JPH02196082A - Production of silicon single crystal - Google Patents

Production of silicon single crystal

Info

Publication number
JPH02196082A
JPH02196082A JP1364189A JP1364189A JPH02196082A JP H02196082 A JPH02196082 A JP H02196082A JP 1364189 A JP1364189 A JP 1364189A JP 1364189 A JP1364189 A JP 1364189A JP H02196082 A JPH02196082 A JP H02196082A
Authority
JP
Japan
Prior art keywords
single crystal
silicon
raw material
silicon single
starting material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1364189A
Other languages
Japanese (ja)
Other versions
JPH0798715B2 (en
Inventor
Takayuki Kubo
久保 高行
Hirofumi Kurayasu
浩文 蔵保
Toshiyuki Fujiwara
俊幸 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP1013641A priority Critical patent/JPH0798715B2/en
Publication of JPH02196082A publication Critical patent/JPH02196082A/en
Publication of JPH0798715B2 publication Critical patent/JPH0798715B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To obtain a high quality silicon single crystal in a high yield by using silicon freed of an oxide surface film as starting material. CONSTITUTION:Silicon as starting material Ms is put in a crucible 2 set in a pulling device 1 and an oxide surface film is removed from the starting material Ms by holding at 1,000-1,400 deg.C for 1-3 hr under reduced pressure or in an inert gaseous atmosphere or a reducing atmosphere. The device 1 is then evacuated and filled with an inert gaseous atmosphere and a heater 3 is electrified to melt the starting material Ms and a sealant M. A seed crystal 4 suspended from a wire 5 is dipped in the molten starting material and pulled to grow a silicon single crystal 7.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、例えば、半導体材料等に使用されるシリコ
ン単結晶の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for manufacturing silicon single crystal used, for example, as a semiconductor material.

(従来の技術) 単結晶の成長法には幾つかの方法があるが、その一つに
引き上げ法(チックラルスキー法ともいう)がある、こ
の方法は第1図に示すように、引き上げ装置l内に配置
された坩堝2(内側が石英で外側がカーボンからできて
いる、以下、るつぼと記す)内に原料Mを装入してヒー
タ3で溶解した後、種結晶4を取り付けたワイヤー5に
より溶融液6を引きあげ、凝固成長させて単結晶7を製
造するものである。
(Prior art) There are several methods for growing single crystals, one of which is the pulling method (also called the Chickralski method). This method uses a pulling device as shown in Figure 1. The raw material M is charged into a crucible 2 (made of quartz on the inside and carbon on the outside, hereinafter referred to as a crucible) placed in a heater 3, and then a wire with a seed crystal 4 attached thereto. 5, the molten liquid 6 is pulled up and solidified and grown to produce a single crystal 7.

上記引き上げ法で半導体用単結晶を成長させる場合、そ
の電気抵抗や電気伝導型を調整するため、溶融液の引き
上げ前に不純物(例えば、P、Bなど)を添加すること
がある。ところが、一般に単結晶成長の際、溶融液中の
不純物濃度Ceと単結晶の不純物濃度Csとの比、すな
わち、実効偏析係数Ke (=Cs/Co)が1より小
さいので、単結晶が成長するにつれて溶融中の不純物濃
度が高くなってゆく、その結果、単結晶中の不純物濃度
が変化して偏析を生じ、均等な電気抵抗をもつ単結晶が
得られないと言う問題がある。
When growing a semiconductor single crystal using the above-mentioned pulling method, impurities (for example, P, B, etc.) may be added before pulling the melt in order to adjust its electrical resistance and electrical conductivity type. However, in general, when growing a single crystal, the ratio of the impurity concentration Ce in the melt to the impurity concentration Cs of the single crystal, that is, the effective segregation coefficient Ke (=Cs/Co), is smaller than 1, so the single crystal grows. As a result, the concentration of impurities in the melt increases, and as a result, the concentration of impurities in the single crystal changes, causing segregation, resulting in the problem that a single crystal with uniform electrical resistance cannot be obtained.

このような偏析を防止し、均質な単結晶を成長させる方
法として溶融層法がある。
There is a fused layer method as a method for preventing such segregation and growing a homogeneous single crystal.

