JP3912959B2 - Method and apparatus for producing β-FeSi2 crystal - Google Patents

Method and apparatus for producing β-FeSi2 crystal Download PDF

Info

Publication number
JP3912959B2
JP3912959B2 JP2000182138A JP2000182138A JP3912959B2 JP 3912959 B2 JP3912959 B2 JP 3912959B2 JP 2000182138 A JP2000182138 A JP 2000182138A JP 2000182138 A JP2000182138 A JP 2000182138A JP 3912959 B2 JP3912959 B2 JP 3912959B2
Authority
JP
Japan
Prior art keywords
crystal
fesi
solvent
raw material
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000182138A
Other languages
Japanese (ja)
Other versions
JP2002003300A (en
Inventor
治彦 鵜殿
勲 菊間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2000182138A priority Critical patent/JP3912959B2/en
Publication of JP2002003300A publication Critical patent/JP2002003300A/en
Application granted granted Critical
Publication of JP3912959B2 publication Critical patent/JP3912959B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、溶融した低融点金属からなる溶媒を利用して大型の半導体鉄シリサイド結晶を成長する方法および装置に関する。
【0002】
【従来技術】
従来、半導体鉄シリサイド(β−FeSi2 )は、FeとSiの2種類を混合して加熱溶解して成長する融液成長法またはヨウ素を輸送媒体に用いた化学気相輸送法(CVT法)によって、バルク結晶成長が行われてきた。
【0003】
【発明が解決しようとする課題】
半導体鉄シリサイドを融液から成長する場合は、成長温度を1200℃以上の高温に上げる必要があり、さらに、単一相を得るためには、長時間(100時間〜8日間)の熱処理を施す必要がある。CVT法では、針状の結晶しか得られず、大型の鉄シリサイド結晶を得ることは現状では困難である。鉄シリサイドβ−FeSi2 は、その相図において共晶反応および包析反応を含むために融液からバルク単結晶を直接成長することは困難である。
【0004】
【課題を解決するための手段】
本発明者は、上記の課題を解決する方法として、先に、In,Ga,Zn,Sn,またはBiを溶媒とし、これに溶質としてFeとSiを溶解した飽和溶液を所定温度範囲で冷却することによってβ−FeSi2 を析出、成長させる方法を見出し、特許出願した(特願平11−43955号)。
【0005】
本発明者らは、この半導体β−FeSi2 結晶の成長法について報告している(第46回応用物理学関係連合講演会,講演予稿集,No.3,p131,1999、第60回応用物理学会学術講演会,講演予稿集,No.2,p775,1999)が、この成長法は、主に薄膜を成長する手法であったことから、大型の結晶、特に、単結晶の成長には好適ではなかった。 本発明者らは、出願および報告した上記の成長方法の改良をさらに鋭意試み、温度差法を用いることにより大型の単相のβ−FeSi2 結晶を析出、成長させる方法および装置を見出した。
【0006】
すなわち、本発明は、溶融したGaまたはZnを溶媒とし、FeSi2 を原料として溶媒表面に接触させるとともに結晶析出部材を溶媒表面に接触させて、原料部より結晶析出部が低温となるように加熱することにより溶媒中に溶解したFeSi2 を結晶析出部に析出させてβ−FeSi2 を結晶成長させることを特徴とする半導体β−FeSi2 結晶の製造方法である。本発明の製造方法は、結晶の成長に温度差法を用いるものであるが、原料部の加熱温度は850〜900℃の温度範囲に、結晶析出部はこれより20〜50℃低い温度に設定するのが好ましい。
【0007】
また、本発明は、結晶析出部材としてβ−FeSi2 種結晶を用いることにより単結晶β−FeSi2 を析出させることを特徴とする上記の半導体β−FeSi2 結晶の製造方法である。
また、本発明は、 結晶成長の進行に合わせて原料部と結晶析出部の温度分布の変動を防止することを特徴とする上記の半導体β−FeSi2 結晶の製造方法である。
【0008】
また、本発明は、原料の収容部を閉鎖端部内に設けた管状の容器、該管状の容器の開放端部から挿入される棒状部材とからなり、棒状部材の先端と原料の収容部との間に溶媒収容部が形成される半導体β−FeSi2 結晶成長容器である。これらの管状の容器および棒状部材の材料としては石英が好ましい。
【0009】
また、本発明は、上記の結晶成長容器と該結晶成長容器を加熱する加熱手段との組み合わせからなる半導体β−FeSi2 結晶の製造装置である。加熱手段は電気炉が好ましい。
また、本発明は、結晶成長容器を縦方向に配置し、棒状部材の下端には円錐状の窪みを設けて、溶媒上に浮いたβ−FeSi2 種結晶が該窪みに収容されて位置するようにしたことを特徴とする上記の半導体β−FeSi2 結晶の製造装置である。
また、本発明は、結晶成長の進行に合わせて結晶成長容器と加熱手段を相対的に移動させて原料部と結晶析出部の温度分布の変動を防止する手段を有することを特徴とする上記の半導体β−FeSi2 結晶の製造装置である。
【0010】
温度差法でβ−FeSi2 を析出、成長させるための溶質の原料としては、Si、Fe単体に比べて、Fe:Siを1:2でアーク溶解法、アトマイズ法、メカニカルアロイング法等で合成した原料の方が好ましい。これは、溶融したGaまたはZnからなる溶媒への溶け方がFeSiまたは FeSi2 といった原子が結合した形で溶け込むので、β−FeSi2結晶 の合成が容易になること、Ga、Znは、FeとSiどちらに対しても溶解度が大きいことから、これらを個々に溶かそうとすると原料が不均一に溶解した場合に、原料の供給比率がFe:Si=1:2からずれてしまうからである。
【0011】
この原料に対して、使用する溶媒は、成長を行う950℃以下の温度でFeとSiの両方に対してある程度の溶解度をもつ低融点金属で、β相の安定温度領域において溶質に対して適当な溶解度を持つこと、溶質と反応して不要な化合物を作らないこと、が必要条件となる。図1は、GaまたはZnに対するFeSi2の溶解度を示すグラフある。 GaまたはZnに対するFeSi2 原料の溶解度は900℃で1.2mol%程であり、溶液成長に必要な溶解度が得られる。
【0012】
Ga、Znは、高純度原料の入手が容易で、資源量が豊富かつ人体への毒性が少ない等の利点を持っている。特に、Ga溶媒については、融点が低く、蒸気圧も低いため、利用が容易、β−FeSi2内に高濃度に取り込まれてアクセプターとして働き、p型の β−FeSi2 結晶を作れる等の利点がある。Zn溶媒は、β−FeSi2 結晶への固溶度が低いため、高抵抗の結晶成長が可能な上、Co等公知のn型不純物を添加して、n型β−FeSi2結晶の成長が可能である。Ga、Znは、どちらもFeと化合物を生成する可能性があるが、成長条件を選ぶことで、Feとの化合物は生成されないので、Ga、Znは、β−FeSi2 成長の溶媒として適している。
【0013】
【発明の実施の形態】
図2〜図4は、本発明の半導体FeSi2 結晶の製造方法の実施形態を概念的に示す図である。図2の(A)は、加熱手段として横型の抵抗加熱炉(図示せず)を使用して種結晶を使用しないでβ−FeSi2 結晶を成長させる実施形態を示し、図2の(B)は、加熱炉内に位置する管状の容器1の表面部の水平方向温度分布を示す。図3の(A)は、加熱手段として縦型の抵抗加熱炉を使用し、種結晶を使用してβ−FeSi2 単結晶を成長させる実施形態を示す。図3の(B)は、加熱炉内に位置する管状の容器1の表面部の垂直方向温度分布を示す。図4の(A)は、縦型の抵抗加熱炉を使用し、種結晶を使用してβ−FeSi2 単結晶を成長させる別の実施形態を示し、図4の(B)は、原料、溶媒、成長する結晶の位置関係を示す部分拡大斜視図である。
【0014】
図2の(A)、図3の(A)、図4の(A)において、β−FeSi2 結晶を成長させる通常のるつぼに相当する成長容器として、管状の容器1を用いる。この管状の容器1としては、例えば、高純度の石英管が好ましい。高純度黒鉛るつぼ、白金るつぼ、熱分解窒化ホウ素(pBn)るつぼ等も利用できるが、これらを用いる場合は、周りを石英管やステンレス鋼容器等で覆って真空封止する必要がある。
【0015】
FeSi2 結晶からなる原料2は、溶媒3の表面に接触しながら一定の位置に固定されるようにする。このため、例えば、図3(A)に示すように、管状の容器1の閉鎖した端部近くにくびれ4を設けて、原料2を管状の容器1の閉鎖した一方の端部内に収容する。また、図4(A)に示すように、原料2の上部と石英棒7の下端との間の溶媒の周りに円筒状の管をスぺーサー10として設けてスペーサーによって原料が浮き上がらないように押さえてもよい。スぺーサー10は、原料2が溶けるにつれて降下するので、原料2と石英棒7の下端部に析出する成長結晶との距離を一定に保つ役割もする。このスペーサーの材料は、高純度石英、高純度黒鉛、pBN、白金等を使用できる。
