JPS63250428A - Method for purifying indium - Google Patents

Method for purifying indium

Info

Publication number
JPS63250428A
JPS63250428A JP8303887A JP8303887A JPS63250428A JP S63250428 A JPS63250428 A JP S63250428A JP 8303887 A JP8303887 A JP 8303887A JP 8303887 A JP8303887 A JP 8303887A JP S63250428 A JPS63250428 A JP S63250428A
Authority
JP
Japan
Prior art keywords
indium
temperature range
heating
region
temp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8303887A
Other languages
Japanese (ja)
Other versions
JPH039173B2 (en
Inventor
Hitoshi Habuka
等 羽深
Takehiko Futaki
剛彦 二木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP8303887A priority Critical patent/JPS63250428A/en
Publication of JPS63250428A publication Critical patent/JPS63250428A/en
Publication of JPH039173B2 publication Critical patent/JPH039173B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To efficiently purify In by heating In to reduce In2O3 contained therein to In2O and sublimating or evaporating the same, then heating up the In2O further to remove residual impurities therefrom. CONSTITUTION:The metallic In is heated in a 1st heating temp. region to denature the In2O3 in the In by the reduction reaction to the In2O which is then sublimated or evaporated. The In is heated in the 2nd heating temp. region to remove the remaining In2O and residual impurity elements such as S and Si therefrom. An equally good practice is to remove the remaining trace oxides by providing the 3rd temp. region during the time when the above-mentioned 1st temp. region is shifted to the 2nd region and maintaining this temp. region for a short period. A vacuum or inert gaseous atmosphere is preferable if a vessel for storing the In melt is made of quartz glass and a vacuum, inert gaseous or reducing gaseous atmosphere is preferable if said vessel is made of a carbon system. The 1st temp. region is adequately 400- below 700 deg.C and the 2nd temp. region 700-1,100 deg.C. The purified In suitable as a raw material for compd. semiconductors, etc., is obtd. by the above-mentioned method.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、例えば半導体光素子用の材料として好適なイ
ンジウムリン(Ir+P ) 、インジウムガリウム砒
素(InGaAs) 、インジウムガリウム砒素リン(
InGaAsP )等のm−v族化合物半導体の原料と
なるべき、インジウムの純化方法に係り、特に複数の温
度域で前記金属を加熱処理する事により該金属中に混入
及び溶解している酸化物や不純物等を効率よく除去する
方法に関する。
Detailed Description of the Invention "Field of Industrial Application" The present invention is applicable to indium phosphide (Ir+P), indium gallium arsenide (InGaAs), and indium gallium arsenide phosphide (Ir+P), which are suitable as materials for semiconductor optical devices, for example.
The method for purifying indium, which is the raw material for m-v group compound semiconductors such as InGaAsP, is particularly concerned with heat-treating the metal in multiple temperature ranges to eliminate oxides and oxides mixed and dissolved in the metal. This invention relates to a method for efficiently removing impurities, etc.

「従来の技術」 近年、光伝送システムの長波技化に伴ない、0゜9〜1
.8 )t、ta帯にバンドギャップを有するInP、
InGaAs、 InGaAsP等のm−v族化合物半
導体の薄膜中結晶が注目されているが、この種の半導体
を用いて薄膜光素子を形成する場合、該薄膜層のキャリ
ア密度を低下させる必要があり、その為には前記化合物
半導体を構成するインジウム中に存在する、インジウム
酸化物や、イオウ及び珪素等の残留不純物金属を極力除
去して高純度化した後、前記半導体を製造しなければな
らない。
"Conventional technology" In recent years, with the shift to long-wave technology in optical transmission systems,
.. 8) InP with a band gap in the t and ta bands,
Crystals in thin films of m-v group compound semiconductors such as InGaAs and InGaAsP are attracting attention, but when forming a thin film optical device using this type of semiconductor, it is necessary to reduce the carrier density of the thin film layer. For this purpose, the semiconductor must be manufactured after removing as much as possible residual impurity metals such as indium oxide, sulfur, and silicon present in the indium constituting the compound semiconductor to achieve high purity.

又極めて抵抗値の高い半絶縁性のInP 、 InGa
As、 InGaA、sP等のIn系薄膜は素子の基板
材料あるいは素子間を電気的に分離する素子分離用薄膜
として重要であり、この種の薄膜を高抵抗化するには、
鉄やニッケル等の遷移金属を薄膜中に添加し、これら遷
移金属の形成する深い準位を利用する氷が知られている
が、この種の薄膜中に前記酸化物や残留不純物金属が存
在すると、前記薄膜の高抵抗化を妨げ、所望の特性を得
る事が出来ない。
Also, semi-insulating InP, InGa with extremely high resistance value
In-based thin films such as As, InGaA, and sP are important as substrate materials for devices or device isolation thin films that electrically isolate between devices.In order to make this type of thin film high in resistance,
Ice is known in which transition metals such as iron and nickel are added to a thin film and the deep levels formed by these transition metals are utilized. , which prevents the thin film from increasing its resistance and makes it impossible to obtain desired characteristics.

従って前記のような■−v族化合物を製造する場合には
、その原料となるべきインジウムを高純度に精製する技
術を確立する事が極めて重要である事は論を待たず、こ
のような精製技術として、従来においてはJ、A、Ad
amskiら(Journal of Crystal
 Growth、64巻、 1頁、1983年)等によ
り公知なように、前記不純物を含む金属インジウムを、
真空雰囲気中で800℃以上に加熱し、その加熱温度を
数時間以上一定に保持する事により前記残留不純物の除
去を行っていた。
Therefore, when producing the above-mentioned ■-v group compounds, it goes without saying that it is extremely important to establish a technology for refining indium, which is the raw material, to a high degree of purity. As a technology, conventionally J, A, Ad
amski et al. (Journal of Crystal
Growth, Vol. 64, p. 1, 1983), etc., the impurity-containing metal indium is
The residual impurities were removed by heating to 800° C. or higher in a vacuum atmosphere and keeping the heating temperature constant for several hours or more.