この方法には、■第2図に示すように、溶融液6を種結
晶4を吊り下げたワイヤー5で引き上げ、単結晶7を成
長させる間に溶融液6の減量した分だけ下部固体層M、
を溶解して溶融液6の体積を常に一定に保ち、単結晶7
の引き上げに合わせて不純物をシュート8から連続的に
添加し、溶融液層中の不純物濃度を均一にする方法(特
公昭348242号公報、特公昭62−880号公報)
、あるいは■意図的に溶融液層の体積を変化させること
により、結晶引き上げ中に不純物を添加することなく熔
融液中の不純物濃度を一定に保つ方法(特開昭61−2
05691号公報)、などがある。
In this method, as shown in FIG. ,
The single crystal 7 is melted to keep the volume of the molten liquid 6 constant.
A method in which impurities are continuously added from the chute 8 as the melt is pulled up to make the impurity concentration in the melt layer uniform (Japanese Patent Publication No. 348242, Japanese Patent Publication No. 62-880)
, or ■ A method of keeping the impurity concentration in the melt constant without adding impurities during crystal pulling by intentionally changing the volume of the melt layer (Japanese Patent Laid-Open No. 61-2
05691), etc.

上記溶融層法により、不純物の偏析は改善され、シリコ
ン単結晶の電気抵抗が大きく変化するという問題は解決
された。
The fused layer method improves the segregation of impurities and solves the problem of large changes in the electrical resistance of silicon single crystals.

しかし、溶融層法においては、単結晶化を妨げる下記の
ような問題が発生している。
However, in the fused layer method, the following problems occur that hinder single crystallization.

(a)溶融液表面に浮上した異物が引き上げ中の結晶体
に取込まれ、品質の低下や多結晶化が起こる。
(a) Foreign matter floating on the surface of the melt is taken into the crystal being pulled, resulting in quality deterioration and polycrystallization.

(b)溶融液中から発生するガスにより液面が振動し、
多結晶体が生じて正常な引き上げができない。
(b) The liquid level vibrates due to gas generated from the molten liquid,
Polycrystals are formed and normal pulling is not possible.

(C)前記発生ガスが、るつぼの上部やシードチャック
などに再結晶し、これが溶融液に落ち込んで溶解され単
結晶に混入する。
(C) The generated gas recrystallizes in the upper part of the crucible, the seed chuck, etc., falls into the melt, is dissolved, and mixed into the single crystal.

本発明者らは、前記異物とガスの発生を防止しなければ
均質な単結晶は成長できないと考え、それらの正体とそ
の原因物質の究明を行った。
The present inventors believed that a homogeneous single crystal could not be grown unless the generation of the foreign substances and gases was prevented, and investigated the true nature of these substances and their causative substances.

その結果、溶融液表面に浮上する異物はシリコンの酸化
物であり、溶融液中から発生するガスもシリコン酸化物
によるものであることが判明した。
As a result, it was found that the foreign matter floating on the surface of the melt was silicon oxide, and that the gas generated from the melt was also caused by silicon oxide.

そして浮遊異物の原因物質はシリコン原料の表面を覆っ
ている酸化膜であり、発生ガスは下部固体層のシリコン
原料の酸化膜であることが明らかになった。
It became clear that the cause of the floating foreign matter was an oxide film covering the surface of the silicon raw material, and that the generated gas was the oxide film of the silicon raw material in the lower solid layer.

そこで本発明者らは、前記シリコン原料表面を覆う酸化
膜の除去方法について更に研究を重ねた結果、原料シリ
コンを適正な温度で熱処理すれば、酸化W14(酸素)
を比較的簡単に除去できるとの知見を得、この発明を完
成するに到った。
As a result of further research into the method for removing the oxide film covering the surface of the silicon raw material, the present inventors found that if the raw material silicon is heat-treated at an appropriate temperature, oxidized W14 (oxygen) can be removed.
The present invention was completed based on the knowledge that it can be removed relatively easily.