【0016】
図3の(A)および 図4の(A)に示す実施形態は、種結晶を使用する場合であり、管状の容器1は、縦型の抵抗加熱炉内に縦方向に配置する。溶媒3の上部には、β−FeSi2 種結晶5を配置する。溶媒3のGa,Znよりも比重の軽いβ−FeSi2 種結晶5は、溶媒3の上部に浮かぶことになる。
そこで、石英棒7の下端には円錐状の窪み6を設けて、管状の容器1の開放端から挿入し、β−FeSi2 種結晶5を石英棒7の先端の窪み6に収容して押さえる。これによって、種結晶5は、溶媒3の上部に石英棒7と接触した形で固定される。図4の(B)に示すように、結晶は、溶媒に接して溶媒に埋もれたままで成長する。
【0017】
この実施形態によれば、大きさが1mm程度の小さい種結晶5であっても、非常に簡便に、応力を加えることなく、溶媒3上の所定の位置に固定することができる。さらに、石英棒7が種結晶5と接触できるために、石英棒7が熱を上部に逃がすヒートシンクの役割をし、効率よく結晶化が行える。ヒートシンクとしては、石英棒以外に、高純度黒鉛、白金、熱分解窒化ホウ素(pBN)等の利用も可能である。
【0018】
管状の容器1は、高真空に排気した後に封止用石英管9で封止して真空封止して使用することが望ましい。Gaは、蒸気圧が低いのでGaを溶媒として用いる場合は、真空封止して成長すれば、問題はないが、Zn溶媒を使用する場合は、酸素を含まない高純度アルゴンガスや高純度窒素ガスで石英管内部を1気圧に充填して石英管を封止して成長した方がよい結果が得られる。
【0019】
本発明の成長方法で、溶媒3に蒸気圧が低いGaを用いた場合は、石英棒7の周囲を液体封止することになるため、成長系を真空封止せずに高純度Arガス等の雰囲気で成長した場合に、酸素等の不純物が成長部へ進入するのを防ぐことができるため、工業的に適した開管系での連続成長が可能になる。
【0020】
上記の図2の(A)、図3の(A)、図4の(A)に示した装置において、加熱手段により原料2の部分を高温(TS)に加熱し、結晶成長部である石英棒7の先端部を原料部よりも低温(TG)になるように、図2の(B)および図3の(B)に示すように、温度勾配を保つ。この温度差法によって、結晶成長部におけるβ−FeSi2 結晶の結晶化が進み大型の結晶が成長できる。
【0021】
図2の(A)の場合は、石英棒7を管状の容器1の開放端から挿入し、溶媒を真空封止する。結晶成長中は管状の容器1をその軸心を中心として回転させた方が結晶の成長速度が早くなる。
図2の(A)に示す実施態様では、種結晶を使用していないために石英棒7の先端面に結晶が成長し、2〜3mmのサイズの結晶では、結晶の形状はさまざまであるが、数百μm〜1mm程度のサイズの小さい結晶では、単結晶が成長する。
【0022】
また、図3の(A)、図4の(A)に示す実施態様では、種結晶を用いて析出部分を制限して成長方位をそろえているので、大口径の単結晶β−FeSi2 を成長させることができる。
【0023】
【実施例】
実施例1
図2の(A)に示す実施形態によって本発明の方法を実施する具体例を以下に説明する。溶媒3に純度99.9999%のGa、溶質となる原料2に純度99.99%以上のFeと99.9999%以上のSiを真空中でアーク溶解合成したFeSi2 結晶を用いた。洗浄、純化処理した石英管からなる管状の容器1の端部とくびれ4との間に、2g程度のFeSi2 からなる原料2を収容し、ついで、10gのGaを溶媒3として仕込み、2×10-6Torr以下に真空排気し、石英棒7を挿入して真空封止した。
【0024】
成長時には、FeSi2 結晶からなる原料2を高温部(TS=約880℃)に、石英棒7の下端部が原料部よりも低温側(TG=約850℃)にくるように加熱し、図2の(B)に示す温度勾配で、温度を一定に保ちながら管状の容器1を30rpmの速度で回転させた。成長時間は、60時間とした。この間の電気炉の温度変動は±2℃以内であった。結晶成長終了後は、管状の容器1を直ちに冷水に漬けて急冷した後、石英棒7の下端面に析出して成長した結晶を管状の容器1から取り出した。結晶に付着したGa溶媒は、塩酸または王水に約24時間漬けることで取り除いた。再現性良く結晶の析出がみられた。
【0025】
図5に、60時間の成長を行った時に析出した結晶の代表的なSEM写真を示す。成長結晶は銀白色の光沢があり、Siと比べると白っぽく見える。結晶の形状は様々であったが、結晶サイズが5mm程度になる大きい結晶では細長い形状をしたものが多く見られた。また、成長した結晶の多くは、写真に示すように、部分的にファセット面が出ていた。
【0026】
SEMによる観祭を行ったところ、図6に示すように、2〜3mmのサイズの結晶では、一塊の結晶中に複数の方位を持ったフアセットが混在していた。この様子から、成長した結晶サイズが2〜3mmの結晶は多結晶であると考えられる。しかしながら、数百μm〜1mm程度の結晶サイズのものでは、こうした結晶粒界の無い結晶が見られた。このことは、サイズの小さい結晶では単結晶が成長していることを示している。また、反射電子像による組成分布の観察においても特徴的なコントラストは見られず、組成的に大きな変化がないことが分かった。
【0027】
この成長結晶を粉末化し、16〜70度の範囲でX線回折測定を行ったが、β−FeSi2 に対応する回折ピークのみが表れ、これ以外の鉄シリサイド相およびSi、FeGa3 等の回折ピークは見られなかった。このことから、成長した結晶が単相のβ−FeSi2 であることが確認できた。また、全ての成長した結晶はp型であり、四探針法を用いて抵抗率を測定したところ、結晶は0.05〜0.2Ω・cmと低抵抗であることが確認された。
【0028】
実施例2
図3の(A)に示す実施形態によって結晶成長した。種結晶5として直径1mm程度のβ−FeSi2 を用いた。FeSi2 原料2の部分を高温(TS=870℃)、石英棒7の下端部の種結晶5の位置する部分を低温(TG=850℃)になるように設定して加熱し、図3の(B)に示す温度勾配中で、管状の容器1を静止して60時間の成長を行った。その他の条件は、実施例1と同様とした。これにより、図7に、図面代用写真で示すとおり、石ころ状の形態をした最大径が約3mmφのβ−FeSi2 単結晶が得られた。
【図面の簡単な説明】
【図1】図1は、GaおよびZn溶媒に対するFeSi2の溶解度を示すグラフである。
【図2】図2は、本発明の製造方法および装置の実施形態の一つを示す概略説明図である。
【図3】図3は、本発明の製造方法および装置の別の実施形態を示す概略説明図である。
【図4】図4は、本発明の製造方法および装置のさらに別の実施形態を示す概略説明図である。
【図5】図5は、実施例1により得られたβ−FeSi2 結晶の図面代用SEM写真である。
【図6】図6は、実施例1により得られたβ−FeSi2 結晶の図面代用SEM写真である。
【図7】図7は、実施例2により得られたβ−FeSi2単結晶の形態を示す図面代用写真である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and an apparatus for growing a large-sized semiconductor iron silicide crystal using a solvent made of a molten low melting point metal.
[0002]
[Prior art]
Conventionally, semiconductor iron silicide (β-FeSi 2 ) is a melt growth method in which two types of Fe and Si are mixed and dissolved by heating, or a chemical vapor transport method (CVT method) using iodine as a transport medium. Thus, bulk crystal growth has been performed.
[0003]
[Problems to be solved by the invention]
When the semiconductor iron silicide is grown from the melt, it is necessary to raise the growth temperature to a high temperature of 1200 ° C. or higher. Furthermore, in order to obtain a single phase, heat treatment is performed for a long time (100 hours to 8 days). There is a need. In the CVT method, only acicular crystals can be obtained, and it is difficult to obtain large iron silicide crystals at present. Since iron silicide β-FeSi 2 includes a eutectic reaction and a precipitation reaction in its phase diagram, it is difficult to directly grow a bulk single crystal from the melt.