[発明が解決しようとする問題点」 さて、精製前の市販の金属インジウム塊の表面は空気中
の酸素により酸化されて生じたインジウム酸化物で覆わ
れており、又金属インジウム魂中には金属インジウム製
造中にインジウム酸化物が生成又は混入しており、この
ような酸化物は一般に前記精製工程前において、塩酸、
硝酸等の酸を用いて洗浄する事により除去しているが、
完全には取りきれず、また例え完全に敗勢れた場合でも
洗浄後前記精製を行なうまでの間に金属インジウム塊表
面が酸化されてしまうことが多く、この為前記金属イン
ジウム塊中に混入している酸化物については精製工程中
に除去する事が必要とされる。
[Problem to be solved by the invention] The surface of commercially available metallic indium lumps before refining is covered with indium oxide produced by oxidation by oxygen in the air, and there is also some metallic indium inside the metallic indium. Indium oxide is generated or mixed during indium production, and such oxides are generally treated with hydrochloric acid,
It is removed by cleaning with an acid such as nitric acid, but
It cannot be completely removed, and even if it is completely defeated, the surface of the metal indium lump is often oxidized after cleaning and before the purification, so that it may be mixed into the metal indium lump. It is necessary to remove the oxides contained during the purification process.

しかしながら前述の精製方法により精製された金属イン
ジウムは、精製後の金属インジウムの質量分析により、
或いは精製後の金属インジウムを原料として製造された
化合物半導体の電気特性より、インジウム酸化物以外の
イオウ及び珪素等の残留不純物金属の除去に効果を有す
ることが確認されているが、前記金属インジウムの加熱
溶解により該金属インジウム融液上に浮遊しているイン
ジウム酸化物量の減少はほとんどみられなかった。
However, metallic indium purified by the above-mentioned purification method can be determined by mass spectrometry of metallic indium after purification.
Alternatively, it has been confirmed that the electrical properties of a compound semiconductor manufactured using purified metallic indium as a raw material are effective in removing residual impurity metals other than indium oxide, such as sulfur and silicon. There was hardly any decrease in the amount of indium oxide floating on the metallic indium melt due to heating and melting.

この為前記金属インジウム塊を、水素ガス等の還元ガス
雰囲気下で、800℃以上の温度に保持して精製を行う
事により、インジウム酸化物の還元除去とともに、残留
不純物金属を除去せんとした技術が提案されているが、
かかる方法においても、加熱溶解した金属インジウム融
液面に上・に多量に存在するインジウム酸化物を完全に
除去するのは困難であるとともに、前記インジウム融液
の容器として用いられる石英るつぼが前記還元ガス雰囲
気下で反応し、該反応により容器より遊離したSi、 
 SiOが金属インジウム融液中に混入してしまうため
残留不純物金属の除去効果が逆に低下するという問題を
生じる。この為前記容器にカーボン容器を用いようとす
る試みもなされているが、尚金属インジウム融液面上に
多量に存在するインジウム酸化物の除去には効果がなか
った。
For this reason, the technology aims to reduce and remove indium oxide and remove residual impurity metal by purifying the metal indium lump by holding it at a temperature of 800°C or higher in an atmosphere of reducing gas such as hydrogen gas. has been proposed, but
Even in this method, it is difficult to completely remove indium oxide present in large quantities on the surface of the heated and melted metal indium melt, and the quartz crucible used as a container for the indium melt is Si that reacts in a gas atmosphere and is liberated from the container by the reaction,
Since SiO is mixed into the metallic indium melt, a problem arises in that the effect of removing residual impurity metal is reduced. For this reason, attempts have been made to use a carbon container as the container, but these efforts have not been effective in removing the large amount of indium oxide present on the surface of the metallic indium melt.

この為従来技術においては、インジウム酸化物の残存を
成る程度許容しつつ、該インジウム酸化物の混入した金
属インジウムを用いて化合物半導体多結晶を製造し液体
封止引き上げ法等により結晶成長を行なっているが、前
記インジウム酸化物は不溶である為に、化合物半導体多
結晶中にインジウム酸化物が存在すると、該半導体の単
結晶化率が小さくなり、単結晶の大口径化に対応出来な
いという問題点があった。
For this reason, in conventional technology, a compound semiconductor polycrystal is manufactured using metallic indium mixed with indium oxide, and the crystal is grown by a liquid confinement pulling method, etc., while allowing some residual indium oxide. However, since indium oxide is insoluble, the presence of indium oxide in a compound semiconductor polycrystal reduces the single crystallization rate of the semiconductor, making it impossible to accommodate larger diameter single crystals. There was a point.

本発明は、かかる従来技術の欠点に鑑み、イオウや珪素
のような残留不純物金属とともにインジウム酸化物を効
率よく除去し得るインジウムの純化方法を提供する事を
目的とする。
In view of the drawbacks of the prior art, an object of the present invention is to provide an indium purification method that can efficiently remove indium oxide along with residual impurity metals such as sulfur and silicon.

「問題点を解決する為の手段」 先ず本発明に至った解決手順を次に説明する。"Means to solve problems" First, the solution procedure that led to the present invention will be explained next.

インジウム酸化物は通常圧3価の酸化インジウム(1n
203 )として存在し、このようなIn20i、は、
温度850℃以上で昇華するが、昇華の速度は小さく、
更に本発明者の実験によれば、 800℃付近より高温
ではIn2O3に一種の状態変化が生じ、昇華の速度は
極めて小さくなる事が判明した。
Indium oxide is normally pressure trivalent indium oxide (1n
203), and such In20i,
Sublimes at temperatures above 850°C, but the rate of sublimation is slow;
Further, according to experiments conducted by the present inventors, it has been found that at temperatures higher than around 800° C., a kind of state change occurs in In2O3, and the rate of sublimation becomes extremely low.

従って「発明が解決しようとする問題点」の項で説明し
た通り、残留不純物金属が除去可能な850℃前後の温
度では、前記金属インジウムからたとえ長時間保持した
場合でも前記In2O3をほとんど除去し得ない。
Therefore, as explained in the "Problems to be Solved by the Invention" section, at a temperature of around 850°C, at which residual impurity metals can be removed, most of the In2O3 cannot be removed from the metallic indium even if held for a long time. do not have.

一方、正1価の酸化インジウムIn20においては、正
3価の酸化インジウム(In203 )に比較して融点
が低く且つ揮発性が富む事が知られており、本発明者の
実験によればIn20は真空中560〜700℃の温度
で昇華する事が確認されている。
On the other hand, it is known that positive monovalent indium oxide (In20) has a lower melting point and higher volatility than positive trivalent indium oxide (In203), and according to the inventor's experiments, In20 It has been confirmed that sublimation occurs at temperatures of 560 to 700°C in vacuum.