すなわち、本発明の要旨は「溶融層法によるシリコン単
結晶の製造方法であって、表面酸化膜を除去したシリコ
ン原料を使用することを特徴とするシリコン単結晶の製
造方法」及び「溶融層法によるシリコン単結晶の製造方
法であって、引き上げ装置に原料を装入し、装置内を減
圧、又は不活性ガス雰囲気、若しくは還元性雰囲気にし
た後、原料をt、ooo〜1,400°Cの温度に保持
して熱処理することを特徴とするシリコン単結晶の製造
方法Jにある。
That is, the gist of the present invention is "a method for producing a silicon single crystal by a fused layer method, characterized in that the method uses a silicon raw material from which a surface oxide film has been removed" and "a method for producing a silicon single crystal by a fused layer method". A method for producing a silicon single crystal by charging a raw material into a pulling device, reducing the pressure inside the device, creating an inert gas atmosphere, or a reducing atmosphere, and then heating the raw material at t,ooo to 1,400°C. There is a method J for producing a silicon single crystal, characterized in that the heat treatment is carried out while maintaining the temperature at a temperature of .

(作用) 本発明のシリコン単結晶の製造方法は、表面酸化膜を除
去したシリコン原料を使用することに特徴がある。酸化
膜を除けば、それに起因して起こる異物やガスが発生し
ないから、均質なシリコン単結晶を安定して成長させる
ことができる。
(Function) The method for producing a silicon single crystal of the present invention is characterized by using a silicon raw material from which a surface oxide film has been removed. If the oxide film is removed, no foreign matter or gas is generated due to the oxide film, so a homogeneous silicon single crystal can be stably grown.

原料表面酸化膜の除去は、シリコン原料を減圧下、又は
不活性ガス雰囲気のもと、若しくは還元雰囲気下で、t
 、 ooo〜1,400°Cの温度に1〜3時間保持
する熱処理により行うことができる。
The oxide film on the surface of the raw material is removed by heating the silicon raw material under reduced pressure, an inert gas atmosphere, or a reducing atmosphere.
, ooo to 1,400° C. for 1 to 3 hours.

上記熱処理において、加熱温度はt、ooo°C〜14
00°Cにする。その理由は1 、000°Cより低い
と長時間の熱処理が必要であり、かつ酸化膜除去効果が
小さいからである。一方、1 、400°Cを越えると
Siの融点が1414°Cであるために溶融を起こしや
すくなり、溶融層内に酸化物が取り込まれるからである
。また加熱時間を1〜3時間保つことが望ましい、それ
はlhr未満では酸化物除去が不完全であり、3hrよ
り長く保持すると電力使用量が増大するからである。又
減圧する場合の圧力は1〜20torrが好ましく、不
活性ガスはA「ガスやHeガスなどが用いられる。
In the above heat treatment, the heating temperature is t, ooo °C ~ 14
00°C. The reason for this is that if the temperature is lower than 1,000°C, a long heat treatment is required and the effect of removing the oxide film is small. On the other hand, if the temperature exceeds 1,400°C, since the melting point of Si is 1414°C, melting will easily occur, and oxides will be incorporated into the molten layer. Further, it is desirable to keep the heating time for 1 to 3 hours, because if the heating time is less than 1 hr, oxide removal is incomplete, and if the heating time is kept longer than 3 hr, the power consumption will increase. Further, the pressure in the case of reducing the pressure is preferably 1 to 20 torr, and the inert gas used is A gas, He gas, or the like.

このような熱処理をシリコン原料に施すと、下記(1)
〜(3)式の反応が生じる。
When such heat treatment is applied to silicon raw materials, the following (1)
The reaction of formula ~(3) occurs.

Sing→ Si+O,↑    ・・・(1)2Si
Ox→2 S I O+O,↑   ・・・(2)2S
iO→2Si+O,↑    ・・・(3)これらの反
応によりシリコン原料表面の酸化膜(SIO□)が除去
される。そして上記反応は1,000°C以上の高温の
もとて速やかに起こり、また減圧下の方が円滑に進行す
る。
Sing → Si+O, ↑ ... (1) 2Si
Ox → 2 S I O+O, ↑ ... (2) 2S
iO→2Si+O, ↑ (3) These reactions remove the oxide film (SIO□) on the surface of the silicon raw material. The above reaction occurs very quickly at a high temperature of 1,000°C or higher, and proceeds more smoothly under reduced pressure.