[0004]
[Means for Solving the Problems]
As a method for solving the above problems, the present inventor first cools a saturated solution in which Fe, Si is dissolved as a solute in In, Ga, Zn, Sn, or Bi in a predetermined temperature range. Thus, a method for depositing and growing β-FeSi 2 was found and a patent application was filed (Japanese Patent Application No. 11-43955).
[0005]
The present inventors have reported the growth method of this semiconductor β-FeSi 2 crystal (46th Applied Physics Related Conference, No. 3, p131, 1999, 60th Applied Physics). (The academic conference, Proceedings, No. 2, p775, 1999), this growth method was mainly a method for growing thin films, so it is suitable for growth of large crystals, especially single crystals. It wasn't. The inventors of the present invention have made further efforts to improve the above-mentioned growth method that has been filed and reported, and have found a method and an apparatus for depositing and growing a large single-phase β-FeSi 2 crystal by using a temperature difference method.
[0006]
That is, in the present invention, molten Ga or Zn is used as a solvent, FeSi 2 is used as a raw material and the surface of the solvent is brought into contact with the crystal precipitation member, and heating is performed so that the crystal precipitation portion is at a lower temperature than the raw material portion. it is a manufacturing method of a semiconductor beta-FeSi 2 crystals, which comprises causing the beta-FeSi 2 in the FeSi 2 dissolved in a solvent to precipitate the crystallization portion is the crystal grown by. The manufacturing method of the present invention uses a temperature difference method for crystal growth, but the heating temperature of the raw material part is set to a temperature range of 850 to 900 ° C., and the crystal precipitation part is set to a temperature lower by 20 to 50 ° C. It is preferable to do this.
[0007]
The present invention is also the above-described method for producing a semiconductor β-FeSi 2 crystal, wherein single crystal β-FeSi 2 is precipitated by using a β-FeSi 2 seed crystal as a crystal precipitation member.
In addition, the present invention is the above-described method for producing a semiconductor β-FeSi 2 crystal characterized by preventing fluctuations in the temperature distribution of the raw material portion and the crystal precipitation portion as the crystal growth proceeds.
[0008]
Further, the present invention comprises a tubular container having a raw material container in the closed end, and a rod-shaped member inserted from the open end of the tubular container, and the tip of the rod-shaped member and the raw material container This is a semiconductor β-FeSi 2 crystal growth vessel in which a solvent accommodating part is formed. Quartz is preferred as the material for these tubular containers and rod-shaped members.
[0009]
The present invention is also a semiconductor β-FeSi 2 crystal production apparatus comprising a combination of the crystal growth vessel and a heating means for heating the crystal growth vessel. The heating means is preferably an electric furnace.
Further, in the present invention, the crystal growth vessel is arranged in the vertical direction, a conical depression is provided at the lower end of the rod-shaped member, and the β-FeSi 2 seed crystal floating on the solvent is accommodated in the depression. The semiconductor β-FeSi 2 crystal manufacturing apparatus is characterized in that it is configured as described above.
In addition, the present invention is characterized in that it has means for preventing fluctuations in the temperature distribution of the raw material part and the crystal precipitation part by relatively moving the crystal growth vessel and the heating means as the crystal growth proceeds. This is an apparatus for producing a semiconductor β-FeSi 2 crystal.
[0010]