尚、酸化インジウムには正2価の酸化インジウム(In
O)も考えられるが、これは分解して正1価又は正3価
の酸化物となる為に無視してよい。
Note that indium oxide includes positive divalent indium oxide (In
O) is also considered, but it can be ignored because it decomposes into a positive monovalent or positive trivalent oxide.

そこで本発明は、第1の加熱温度域で、前記インジウム
中に存在する正3価の前記インジウムの醸化物を還元反
応により正1価の酸化物に変成し該酸化物を昇華或いは
蒸発せしめた後、第2の加熱温度域で、前記インジウム
中に存在する残留不純物元素を除去するようにした純化
方法を提案する。
Therefore, in the present invention, in a first heating temperature range, the product of the positive trivalent indium present in the indium is transformed into a positive monovalent oxide by a reduction reaction, and the oxide is sublimed or evaporated. After that, a purification method is proposed in which residual impurity elements present in the indium are removed in a second heating temperature range.

この場合前記第1の加熱温度域と第2の加熱温度域での
加熱温度は必ずしも一定である必要はなく、変動させて
もよい。
In this case, the heating temperatures in the first heating temperature range and the second heating temperature range do not necessarily need to be constant, and may be varied.

又前記第1の温度域から第2の温度への移行は必ずしも
速やかに移行させる必要はなく、例えば前記第1の温度
域から第2の温度域に昇温させる間に、第3の加熱温度
域を設け、該温度域を短時間保持させる事により、前記
第1の温度域で除去しきれなかった微量酸化物を除去す
るようにしてもよく、又前記第1の加熱温度域で加熱溶
融状態にある前記インジウムを一旦冷却凝固させた後、
第2の加熱温度域まで昇温させるようにしてもよい。
Further, the transition from the first temperature range to the second temperature does not necessarily have to be done quickly; for example, while the temperature is raised from the first temperature range to the second temperature range, the third heating temperature By providing a temperature range and holding the temperature range for a short time, trace oxides that could not be removed in the first temperature range may be removed. After once cooling and solidifying the indium in the state,
The temperature may be raised to a second heating temperature range.

又、前記第1及び第2の温度域での純化工程は、真空雰
囲気、不活性ガス雰囲気、又は前記各温度域毎に夫々異
なる雰囲気下で行うよう構成してもよいが、前記インジ
ウム融液の貯溜容器に石英ガラス製容器を用いた場合に
、還元ガス雰囲気で純化を行うと、前記容器が還元ガス
雰囲気下で反応し、該反応により容器より遊離したSi
、SiOが金属インジウム融液中に混入してしまうため
残留不純物金属の除去効果が低減する為に好ましくはな
い。
Further, the purification steps in the first and second temperature ranges may be performed in a vacuum atmosphere, an inert gas atmosphere, or a different atmosphere for each temperature range. When a quartz glass container is used as a storage container, when purification is performed in a reducing gas atmosphere, the container reacts in the reducing gas atmosphere, and Si released from the container due to the reaction
, SiO is mixed into the metallic indium melt, which reduces the effect of removing residual impurity metal, which is not preferable.

尚、通常反応管として石英管が使用されるが、かかる石
英管を用いて還元ガス雰囲気で純化を行っても、インジ
ウム融液と接触する貯溜容器の場合と異なり、インジウ
ム融液中へのSi、  SiOの混入は軽微であり、実
用上問題はない。
Although a quartz tube is normally used as a reaction tube, even if the quartz tube is used for purification in a reducing gas atmosphere, Si will not be introduced into the indium melt, unlike in the case of a storage container that comes into contact with the indium melt. , The contamination of SiO is slight and poses no practical problem.

「作用」 本発明の作用をインジウムを例に採って説明する。"action" The effect of the present invention will be explained using indium as an example.

全屈インジウム中に存在する正3価の酸化インジウムは
前述したように800℃付近より高温では一種の状態変
化が生じる。
As mentioned above, the positive trivalent indium oxide present in the totally bent indium undergoes a kind of state change at temperatures higher than around 800°C.

又木発明者の実験によれば、減圧下においてInとIn
2O3の混合物から還元反応によりIn20が生成−昇
華することが確認され、その際の加熱温度の範囲は、真
空化においては565〜700℃の加熱温度で昇華する
Also, according to the inventor's experiments, In and In under reduced pressure
It has been confirmed that In20 is produced and sublimated from a mixture of 2O3 through a reduction reaction, and sublimation occurs at a heating temperature range of 565 to 700°C in vacuum.

そこで、本発明は、前記第1の温度域を真空中700℃
以下、そして下限温度域を真空下において昇華の始まる
400℃付近の温度に設定する。
Therefore, in the present invention, the first temperature range is set to 700°C in vacuum.
Below, the lower limit temperature range is set to a temperature around 400° C. at which sublimation begins under vacuum.

尚、還元反応によりIn20が生成させる温度域と昇華
させる温度域はほとんど重複する為に、前記還元反応と
昇華工程は同時進行にて行われる。
Incidentally, since the temperature range in which In20 is produced by the reduction reaction and the temperature range in which it is sublimated almost overlap, the reduction reaction and the sublimation step are performed simultaneously.

かかる温度域での酸化インジウム除去効果は、実験によ
れば、真空下において600℃において最も効率がよく
、内服では検出できないまでに、酸化物を除去できる。
According to experiments, the indium oxide removal effect in such a temperature range is most efficient at 600° C. under vacuum, and the oxide can be removed to the point where it cannot be detected by oral administration.

尚、前記除去効果は、貯溜容器中のインジウム融液の量
にもよるが、昇温後少なくとも1時間程度は保持する必
要がある。
Although the removal effect depends on the amount of indium melt in the storage container, it is necessary to maintain the temperature for at least one hour after raising the temperature.

又長時間加熱した場合には400℃付近の温度から効果
が認められるが、400℃未満ではIn20はほとんど
昇華しない事が確認された。
In addition, when heated for a long time, the effect is recognized from temperatures around 400°C, but it was confirmed that In20 hardly sublimes at temperatures below 400°C.