ところで、本発明の最も好ましい実施態様は、上記の熱
処理を引き上げ装置内で行うことである。
By the way, the most preferred embodiment of the present invention is to perform the above heat treatment within a pulling device.

そうすれば熱処理後の原料を、そのまま溶解して単結晶
を成長させることができる。しかじ熱処理に長時間を要
する場合は、引き上げ装置の稼働率向上の点から、別に
設けた熱処理炉で(真空熱処理炉、不活性ガス雰囲気炉
など)で処理するのがよい、この場合には、熱処理した
原料の再酸化を防止するため、Ar等の不活性ガスを封
入した容器に保存するなどの処置を講する必要がある。
In this way, the raw material after heat treatment can be melted as it is to grow a single crystal. However, if heat treatment requires a long time, it is better to perform the treatment in a separate heat treatment furnace (vacuum heat treatment furnace, inert gas atmosphere furnace, etc.) in order to improve the operating rate of the pulling equipment. In order to prevent re-oxidation of heat-treated raw materials, it is necessary to take measures such as storing them in a container filled with an inert gas such as Ar.

(実施例1) この実施例は、温度を変えてシリコン原料に熱処理を施
し、原料中酸素の除去程度を調べたものである。原料の
熱処理は第2図に示す引き上げ装置lを使用して行った
。原料M1をるつぼ2内に装入した後、装置内を10t
orrまで減圧してAr雰囲気にし、原料M、を950
°c、 1,000°C,1,200°C11,400
°Cに昇温した。
(Example 1) In this example, a silicon raw material was subjected to heat treatment at different temperatures, and the degree of oxygen removal from the raw material was investigated. The heat treatment of the raw material was carried out using a lifting device 1 shown in FIG. After charging the raw material M1 into the crucible 2, the inside of the apparatus is heated to 10 tons.
The pressure was reduced to orr to create an Ar atmosphere, and the raw material M was heated to 950
°c, 1,000°C, 1,200°C11,400
The temperature was raised to °C.

この結果を第3図に示す、なお図中のは原料温度を95
0°Cにした場合、Δは1 、000℃、Oは1,20
0℃、・は1,400℃に昇温した場合である。
The results are shown in Figure 3. In the figure, the raw material temperature is 95%.
When set to 0°C, Δ is 1,000°C and O is 1,20
0°C and . are the cases where the temperature was raised to 1,400°C.

第3図から明らかなように、本発明で規定する温度範囲
から外れた950℃の場合には、熱処理の前後で酸素濃
度の差は小さく効果は少ない、処理温度が1 、000
℃以上になるとその効果が現れはじめ、1 、400℃
になると僅か1時間の処理で12ppmから2p9−ま
で低下するに到った。
As is clear from FIG. 3, when the temperature is 950°C, which is outside the temperature range specified by the present invention, the difference in oxygen concentration before and after the heat treatment is small and the effect is small, and the treatment temperature is 1,000°C.
The effect begins to appear at temperatures above 1,400°C.
The concentration decreased from 12 ppm to 2p9- in just 1 hour of treatment.

(実施例2) この実施例は、熱処理した原料と、熱処理しない原料を
用いて直径50m−のシリコン単結晶を作り、その単結
晶長さを調べたものである。
(Example 2) In this example, a silicon single crystal with a diameter of 50 m was made using a heat-treated raw material and a non-heat-treated raw material, and the length of the single crystal was investigated.

原料の溶解と溶融液の引き上げは、第2図に示す引き上
げ装置1により行った。熱処理原料は、10torrに
減圧した後Ar雰囲気中にした中で1,300°Cに昇
熱して1時間保持したものを用いた。
The melting of the raw materials and the pulling up of the melt were carried out using the lifting device 1 shown in FIG. The heat-treated raw material used was one that was heated to 1,300°C and held for 1 hour in an Ar atmosphere after being reduced to 10 torr.