As a solute raw material for precipitating and growing β-FeSi 2 by the temperature difference method, compared with Si and Fe alone, Fe: Si is 1: 2 by arc melting method, atomizing method, mechanical alloying method, etc. The synthesized raw material is preferred. This is because the melting method in a solvent composed of molten Ga or Zn is FeSi or Since atoms such FeSi 2 dissolves in bonded form, beta-FeSi 2 crystals Since the solubility of Ga and Zn is large in both Fe and Si, if the raw materials are dissolved non-uniformly when trying to dissolve them individually, the feed ratio of the raw materials is Fe This is because of deviation from Si = 1: 2.
[0011]
For this raw material, the solvent used is a low melting point metal that has a certain degree of solubility in both Fe and Si at a temperature of 950 ° C. or lower for growth, and is suitable for the solute in the β-phase stable temperature range. It is necessary to have sufficient solubility and not to make unnecessary compounds by reacting with solutes. FIG. 1 is a graph showing the solubility of FeSi 2 in Ga or Zn. The solubility of the FeSi 2 raw material in Ga or Zn is about 1.2 mol% at 900 ° C., and the solubility necessary for solution growth can be obtained.
[0012]
Ga and Zn have advantages such as easy availability of high-purity raw materials, abundant resources, and low toxicity to the human body. In particular, the Ga solvent has a low melting point and a low vapor pressure, so it is easy to use. It is incorporated into β-FeSi 2 at a high concentration and functions as an acceptor. There is an advantage that a β-FeSi 2 crystal can be formed. Since the Zn solvent has a low solid solubility in β-FeSi 2 crystal, high resistance crystal growth is possible, and a known n-type impurity such as Co is added to grow n-type β-FeSi 2 crystal. Is possible. Both Ga and Zn may generate a compound with Fe, but since a compound with Fe is not generated by selecting growth conditions, Ga and Zn are suitable as solvents for the growth of β-FeSi 2. Yes.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
2-4 is a figure which shows notionally Embodiment of the manufacturing method of the semiconductor FeSi2 crystal | crystallization of this invention. FIG. 2A shows an embodiment in which a β-FeSi 2 crystal is grown without using a seed crystal by using a horizontal resistance heating furnace (not shown) as a heating means, and FIG. These show the horizontal direction temperature distribution of the surface part of the tubular container 1 located in a heating furnace. FIG. 3A shows an embodiment in which a vertical resistance heating furnace is used as a heating means and a β-FeSi 2 single crystal is grown using a seed crystal. (B) of FIG. 3 shows the vertical direction temperature distribution of the surface part of the tubular container 1 located in a heating furnace. FIG. 4A shows another embodiment in which a vertical resistance heating furnace is used to grow a β-FeSi 2 single crystal using a seed crystal, and FIG. It is a partial expansion perspective view which shows the positional relationship of a solvent and the crystal to grow.
[0014]
2 (A), 3 (A), and 4 (A), a tubular container 1 is used as a growth container corresponding to a normal crucible for growing β-FeSi 2 crystals. As the tubular container 1, for example, a high purity quartz tube is preferable. High-purity graphite crucibles, platinum crucibles, pyrolytic boron nitride (pBn) crucibles and the like can also be used. However, when these are used, it is necessary to cover them with a quartz tube, a stainless steel container or the like and seal them in a vacuum.
[0015]
The raw material 2 made of FeSi 2 crystal is fixed at a certain position while being in contact with the surface of the solvent 3. For this reason, for example, as shown in FIG. 3A, a constriction 4 is provided near the closed end of the tubular container 1, and the raw material 2 is accommodated in one closed end of the tubular container 1. Further, as shown in FIG. 4A, a cylindrical tube is provided as a spacer 10 around the solvent between the upper part of the raw material 2 and the lower end of the quartz rod 7 so that the raw material does not float by the spacer. You may hold it down. Since the spacer 10 descends as the raw material 2 melts, it also serves to keep the distance between the raw material 2 and the growth crystal deposited on the lower end of the quartz rod 7 constant. As the material of this spacer, high purity quartz, high purity graphite, pBN, platinum or the like can be used.