又700℃〜800℃温度域では、インジウム酸化物が
減少するも長時間加熱してもインジウム酸化物が残存す
る。これは、上記の反応に並行して正3価のインジウム
酸化物の状態変化が生じるためと考えられる。
Further, in the temperature range of 700° C. to 800° C., although indium oxide decreases, indium oxide remains even if heated for a long time. This is considered to be because the state of the positive trivalent indium oxide changes in parallel with the above reaction.

従って前記第1の温度域が700℃以上では、もはやイ
ンジウム酸化物の除去効果は低減し1本発明の目的を円
滑に達成する事が出来ない。
Therefore, if the first temperature range is 700° C. or higher, the effect of removing indium oxide is reduced and the object of the present invention cannot be smoothly achieved.

又、温度700℃以下での十分な加熱の後に、 700
°C以上の加熱温度、例えば700℃〜800℃(第3
の温度域)に昇温して10分間以上加熱する事により、
In2O3から生じたIn20のうち、金属インジウム
中に溶解していた微量のIn20を蒸発させることが出
来一層効果的に前記酸化物の除去が可能となる。これは
一旦生成したIn20は化学的に安定で、In2O3か
らIn20の変成を完了すれば、更に高温領域でインジ
ウムの酸化物を効率よく昇華させる事が可能となる事を
意味する。
In addition, after sufficient heating at a temperature of 700℃ or less,
Heating temperature above °C, e.g. 700 °C to 800 °C (3rd
By raising the temperature to (temperature range) and heating for 10 minutes or more,
Of the In20 generated from In2O3, a trace amount of In20 dissolved in metal indium can be evaporated, making it possible to more effectively remove the oxide. This means that once In20 is generated, it is chemically stable, and once the transformation from In2O3 to In20 is completed, it becomes possible to efficiently sublimate indium oxide in a higher temperature range.

又前記ifの温度域(及び第3の温度域)で酸化物を除
去した後、前記第2の温度域を700℃、好ましくは8
00℃以上に設定する事により公知のようにインジウム
酸化物以外のイオウ珪素等の残留不純物金属を除去する
ことができる。
Further, after removing the oxide in the temperature range if (and the third temperature range), the second temperature range is heated to 700°C, preferably 800°C.
As is known, by setting the temperature to 00° C. or higher, residual impurity metals such as sulfur and silicon other than indium oxide can be removed.

但し、前記温度域が1100℃を越えると、金属インジ
ウムの蒸発が顕著になり、損失が大きいので現実的でな
い、尚、前記第2の温度域においても金属インジウム中
に溶解している微量のIn20の蒸発が粛統して行われ
る。
However, if the temperature range exceeds 1100°C, the evaporation of metallic indium becomes noticeable and the loss is large, so it is not realistic.In addition, even in the second temperature range, a trace amount of In20 dissolved in metallic indium The evaporation of is carried out in a controlled manner.

第1及び第2の温度域が共に同一の雰囲気で行われる場
合には、第1の温度領域に連続して第2の温度領域へ直
接移行させて特に第3の温度領域を設ける必要はないが
、特別に第1の温度領域で還元性雰囲気を用い、第2の
温度領域で不活性雰囲気を用いる場合(この場合Siの
汚染を防ぐ事が出来る。)、或いはその他の理由で第2
の温度領域での処理の前にインジウム酸化物の除去を完
全に行う事が要請される場合、第1の温度領域に続いて
第3の温度領域を設定し、インジウム精製処理の前工程
を行う事も合理的である。
If both the first and second temperature ranges are performed in the same atmosphere, there is no need to provide a third temperature range by directly transitioning from the first temperature range to the second temperature range. However, if a reducing atmosphere is used in the first temperature range and an inert atmosphere is used in the second temperature range (in this case, Si contamination can be prevented), or for other reasons, the second temperature range is
If it is required to completely remove indium oxide before processing in a temperature range, a third temperature range is set following the first temperature range to perform the pre-process of indium purification Things are also reasonable.

「実施例」 第1図及び第2図は本発明の実施例に係る、金属インジ
ウム純化方法に使用される加熱炉で、かかる加熱炉の装
置構成を簡単に説明する。
Embodiment FIGS. 1 and 2 show a heating furnace used in a method for purifying metallic indium according to an embodiment of the present invention, and the apparatus configuration of such a heating furnace will be briefly described.

第1図は真空雰囲気下で加熱を行う縦型加熱炉で、金属
インジウム貯溜用のるつぼ4を収納する石英アンプル2
を垂直に延設し、上端部に該アンプル2内を排気するた
めの真空引き口1を設けるとともに、前記るつぼ4収容
位鐙と対応するアンプル2外周囲に電気炉3を囲繞して
構成する。
Figure 1 shows a vertical heating furnace that performs heating in a vacuum atmosphere, and a quartz ampoule 2 that houses a crucible 4 for storing metallic indium.
The ampoule 2 is extended vertically, and a vacuum port 1 for evacuating the inside of the ampoule 2 is provided at the upper end thereof, and an electric furnace 3 is surrounded around the outside of the ampoule 2 corresponding to the stirrup in which the crucible 4 is accommodated. .

一方、第2図は不活性ガス雰囲気下で加熱を行う横型加
熱炉で、外周囲に電気炉3を囲繞し、前記るつぼ4を収
納する石英管7は水平方向に延設しており、該石英管7
の一方の側からアルゴンガス等の不活性ガスを流し、不
活性ガス雰囲気下でるつぼ4内に貯溜された金属インジ
ウムを純化可能に構成されている。
On the other hand, FIG. 2 shows a horizontal heating furnace that performs heating under an inert gas atmosphere, in which an electric furnace 3 is surrounded on the outside, and a quartz tube 7 that houses the crucible 4 extends horizontally. Quartz tube 7
An inert gas such as argon gas is flowed from one side of the crucible 4 to purify the metal indium stored in the crucible 4 in an inert gas atmosphere.

尚、るつぼ4としては石英ガラスや黒鉛製るつぼに加え
て、 pBN、  AIMなどを材質とするるつぼを使
用することができる。
As the crucible 4, in addition to a crucible made of quartz glass or graphite, a crucible made of pBN, AIM, or the like can be used.