この結果を第4図に示す0図において◇は熱処理をしな
い原料を用いた場合であり、◆は熱処理をした原料を使
用した場合である。この図かられかるように、熱処理し
ない原料の場合には、単結晶長さが短く、しかもその長
さは大きくばらついている。これは原料の酸化膜(酸素
)により生じた浮遊異物やガスによる溶融液面の振動な
どに起因していると考えられる。一方、熱処理した原料
の場合には、原料の酸化膜が事前に除去され、異物など
の発生がないため、単結晶の長さが長く、そのばらつき
も非常に小さい。
The results are shown in Fig. 4, where ◇ indicates the case where a raw material that was not heat treated was used, and ◆ indicates the case where a heat treated raw material was used. As can be seen from this figure, in the case of raw materials that are not heat treated, the single crystal length is short and the lengths vary widely. This is thought to be caused by vibrations of the melt surface due to floating foreign matter and gas caused by the oxide film (oxygen) of the raw material. On the other hand, in the case of a heat-treated raw material, the oxide film of the raw material is removed in advance and no foreign matter is generated, so the length of the single crystal is long and the variation in length is very small.

(発明の効果) 以上説明したように、本発明の方法は酸素含有量を低く
したシリコン原料を用いるので、溶融してもシリコン酸
化物の異物やガスが発生しない。
(Effects of the Invention) As explained above, since the method of the present invention uses a silicon raw material with a low oxygen content, no silicon oxide foreign matter or gas is generated even when melted.

したがって、品質の良好なシリコン単結晶を歩留よく製
造できる。また原料中の酸素は熱処理炉で簡単に除去で
きるので、それほどコストが嵩むようなこともない。
Therefore, silicon single crystals of good quality can be manufactured with a high yield. Furthermore, since oxygen in the raw material can be easily removed in a heat treatment furnace, the cost does not increase significantly.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、引き上げ法による単結晶の成長を説明する図
、 第2図は、溶融層法による単結晶の成長を説明する図、 第3図は、シリコン原料の熱処理時間と原料中の酸素濃
度との関係を示す図、 第4図は、熱処理をした原料と熱処理しない原料の場合
における単結晶の長さを比較した図、lは引き上げ装置
、2はるつぼ、3はヒータ、4は種結晶、5はワイヤー
、6は溶融液、7は単結晶、8はシュート。
Figure 1 is a diagram explaining the growth of a single crystal by the pulling method. Figure 2 is a diagram explaining the growth of a single crystal by the fused layer method. Figure 3 is a diagram showing the heat treatment time of silicon raw materials and the oxygen in the raw materials. Figure 4 is a diagram showing the relationship between the concentration and the length of the single crystal between heat-treated and non-heat-treated raw materials, l is the pulling device, 2 is the crucible, 3 is the heater, and 4 is the seed. Crystal, 5 is wire, 6 is melt, 7 is single crystal, 8 is shoot.

Claims (2)

【特許請求の範囲】[Claims] (1)溶融層法によるシリコン単結晶の製造方法であっ
て、表面酸化膜を除去したシリコン原料を使用すること
を特徴とするシリコン単結晶の製造方法。
(1) A method for producing a silicon single crystal by a fused layer method, which is characterized in that a silicon raw material from which a surface oxide film has been removed is used.
(2)溶融層法によるシリコン単結晶の製造方法であっ
て、引き上げ装置に原料を装入し、装置内を減圧、又は
不活性ガス雰囲気、若しくは還元性雰囲気にした後、原
料を1,000〜1,400℃の温度に保持して熱処理
することを特徴とするシリコン単結晶の製造方法。
(2) A method for producing silicon single crystals by the molten layer method, in which raw materials are charged into a pulling device, the pressure inside the device is reduced, or an inert gas atmosphere or a reducing atmosphere is created, and then the raw materials are A method for producing a silicon single crystal, characterized by carrying out heat treatment while maintaining the temperature at a temperature of ~1,400°C.
JP1013641A 1989-01-23 1989-01-23 Method for producing silicon single crystal Expired - Lifetime JPH0798715B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1013641A JPH0798715B2 (en) 1989-01-23 1989-01-23 Method for producing silicon single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1013641A JPH0798715B2 (en) 1989-01-23 1989-01-23 Method for producing silicon single crystal

