761282A patent/JPS58135626A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS58135626A (en) | 1983-08-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5233070B2 (en) | Indium phosphide substrate, indium phosphide single crystal, and manufacturing method thereof | |
US4874458A (en) | Single crystal growing method having improved melt control | |
JPH03122097A (en) | Preparation of single crystal ii-vi group or iii-v group compound and product made of it | |
JPS6046998A (en) | Pulling up of single crystal and its device | |
US20240271317A1 (en) | Crystal Puller and Method for Pulling Single-Crystal Silicon Ingot, and Single-Crystal Silicon Ingot | |
JPS6117798B2 (en) | ||
EP0162467A2 (en) | Device for growing single crystals of dissociative compounds | |
US20060191468A1 (en) | Process for producing single crystal | |
EP0210439A1 (en) | Method for growing single crystals of dissociative compound semiconductor | |
JP3750440B2 (en) | Single crystal pulling method | |
EP0355833B1 (en) | Method of producing compound semiconductor single crystal | |
JP3885245B2 (en) | Single crystal pulling method | |
JP2734820B2 (en) | Method for manufacturing compound semiconductor single crystal | |
JP2010030868A (en) | Production method of semiconductor single crystal | |
JPS62123095A (en) | Production of gaas single crystal having low dislocation density | |
JP2700145B2 (en) | Method for manufacturing compound semiconductor single crystal | |
JP2010030847A (en) | Production method of semiconductor single crystal | |
JPH05319973A (en) | Single crystal production unit | |
JPS60122791A (en) | Pulling up method of crystal under liquid sealing | |
JPS6090897A (en) | Method and apparatus for manufacturing compound semiconductor single crystal | |
JPS5950627B2 (en) | Single crystal silicon pulling equipment | |
JPS606918B2 (en) | Method for producing Group 3-5 compound single crystal | |
JPS59131597A (en) | Production of high-quality gallium arsenide single crystal | |
JPS6389497A (en) | Production of silicon-added gallium arsenic single crystal | |
JPH11106292A (en) | Production of semiconductor single crystal |