次にかかる加熱炉を用いた本発明の実施例を詳細に説明
する。
Next, an example of the present invention using such a heating furnace will be described in detail.

c:ISi実施例) 第1実施例は、第1図に示す縦型加熱炉を用いて真空雰
囲気下で金属インジウムの純化を行う実施例で、先ず市
販の金属インジウムの塊200gを塩酸により洗浄した
後1石英製のるっぽ4の中に入れ、るつぼ4を石英アン
プル2内に収納し、真空引き口 lに取り付けlX10
’4Paの真空状態に排気した後、電気炉3により金属
インジウムを200”Cに昇温し融解させたこ゛ろ、金
属インジウム融液5の液面に直径1〜1.5cmに灰白
色のインジウム酸化物6が集まり浮遊した。
c: ISi Example) The first example is an example in which metallic indium is purified in a vacuum atmosphere using the vertical heating furnace shown in FIG. After that, put it into a quartz ampule 4, store the crucible 4 inside the quartz ampoule 2, and attach it to the vacuum opening 1 x 10
After evacuation to a vacuum state of 4 Pa, the temperature of metallic indium was raised to 200"C in an electric furnace 3 and melted. A grayish-white indium oxide with a diameter of 1 to 1.5 cm was deposited on the surface of the metallic indium melt 5. 6 gathered and floated.

次に、電気炉3を600℃に昇温して1時間加熱したと
ころ、インジウム酸化物6は、観察されなくなった。こ
の間、石英アンプル2のうち真空引き口 1と電気炉3
の間の部分に黒色のIn20の付着が認められた。これ
は、金属インジウム融液面に浮遊していたインジウム酸
化物6が、除去されて石英アンプル2に付着したことを
示す。
Next, when the electric furnace 3 was heated to 600° C. and heated for 1 hour, indium oxide 6 was no longer observed. During this time, the vacuum port 1 of the quartz ampoule 2 and the electric furnace 3
Adhesion of black In20 was observed in the area between the two. This indicates that the indium oxide 6 floating on the surface of the metallic indium melt was removed and attached to the quartz ampoule 2.

次に、 800℃に昇温したとこる電気炉の温度が80
0℃に到達して10分後から約30分間にわたり石英ア
ンプル2のうち真空引き01と電気炉3の間の部分に付
着する黒色のIn20の量は急増したことが認められた
。これは、金属インジウム融液に溶解していたインジウ
ム酸化物が除去されたことを示す。
Next, when the temperature of the electric furnace was raised to 800℃, it became 80℃.
It was observed that the amount of black In20 adhering to the portion of the quartz ampoule 2 between the vacuum 01 and the electric furnace 3 rapidly increased over a period of about 30 minutes from 10 minutes after the temperature reached 0°C. This indicates that the indium oxide dissolved in the metallic indium melt was removed.

そして前記800℃の加熱温度を更に5時間保持し、前
記酸化物を除く残留不純物金属の除去を行った。
Then, the heating temperature of 800° C. was maintained for an additional 5 hours to remove residual impurity metals other than the oxides.

(第2実施例) 第2実施例は、第2図に示す横型加熱炉を用いて不活性
ガス下で金属インジウムの純化を行う実施例で、前記実
施例と同様に塩酸洗浄した金属インジウムの塊を入れた
るつぼ4を石英管7内に収納して、石英管7の一方より
不活性ガスとしてアルゴンガスを流しながら、電気炉3
により金属インジウムを200℃に常温し溶融させたと
ころ、金。
(Second Example) The second example is an example in which metallic indium is purified under an inert gas using the horizontal heating furnace shown in FIG. The crucible 4 containing the lump is housed in a quartz tube 7, and the electric furnace 3 is heated while flowing argon gas as an inert gas from one side of the quartz tube 7.
When metallic indium was heated to 200°C and melted, it turned out to be gold.

居インジウム融液5の液面に直径1.5〜20層に灰白
色のインジウム酸化物6が集まり浮遊した。
Gray-white indium oxide 6 gathered and floated on the surface of the indium-containing melt 5 in a layer of 1.5 to 20 layers in diameter.

次に、電気炉3をeoo℃に昇温して1時間加熱したと
ころ、インジウム酸化物8は、直径約0.5csに小さ
くなり、更に1時間加熱したところ、インジウム酸化物
6は、観察されなくなった。この間、石英管7のうちア
ルゴンガスの下流側に黒色のIn20の付着が認められ
た。 1n20が金属インジウム融液面から気化し、ア
ルゴンガスによってガスの下流側に蓮ばれたと考えられ
る。
Next, when the electric furnace 3 was heated to eoo°C and heated for 1 hour, the indium oxide 8 became small in diameter to about 0.5 cs, and when heated for another 1 hour, the indium oxide 6 was observed. lost. During this time, adhesion of black In20 was observed on the downstream side of the argon gas in the quartz tube 7. It is thought that 1n20 was vaporized from the surface of the metallic indium melt and was blown to the downstream side of the gas by the argon gas.

次に、 800℃に昇温したとこる電気炉の温度が80
0℃に到達して10分後から約30分間にわたり石英管
7のうちアルゴンガスの下流側の部分の黒色のIn20
の付着量は急増したことが認められた。
Next, when the temperature of the electric furnace was raised to 800℃, it became 80℃.
10 minutes after the temperature reached 0°C, black In20 was applied to the part of the quartz tube 7 on the downstream side of the argon gas for about 30 minutes.
It was observed that the amount of adhesion increased rapidly.

これは、金属インジウム融液に溶解していたインジウム
酸化物が除去されたことを示す。
This indicates that the indium oxide dissolved in the metallic indium melt was removed.

そして前記実施例と同様に800℃の加熱温度を更に5
時間保持し、前記酸化物を除く残留不純物金属の除去を
行った。
Then, as in the previous example, the heating temperature was further increased to 800°C for 55 minutes.
The sample was held for a period of time to remove the remaining impurity metals except for the oxides.