[0016]
The embodiment shown in FIGS. 3A and 4A is a case where a seed crystal is used, and the tubular container 1 is arranged in a vertical direction in a vertical resistance heating furnace. A β-FeSi 2 seed crystal 5 is disposed on the top of the solvent 3. The β-FeSi 2 seed crystal 5 having a lighter specific gravity than Ga and Zn of the solvent 3 floats on the top of the solvent 3.
Therefore, a conical depression 6 is provided at the lower end of the quartz rod 7 and is inserted from the open end of the tubular container 1, and the β-FeSi 2 seed crystal 5 is accommodated in the depression 6 at the tip of the quartz rod 7 and pressed. . As a result, the seed crystal 5 is fixed on the top of the solvent 3 in contact with the quartz rod 7. As shown in FIG. 4B, the crystal grows in contact with the solvent and remains buried in the solvent.
[0017]
According to this embodiment, even a small seed crystal 5 having a size of about 1 mm can be fixed at a predetermined position on the solvent 3 very simply and without applying stress. Further, since the quartz rod 7 can come into contact with the seed crystal 5, the quartz rod 7 serves as a heat sink for releasing heat upward, and crystallization can be performed efficiently. As the heat sink, in addition to the quartz rod, high-purity graphite, platinum, pyrolytic boron nitride (pBN), or the like can be used.
[0018]
The tubular container 1 is desirably used after being evacuated to a high vacuum and then sealed with a sealing quartz tube 9 and vacuum sealed. Since Ga has a low vapor pressure, when Ga is used as a solvent, there is no problem if it is grown by vacuum sealing, but when using a Zn solvent, high purity argon gas or high purity nitrogen containing no oxygen is used. A better result is obtained when the inside of the quartz tube is filled with gas to 1 atm and the quartz tube is sealed.
[0019]
When Ga having a low vapor pressure is used as the solvent 3 in the growth method of the present invention, the periphery of the quartz rod 7 is liquid-sealed, so that a high purity Ar gas or the like can be used without vacuum-sealing the growth system. When grown in an atmosphere, impurities such as oxygen can be prevented from entering the growth portion, and therefore, continuous growth in an industrially suitable open tube system is possible.
[0020]
In the apparatus shown in FIG. 2A, FIG. 3A, and FIG. 4A, the portion of the raw material 2 is heated to a high temperature (TS) by the heating means, and quartz that is a crystal growth portion is obtained. A temperature gradient is maintained as shown in FIG. 2B and FIG. 3B so that the tip of the rod 7 has a lower temperature (TG) than the raw material. By this temperature difference method, crystallization of β-FeSi 2 crystal proceeds in the crystal growth part, and a large crystal can be grown.
[0021]
In the case of FIG. 2A, the quartz rod 7 is inserted from the open end of the tubular container 1, and the solvent is vacuum-sealed. During crystal growth, the crystal growth rate is faster when the tubular container 1 is rotated about its axis.
In the embodiment shown in FIG. 2A, since a seed crystal is not used, a crystal grows on the tip surface of the quartz rod 7, and in the crystal having a size of 2 to 3 mm, the shape of the crystal is various. In a crystal having a small size of about several hundred μm to 1 mm, a single crystal grows.
[0022]
In the embodiment shown in FIGS. 3 (A) and 4 (A), the seed crystal is used to restrict the precipitation portion so that the growth orientation is aligned. Therefore, single crystal β-FeSi 2 having a large diameter is formed. Can be grown.
[0023]
【Example】
Example 1
A specific example in which the method of the present invention is carried out according to the embodiment shown in FIG. A FeSi 2 crystal obtained by arc melting synthesis of 99.9999% purity Ga in the solvent 3 and 99.9999% purity Fe and 99.9999% Si or more in the vacuum was used as the solute raw material 2. Washing, between 4 constricted with the end of the tubular container 1 consisting of purified treated quartz tube containing the raw material 2 consisting of FeSi 2 of about 2g, then, charged with Ga of 10g as the solvent 3, 2 × The vacuum was evacuated to 10 −6 Torr or less, and a quartz rod 7 was inserted and vacuum sealed.