Publications (2)

Publication Number Publication Date
JPH02196082A true JPH02196082A (en) 1990-08-02
JPH0798715B2 JPH0798715B2 (en) 1995-10-25

Family

ID=11838862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1013641A Expired - Lifetime JPH0798715B2 (en) 1989-01-23 1989-01-23 Method for producing silicon single crystal

Country Status (1)

Country Link
JP (1) JPH0798715B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012508151A (en) * 2008-11-05 2012-04-05 エムイーエムシー・シンガポール・プライベイト・リミテッド Method for preparing a melt of silicon powder for crystal growth of silicon
WO2019154729A1 (en) 2018-02-06 2019-08-15 Siltronic Ag Method and device for drawing a single crystal, single crystal, and semiconductor wafer
WO2020001939A1 (en) 2018-06-25 2020-01-02 Siltronic Ag Method and device for drawing a single crystal of semiconductor material, and semiconductor wafer of silicon

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5849518A (en) * 1981-09-19 1983-03-23 Honda Motor Co Ltd Exhauster for motor cycle
JPS5992993A (en) * 1982-11-17 1984-05-29 Toshiba Corp Production of single crystal
JPS62880A (en) * 1985-06-27 1987-01-06 Tech Res & Dev Inst Of Japan Def Agency Electric wave and optical system composite seeker

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5849518A (en) * 1981-09-19 1983-03-23 Honda Motor Co Ltd Exhauster for motor cycle
JPS5992993A (en) * 1982-11-17 1984-05-29 Toshiba Corp Production of single crystal
JPS62880A (en) * 1985-06-27 1987-01-06 Tech Res & Dev Inst Of Japan Def Agency Electric wave and optical system composite seeker

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012508151A (en) * 2008-11-05 2012-04-05 エムイーエムシー・シンガポール・プライベイト・リミテッド Method for preparing a melt of silicon powder for crystal growth of silicon
WO2019154729A1 (en) 2018-02-06 2019-08-15 Siltronic Ag Method and device for drawing a single crystal, single crystal, and semiconductor wafer
WO2020001939A1 (en) 2018-06-25 2020-01-02 Siltronic Ag Method and device for drawing a single crystal of semiconductor material, and semiconductor wafer of silicon
DE102018210286A1 (en) 2018-06-25 2020-01-02 Siltronic Ag Method and device for pulling a single crystal and semiconductor wafer made of silicon

Also Published As

Publication number Publication date
JPH0798715B2 (en) 1995-10-25

Similar Documents

Publication Publication Date Title
US4040895A (en) Control of oxygen in silicon crystals
JPH107491A (en) High-purity single crystal copper and its production and production unit therefor
JPH02196082A (en) Production of silicon single crystal
JPH0367994B2 (en)
JPS61215285A (en) Method of growing crystal
RU2108418C1 (en) Method for growing single crystals of lanthanum-gallium silicate
JPH06157187A (en) Single crystal growth furnace and production of single crystal
JP2018100202A (en) METHOD FOR GROWING LiNbO3 SINGLE CRYSTAL
JP2000007499A (en) Method for growing langasite single crystal
JP3132956B2 (en) Method for producing oxide single crystal
JPH0411513B2 (en)
JP2735740B2 (en) Method for producing silicon single crystal
JPS63250428A (en) Method for purifying indium
JPS6344720B2 (en)
JPH05294789A (en) Method for pulling up silicon crystal
JP2005200279A (en) Method for manufacturing silicon ingot and solar battery
JP2735741B2 (en) Method for producing silicon single crystal
JPH0640592Y2 (en) Silicon single crystal growth equipment
JPS6338541A (en) Refining method for indium
JP2002029881A (en) Method of producing compound semiconductor single crystal
JP2004107099A (en) Method of manufacturing semi-insulative gallium arsenide single crystal
JPS59131597A (en) Production of high-quality gallium arsenide single crystal
JP2004002076A (en) METHOD FOR MANUFACTURING GaAs WAFER
CN114855263A (en) Crystal growth method and growth device
JP2809363B2 (en) Method for producing lithium tetraborate single crystal