(第3実施例) 第3実施例は、第1の純化工程を前記縦型加熱炉で、第
2の純化工程を横型加熱炉を用いて金属インジウムの純
化を行う実施例で、前記実施例と同様に塩酸洗浄した金
属インジウムの塊を入れたるつぼ4を石英アンプル2内
に収納して、真空引き口 lに取り付けLX 1(14
Paの真空状態に排気した後、電気炉3により金属イン
ジウムを200℃に昇温し溶融させたところ、金属イン
ジウム溶液5の液面に直径1〜1.5cmに灰白色のイ
ンジウム酸化物6が集まり浮遊した。
(Third Example) The third example is an example in which metallic indium is purified using the vertical heating furnace in the first purification process and the horizontal heating furnace in the second purification process. Similarly, crucible 4 containing a lump of metallic indium washed with hydrochloric acid is housed in quartz ampoule 2, and attached to vacuum outlet LX 1 (14
After evacuation to a vacuum state of Pa, the temperature of metallic indium was raised to 200°C in an electric furnace 3 and melted, and gray-white indium oxide 6 with a diameter of 1 to 1.5 cm was collected on the surface of the metallic indium solution 5. Floated.

次に、電気炉3を800℃に昇温して1時間加熱したと
ころ、インジウム酸化物6は、直径0.3〜0.5C曹
に小さくなり、更に 1時間加熱したところ、インジウ
ム酸化物6は、観察されなくなった。この間、前記第1
実施例と同様に石英管2のうち真空引き口1と電気炉3
の間の部分に黒色のIn20の付着が認められた。
Next, when the electric furnace 3 was heated to 800°C and heated for 1 hour, the indium oxide 6 was reduced to a diameter of 0.3 to 0.5C, and when heated for another 1 hour, the indium oxide 6 is no longer observed. During this time, the first
As in the embodiment, the vacuum port 1 and the electric furnace 3 in the quartz tube 2
Adhesion of black In20 was observed in the area between the two.

ここで、金属インジウムが凝固するまで冷却し、るつぼ
4を石英管7内に移し、石英管7の一方より不活性ガス
としてアルゴンガスを流しながら、電気炉3により金属
インジウム800℃に昇温したところ電気炉の温度80
0℃に到達して10分後から約30分間にわたり前記第
2実施例と同様に石英管7のうちアルゴンガスの下流側
の部分の黒色のIn20の付着が観察された。そして前
記800℃の加熱温度を更に5時間保持し、前記酸化物
を除く残留不純物金属の除去を行った。
Here, the metal indium was cooled until it solidified, and the crucible 4 was transferred into a quartz tube 7, and while flowing argon gas as an inert gas from one side of the quartz tube 7, the temperature of the metal indium was raised to 800 ° C. in an electric furnace 3. However, the temperature of the electric furnace is 80
For about 30 minutes from 10 minutes after the temperature reached 0° C., black In20 was observed to adhere to the portion of the quartz tube 7 on the downstream side of the argon gas, as in the second embodiment. Then, the heating temperature of 800° C. was maintained for an additional 5 hours to remove residual impurity metals other than the oxides.

(第4実施例) 第4実施例は、第1の純化工程を前記横型加熱炉で、第
2の純化工程を縦型加熱炉を用いて金属インジウムの純
化を行う実施例で、前記実施例と同様に塩酸洗浄した金
属インジウムの塊を入れたるつぼ4を石英管7内に収納
して、石英管7の一方より不活性ガスとしてアルゴンガ
スを流しながら、電気炉3により金属インジウムを20
0℃に昇温し溶融させたところ、金属インジウム融液5
の液面に直径約2C層に灰白色のインジウム酸化物6が
集まり浮遊した。
(Fourth Example) The fourth example is an example in which metallic indium is purified using the horizontal heating furnace in the first purification step and the vertical heating furnace in the second purification step. Similarly, a crucible 4 containing a lump of metallic indium washed with hydrochloric acid was placed in a quartz tube 7, and while flowing argon gas as an inert gas from one side of the quartz tube 7, 20% of metallic indium was heated in an electric furnace 3.
When the temperature was raised to 0°C and melted, metallic indium melt 5
Gray-white indium oxide 6 gathered and floated on the liquid surface in a layer with a diameter of about 2C.

次に、電気炉3を600℃に昇温して1時間加熱したと
ころ、インジウム酸化物6は、直径約0.5cmに小さ
くなり、更に1時間加熱したところ、インジウム酸化物
8は、観察されなくなった。この間前記第2実施例と同
様に、石英管7のうちアルゴンガスの下流側に黒色のI
n20の付着が認められた。
Next, when the electric furnace 3 was heated to 600°C and heated for 1 hour, the indium oxide 6 was reduced to a diameter of about 0.5 cm, and when heated for another 1 hour, the indium oxide 8 was observed. lost. During this time, similarly to the second embodiment, a black I was placed on the downstream side of the argon gas in the quartz tube 7.
Adhesion of n20 was observed.

ここで金属インジウムを凝固するまで冷却し、るつぼ4
を石英アンプル2内に移し、真空引き口1に取り付けI
X 10(Paの真空状態に排気した。
Here, the metal indium is cooled until it solidifies, and the crucible 4
Transfer it to the quartz ampoule 2 and attach it to the vacuum port 1.
It was evacuated to a vacuum state of X 10 (Pa).

電気炉3により金属インジウムを800℃に昇温したと
ころ、前記第1実施例と同様に電気炉の温度が800℃
に到達して10分後から約30分間にわたり、石英アン
プル2のうち真空引き口1と電気炉3の間の部分に黒色
のIn20の付着が観察された。そして前記800℃の
加熱温度を更に5時間保持し、前記酸化物を除く残留不
純物金属の除去を行った。
When metal indium was heated to 800°C in the electric furnace 3, the temperature of the electric furnace was 800°C as in the first embodiment.
For about 30 minutes from 10 minutes after the temperature was reached, black In20 was observed to adhere to the portion of the quartz ampoule 2 between the vacuum outlet 1 and the electric furnace 3. Then, the heating temperature of 800° C. was maintained for an additional 5 hours to remove residual impurity metals other than the oxides.

以上の各実施例により精製された金属インジウムを発光
分光分析法により分析したところイオウ、珪素は検出さ
れなかった。また、前述した通り、金属インジウム塊表
面に付着及び内部に混入していたインジウム酸化物も金
属インジウム中から除去されている。
When the metallic indium purified in each of the above Examples was analyzed by emission spectrometry, no sulfur or silicon was detected. Further, as described above, the indium oxide that was attached to the surface of the metal indium lump and mixed inside the metal indium lump was also removed from the metal indium.