[0024]
At the time of growth, the raw material 2 made of FeSi 2 crystal is heated to a high temperature part (TS = about 880 ° C.) and the lower end of the quartz rod 7 is heated to a lower temperature side (TG = about 850 ° C.) than the raw material part. The tubular container 1 was rotated at a speed of 30 rpm while keeping the temperature constant at the temperature gradient shown in 2 (B). The growth time was 60 hours. During this time, the temperature fluctuation of the electric furnace was within ± 2 ° C. After the completion of the crystal growth, the tubular container 1 was immediately immersed in cold water and rapidly cooled, and the crystal that had grown by depositing on the lower end surface of the quartz rod 7 was taken out from the tubular container 1. The Ga solvent adhering to the crystal was removed by soaking in hydrochloric acid or aqua regia for about 24 hours. Crystal precipitation was observed with good reproducibility.
[0025]
FIG. 5 shows a typical SEM photograph of crystals precipitated during 60 hours of growth. The grown crystal has a silvery white gloss and looks whitish compared to Si. The crystal shapes varied, but many large crystals with a crystal size of about 5 mm were elongated. In addition, many of the grown crystals were partially faceted as shown in the photograph.
[0026]
As a result of the SEM festival, as shown in FIG. 6, in the crystal having a size of 2 to 3 mm, a facet having a plurality of directions was mixed in one crystal. From this state, it is considered that the grown crystal having a crystal size of 2 to 3 mm is polycrystalline. However, in the crystal size of about several hundreds μm to 1 mm, such a crystal having no grain boundary was observed. This indicates that a single crystal is growing in a crystal having a small size. In addition, no characteristic contrast was observed in the observation of the composition distribution by the reflected electron image, and it was found that there was no significant change in composition.
[0027]
This grown crystal was pulverized and X-ray diffraction measurement was performed in the range of 16 to 70 degrees, but only a diffraction peak corresponding to β-FeSi 2 appeared, and diffraction of other iron silicide phases and Si, FeGa 3, etc. No peak was seen. From this, it was confirmed that the grown crystal was single-phase β-FeSi 2 . Moreover, all the grown crystals were p-type, and when the resistivity was measured using the four-probe method, it was confirmed that the crystals had a low resistance of 0.05 to 0.2 Ω · cm.
[0028]
Example 2
Crystals were grown according to the embodiment shown in FIG. Β-FeSi 2 having a diameter of about 1 mm was used as the seed crystal 5. The portion of the FeSi 2 raw material 2 is set to a high temperature (TS = 870 ° C.) and the portion where the seed crystal 5 is located at the lower end of the quartz rod 7 is set to a low temperature (TG = 850 ° C.) and heated. In the temperature gradient shown in (B), the tubular container 1 was stationary and grown for 60 hours. Other conditions were the same as in Example 1. As a result, a β-FeSi 2 single crystal having a maximum diameter of about 3 mmφ having a stone-like shape was obtained as shown in FIG.
[Brief description of the drawings]
FIG. 1 is a graph showing the solubility of FeSi 2 in Ga and Zn solvents.
FIG. 2 is a schematic explanatory view showing one embodiment of the manufacturing method and apparatus of the present invention.
FIG. 3 is a schematic explanatory view showing another embodiment of the production method and apparatus of the present invention.
FIG. 4 is a schematic explanatory view showing still another embodiment of the production method and apparatus of the present invention.
5 is a drawing-substitute SEM photograph of the β-FeSi 2 crystal obtained in Example 1. FIG.
6 is a drawing-substitute SEM photograph of β-FeSi 2 crystal obtained in Example 1. FIG.
7 is a drawing-substituting photograph showing the form of a β-FeSi 2 single crystal obtained in Example 2. FIG.

Claims (7)

溶融したGaまたはZnを溶媒とし、FeSi2 を原料として溶媒表面に接触させるとともに結晶析出部材を溶媒表面に接触させて、原料部より結晶析出部が低温となるように加熱することにより溶媒中に溶解したFeSi2 を結晶析出部に析出させてβ−FeSi2 を結晶成長させることを特徴とする半導体β−FeSi2 結晶の製造方法。Using molten Ga or Zn as a solvent, using FeSi 2 as a raw material and bringing it into contact with the solvent surface, bringing the crystal precipitation member into contact with the solvent surface, and heating the crystal precipitation part at a lower temperature than the raw material part into the solvent the method of manufacturing a semiconductor beta-FeSi 2 crystals for causing crystal growth of the beta-FeSi 2 to precipitate dissolved FeSi 2 in the crystallization unit. 結晶析出部材としてβ−FeSi2 種結晶を用いることにより単結晶β−FeSi2 を析出させることを特徴とする請求項1記載の半導体β−FeSi2 結晶の製造方法。The method for producing a semiconductor β-FeSi 2 crystal according to claim 1, wherein the single crystal β-FeSi 2 is precipitated by using a β-FeSi 2 seed crystal as a crystal precipitation member. 結晶成長の進行に合わせて原料部と結晶析出部の温度分布の変動を防止することを特徴とする請求項1または2記載の半導体β−FeSi2 結晶の製造方法。 3. The method for producing a semiconductor [beta] -FeSi2 crystal according to claim 1, wherein fluctuations in temperature distribution of the raw material portion and the crystal precipitation portion are prevented in accordance with the progress of crystal growth. 原料の収容部を閉鎖端部内に設けた管状の容器、該管状の容器の開放端部から挿入される棒状部材とからなり、棒状部材の先端と原料の収容部との間に溶媒収容部が形成される半導体β−FeSi2 結晶成長容器。A tubular container provided with a raw material container in a closed end, and a rod-shaped member inserted from the open end of the tubular container, and a solvent container between the tip of the rod-shaped member and the raw material container A semiconductor β-FeSi 2 crystal growth vessel to be formed. 請求項4記載の結晶成長容器と該結晶成長容器を加熱する加熱手段との組み合わせからなる半導体β−FeSi2 結晶の製造装置。An apparatus for producing a semiconductor β-FeSi 2 crystal comprising a combination of the crystal growth vessel according to claim 4 and a heating means for heating the crystal growth vessel. 結晶成長容器を縦方向に配置し、棒状部材の下端には円錐状の窪みを設けて、溶媒上に浮いたβ−FeSi2 種結晶が該窪みに収容されて位置するようにしたことを特徴とする請求項5記載の半導体β−FeSi2 結晶の製造装置。The crystal growth vessel is arranged in the vertical direction, and a conical depression is provided at the lower end of the rod-shaped member so that the β-FeSi 2 seed crystal floating on the solvent is accommodated and positioned in the depression. An apparatus for producing a semiconductor β-FeSi 2 crystal according to claim 5. 結晶成長の進行に合わせて結晶成長容器と加熱手段を相対的に移動させて原料部と結晶析出部の温度分布の変動を防止する手段を有することを特徴とする請求項5または6記載の半導体β−FeSi2 結晶の製造装置。7. The semiconductor according to claim 5, further comprising means for preventing fluctuations in temperature distribution of the raw material portion and the crystal precipitation portion by relatively moving the crystal growth vessel and the heating means in accordance with the progress of crystal growth. An apparatus for producing β-FeSi 2 crystals.
JP2000182138A 2000-06-16 2000-06-16 Method and apparatus for producing β-FeSi2 crystal Expired - Fee Related JP3912959B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000182138A JP3912959B2 (en) 2000-06-16 2000-06-16 Method and apparatus for producing β-FeSi2 crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000182138A JP3912959B2 (en) 2000-06-16 2000-06-16 Method and apparatus for producing β-FeSi2 crystal