尚、前記400℃以上700℃未満の第1の加熱温度域
、及び700℃以上1100℃以下の第2の加熱温度域
での加熱温度はいずれも一定である必要はなく、例えば
400℃以上700℃未満の温度範囲内で1時間以上の
時間にわたり徐々に昇温し続けること等が可能である。
Note that the heating temperatures in the first heating temperature range of 400°C or more and less than 700°C and the second heating temperature range of 700°C or more and 1100°C or less do not need to be constant, for example, 400°C or more and less than 700°C. It is possible to continue to gradually raise the temperature within a temperature range of less than 0.degree. C. over a period of one hour or more.

同様に、700℃以上1100℃以下の温度範囲内で例
えば10分間以上の時間にわたり昇温し続けること等が
可能である。
Similarly, it is possible to continue increasing the temperature within a temperature range of 700° C. or more and 1100° C. or less, for example, for a period of 10 minutes or more.

(第1比較例) 尚、前記第1の温度域での効果を確認する為に、第1実
施例と同一条件下で、電気炉3により金属インジウムを
200℃に昇温融解させ、金属インジウム融液5の液面
にインジウム醸化物θを浮遊させた後、電気炉3を40
0℃に昇温しで2時間加熱したところ、インジウム酸化
物θの減少変化及び石英アンプル2のいずれの部分にも
黒色のIn2Oの付着が認められず、そこで更に前記加
熱時間を6時間に延長しても同様に、金属インジウム融
液面に浮遊しているインジウム酸化物6に変化が認めら
れなかった。
(First Comparative Example) In order to confirm the effect in the first temperature range, metallic indium was heated to 200°C and melted in an electric furnace 3 under the same conditions as the first example. After floating the indium compound θ on the surface of the melt 5, the electric furnace 3 was
When the temperature was raised to 0°C and heated for 2 hours, no decrease in indium oxide θ and no black In2O adhesion was observed on any part of the quartz ampule 2, so the heating time was further extended to 6 hours. Similarly, no change was observed in the indium oxide 6 floating on the surface of the metallic indium melt.

(第2比較例) 次に前記第2の温度域での効果を確認する為に、第1実
施例と同一条件下で、電気炉3により金属インジウムを
200℃に昇温融解させ、金属インジウム融液5の液面
にインジウム酸化物6を浮遊させた後、電気炉3を60
0℃に昇温して 1時間加熱し、金属インジウム融液面
に浮遊していたインジウム酸化物6を除去し、次に、電
気炉3を1100℃に徐々に昇温したところ電気炉の温
度が1100℃に到達後、約10分経過したところでI
nの蒸発が顕著になったので、そこで加熱を打切った。
(Second Comparative Example) Next, in order to confirm the effect in the second temperature range, metal indium was heated to 200°C and melted in an electric furnace 3 under the same conditions as in the first example. After floating the indium oxide 6 on the surface of the melt 5, the electric furnace 3 was
The temperature was raised to 0°C and heated for 1 hour to remove the indium oxide 6 floating on the surface of the metallic indium melt.Then, the temperature of the electric furnace 3 was gradually raised to 1100°C. Approximately 10 minutes after reaching 1100℃, I
Since evaporation of n became noticeable, heating was discontinued at that point.

「発明の効果」 以上記載の如く、本発明によれば、イオウや珪素のよう
な残留不純物金属とともに原料金属塊の表面に付着及び
内部に混入しているインジウム酸化物を効率よく除去す
る事が出来、この結果化合物半導体の単結晶化率の向上
とともに、かかる半導体を用いて形成した薄膜光素子の
キャリア密度の低下の阻害要因を排除出来るとともに、
鉄やニッケル等の遷移金属を薄膜中に添加する事により
形成される半絶縁性薄膜素子の高抵抗化に寄与し得る。
"Effects of the Invention" As described above, according to the present invention, it is possible to efficiently remove indium oxide adhering to the surface of the raw metal lump and mixed inside it, along with residual impurity metals such as sulfur and silicon. As a result, the single crystallization rate of the compound semiconductor can be improved, and the factors that inhibit the decrease in carrier density of thin film optical devices formed using such a semiconductor can be eliminated.
Adding transition metals such as iron and nickel to thin films can contribute to increasing the resistance of semi-insulating thin film elements.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図はいずれも本発明の実施例に係る金属
インジウム純化方法に用いられる装置の概略断面図で、
第1図は真空中で精製を行う場合、第2図は不活性ガス
中で精製を行う場合の装置構成を示す。 l:真空引き口 2:石英アンプル 3:電気炉 4:
るつぼ 5:金属インジウム融液 6:インジウム酸化
物 7:石英管 8:アルゴンガス 第1図 第2図
FIG. 1 and FIG. 2 are both schematic cross-sectional views of an apparatus used in a method for purifying metallic indium according to an embodiment of the present invention.
FIG. 1 shows an apparatus configuration when purification is performed in a vacuum, and FIG. 2 shows an apparatus configuration when purification is performed in an inert gas. l: Vacuum port 2: Quartz ampoule 3: Electric furnace 4:
Crucible 5: Metallic indium melt 6: Indium oxide 7: Quartz tube 8: Argon gas Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 1)化合物半導体等の原料となるべき、インジウムの純
化方法において、第1の加熱温度域で、インジウム中に
存在する正3価の前記インジウムの酸化物を還元反応に
より正1価の酸化物に変成し該酸化物を昇華或いは蒸発
せしめた後、第2の加熱温度域で、前記インジウム中に
存在する残留不純物元素を除去するようにした事を特徴
とするインジウムの純化方法 2)前記第1の温度域から第2の温度域に移行させる間
に、第3の加熱温度域を設け、該温度域を短時間保持さ
せる事により、前記第1の温度域で除去しきれなかった
微量酸化物を除去するようにした特許請求の範囲第1項
記載のインジウムの純化方法 3)前記インジウム融液の貯溜容器に石英ガラス製容器
を用いた場合に、前記純化が真空雰囲気又は不活性ガス
雰囲気中で行われることを特徴とする特許請求の範囲第
1項又は第2項記載のインジウムの純化方法 4)前記インジウム融液の貯溜容器にカーボン系容器を
用いた場合に、前記純化が真空雰囲気、不活性ガス雰囲
気、又は還元ガス雰囲気中で行われることを特徴とする
特許請求の範囲第1項から第3項までのいずれか1項記
載のインジウムの純化方法 5)前記第1の温度域と第2の温度域下での前記純化工
程が、夫々異なる雰囲気下で行われる特許請求の範囲第
1項から第4項までのいずれか1項記載のインジウムの
純化方法 6)前記第1の加熱温度域が400℃以上700℃未満
の温度域であり、又第2の温度域が700℃以上110
0℃以下の温度域である特許請求の範囲第1項から第5
項までのいずれか1項記載のインジウムの純化方法
[Claims] 1) In a method for purifying indium, which is to be a raw material for compound semiconductors, etc., in a first heating temperature range, the positive trivalent indium oxide present in indium is purified by a reduction reaction. Purification of indium, characterized in that after the oxide is transformed into a monovalent oxide and the oxide is sublimated or evaporated, residual impurity elements present in the indium are removed in a second heating temperature range. Method 2) During the transition from the first temperature range to the second temperature range, a third heating temperature range is provided and this temperature range is held for a short time, thereby removing the material in the first temperature range. 3) A method for purifying indium according to claim 1, in which a trace amount of oxide that has not been removed is removed. 3) When a quartz glass container is used as a storage container for the indium melt, the purification is performed in a vacuum atmosphere. or the indium purification method according to claim 1 or 2, which is carried out in an inert gas atmosphere 4) When a carbon-based container is used as the storage container for the indium melt, 5) The method for purifying indium according to any one of claims 1 to 3, wherein the purification is performed in a vacuum atmosphere, an inert gas atmosphere, or a reducing gas atmosphere. Indium purification method 6 according to any one of claims 1 to 4, wherein the purification steps in the first temperature range and the second temperature range are performed in different atmospheres. ) The first heating temperature range is a temperature range of 400°C or more and less than 700°C, and the second temperature range is 700°C or more and less than 110°C.
Claims 1 to 5 which are in the temperature range of 0°C or less
Method for purifying indium as described in any one of the preceding paragraphs
JP8303887A 1987-04-06 1987-04-06 Method for purifying indium Granted JPS63250428A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8303887A JPS63250428A (en) 1987-04-06 1987-04-06 Method for purifying indium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8303887A JPS63250428A (en) 1987-04-06 1987-04-06 Method for purifying indium

Publications (2)

Publication Number Publication Date
JPS63250428A true JPS63250428A (en) 1988-10-18
JPH039173B2 JPH039173B2 (en) 1991-02-07

Family

ID=13791042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8303887A Granted JPS63250428A (en) 1987-04-06 1987-04-06 Method for purifying indium

Country Status (1)

Country Link
JP (1) JPS63250428A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002241865A (en) * 2000-12-15 2002-08-28 Nikko Materials Co Ltd Method for recovering metallic indium
JP2002348619A (en) * 2001-05-22 2002-12-04 Dowa Mining Co Ltd Method for discharging, storing, and transporting gallium, and storage container
KR100498871B1 (en) * 2001-12-06 2005-07-04 (주)나인디지트 Indium manufacturing method
JP2013079443A (en) * 2011-09-20 2013-05-02 Jx Nippon Mining & Metals Corp Method and device for collecting indium or indium alloy

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS579848A (en) * 1980-05-26 1982-01-19 Gnii Pi Redkometa Production of high purity indium
JPS6136108A (en) * 1984-07-27 1986-02-20 Showa Denko Kk Method of pretreatment of indium metal and its jig

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS579848A (en) * 1980-05-26 1982-01-19 Gnii Pi Redkometa Production of high purity indium
JPS6136108A (en) * 1984-07-27 1986-02-20 Showa Denko Kk Method of pretreatment of indium metal and its jig

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002241865A (en) * 2000-12-15 2002-08-28 Nikko Materials Co Ltd Method for recovering metallic indium
JP2002348619A (en) * 2001-05-22 2002-12-04 Dowa Mining Co Ltd Method for discharging, storing, and transporting gallium, and storage container
JP4660689B2 (en) * 2001-05-22 2011-03-30 Dowaエレクトロニクス株式会社 Gallium extraction method, storage, transport method and storage container
KR100498871B1 (en) * 2001-12-06 2005-07-04 (주)나인디지트 Indium manufacturing method
JP2013079443A (en) * 2011-09-20 2013-05-02 Jx Nippon Mining & Metals Corp Method and device for collecting indium or indium alloy
JP2015187305A (en) * 2011-09-20 2015-10-29 Jx日鉱日石金属株式会社 Recovery method and apparatus of indium or indium alloy

Also Published As

Publication number Publication date
JPH039173B2 (en) 1991-02-07

Similar Documents

Publication Publication Date Title
US6273948B1 (en) Method of fabrication of highly resistive GaN bulk crystals
JPH1036197A (en) Production of iii-v compound semiconductor crystal
US5408951A (en) Method for growing silicon crystal
US3401023A (en) Crystal melt-growth process wherein the melt surface is covered with an inert liquid
JP4120016B2 (en) Method for producing semi-insulating GaAs single crystal
JPS63250428A (en) Method for purifying indium
JP2905353B2 (en) Purification method of metallic silicon
JP2005112718A5 (en)
JP2004035382A (en) Method of manufacturing polycrystalline silicon
JP3656266B2 (en) Method for producing compound semiconductor crystal and crucible for production
US3933990A (en) Synthesization method of ternary chalcogenides
JPS6350308A (en) Method of removing carbon from fused silicon
JP2001180918A (en) Method of directly synthesizing indium phosphide
RU2369669C2 (en) Substrate for growing of epitaxial layers of gallium nitride
JP2006027988A (en) Method for producing nitride single crystal
JPS6230700A (en) Compound semiconductor single crystal and production thereof
JP3945073B2 (en) Single crystal manufacturing method
JPH02196082A (en) Production of silicon single crystal
JP3412853B2 (en) Semiconductor crystal manufacturing equipment
JP3912959B2 (en) Method and apparatus for producing β-FeSi2 crystal
JP2813437B2 (en) Manufacturing method of semiconductor crystal
JP2739546B2 (en) Method for producing lithium borate single crystal
JPS6338541A (en) Refining method for indium
JPH0257623A (en) Production of fine copper powder
JP4384774B2 (en) Raw material for the production of GaAs crystals