Publications (2)

Publication Number Publication Date
JP2002003300A JP2002003300A (en) 2002-01-09
JP3912959B2 true JP3912959B2 (en) 2007-05-09

Family

ID=18682960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000182138A Expired - Fee Related JP3912959B2 (en) 2000-06-16 2000-06-16 Method and apparatus for producing β-FeSi2 crystal

Country Status (1)

Country Link
JP (1) JP3912959B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5272169B2 (en) * 2006-03-17 2013-08-28 国立大学法人 東京大学 β-FeSi2 formation method and electronic device creation method

Also Published As

Publication number Publication date
JP2002003300A (en) 2002-01-09

Similar Documents

Publication Publication Date Title
US3173765A (en) Method of making crystalline silicon semiconductor material
US7758843B1 (en) Inclusion free cadmium zinc tellurium and cadmium tellurium crystals and associated growth method
Schönherr et al. Czochralski growth of Li3N crystals
US3353914A (en) Method of seed-pulling beta silicon carbide crystals from a melt containing silver and the product thereof
US20060048701A1 (en) Method of growing group III nitride crystals
US20060144324A1 (en) Silicon carbide single crystal and method and apparatus for producing the same
JP4120016B2 (en) Method for producing semi-insulating GaAs single crystal
JP3912959B2 (en) Method and apparatus for producing β-FeSi2 crystal
Zlomanov et al. Phase diagrams and growth of bulk lead chalcogenide crystals
JP2005112718A5 (en)
US3055741A (en) Method for producing silicon
JPH0244798B2 (en)
US4764350A (en) Method and apparatus for synthesizing a single crystal of indium phosphide
Kasai et al. Growth and morphology of Pb1− ySnySe and (PbSe) 1− z (SnTe) z alloys from the vapor phase
JP2004203721A (en) Apparatus and method for growing single crystal
JP2531875B2 (en) Method for producing compound semiconductor single crystal
Jones Refractory metal crystal growth techniques
JPS63250428A (en) Method for purifying indium
Borisenko et al. Crystal Growth
JP2539841B2 (en) Crystal manufacturing method
JP2873449B2 (en) Compound semiconductor floating zone melting single crystal growth method
JP2000327496A (en) Production of inp single crystal
Capper Bulk growth techniques
JPH027919B2 (en)
JPH06219885A (en) Method for growing compound semiconductor crystal

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070130

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees