JP2004035382A - Method of manufacturing polycrystalline silicon - Google Patents

Method of manufacturing polycrystalline silicon Download PDF

Info

Publication number
JP2004035382A
JP2004035382A JP2002224179A JP2002224179A JP2004035382A JP 2004035382 A JP2004035382 A JP 2004035382A JP 2002224179 A JP2002224179 A JP 2002224179A JP 2002224179 A JP2002224179 A JP 2002224179A JP 2004035382 A JP2004035382 A JP 2004035382A
Authority
JP
Japan
Prior art keywords
silicon
reaction
zinc
polycrystalline silicon
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002224179A
Other languages
Japanese (ja)
Inventor
Takayuki Shimamune
島宗 孝之
Akira Yoshikawa
吉川 公
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2002224179A priority Critical patent/JP2004035382A/en
Publication of JP2004035382A publication Critical patent/JP2004035382A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Silicon Compounds (AREA)
  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of economically manufacturing polycrystalline silicon with high purity by simplifying the process and recycling raw materials to form a closed process in obtaining a high purity silicon, namely a bulky silicon crystal body with high purity, by using a vapor-phase reaction of silicon tetrachloride and zinc. <P>SOLUTION: A silicon crystal is formed by a vapor-phase reduction reaction of silicon tetrachloride and zinc in a reaction furnace and grown in the reaction furnace or in a crystal growth furnace. After the reaction/crystal growth, the supply of the reaction gas is stopped and the inside of the reaction furnace and the crystal growth furnace are heated to melt the crystalline silicon without removing it from the furnaces. Then, the molten silicon is transferred to a vessel such as a crucible or the like and solidified and crystallized there to obtain a high purity polycrystalline silicon with a large crystal grain size. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、太陽電池用高純度多結晶シリコンの製造方法に関し、さらに詳しくは四塩化珪素及び亜鉛を蒸発気化して反応炉に導入し、気相亜鉛還元反応を行わせシリコンを生成せしめ、外部に取り出すことなく反応炉内にて溶融液化し、更に該融液を反応系外に取り出し固化乃至再結晶化して高純度多結晶シリコンを得る製造方法に関するものである。
【0002】
【従来の技術】
従来、太陽電池用シリコンは、半導体用シリコンの不適格品を使用することが多いがそのような場合には、今後の太陽電池の飛躍的な需要に応えられるだけの供給が伴わないという問題が残されている。このようなことから、独自にシリコン結晶を製造する方法として、溶融亜鉛と四塩化珪素を反応させるいわゆる金属溶融法が知られているがその場合は製品が粉状となり、後処理の煩雑さや不純物処理の難しさ並びにキャステイングの困難さの為、高コストとなり、実用化されるに至っていない。
このために気相亜鉛還元法によるシリコン製造が提案されているが、シリコンとともに重量比で約10倍の塩化亜鉛が副生し、その処理が問題となりやすく実用化はごく一部に限られている。最近では特開平11−92130に記載のように、溶融亜鉛表面に四塩化珪素を吹き付けることによってシリコンを得、さらに生成する塩化亜鉛を電気分解して亜鉛金属を取り出すと共に、生成する塩素を塩化水素として四塩化珪素製造に使う方法が提案されている。塩化亜鉛の再利用という点では目的を達成しているが、生成シリコンは溶融亜鉛との混合体であるためにシリコンそれ自体が微細な粒子となってしまうこと、従って生成シリコン粒子の表面積が大きくなりそのために高純度化が困難になると言う問題点があった。またモノシランやジシラン、トリクロロシランを原料とする方法があるがこれについてはその反応率が低く従ってエネルギー消費が大きくなると言う問題と共に、併存する水素の回収があわせて問題となっているが、水素に限らず、副生する塩素乃至塩酸の取り扱いにも問題がある。
【0003】
【従来技術の問題点】
上記に示したように従来技術の殆どはシリコンを固体としてあるいは結晶として生成させることに主眼点が置かれており、生成した固体あるいは結晶状のシリコンの性状についてはほとんど考慮されず、しかもその状態で大気中に取り出され溶融液化・再結晶化されるため、シリコン表面の酸化、不純物の混入を防ぐことが出来ず、再結晶化の前に再精製を必要とするなどの問題点が残されていた。
【0004】
【発明が解決しようとする課題】
本発明は主に太陽電池用多結晶の高純度シリコン、即ちバルク状高純度シリコンを四塩化珪素と亜鉛の気相反応によって得るにあたり、反応により生成したシリコンを最小限の工程で多結晶高純度シリコンとして得ることを課題とした。
【0005】
【課題を解決するための手段】
上記課題を解決するため、本願で特許請求される発明は以下の通りである。
つまり、四塩化珪素と亜鉛とを温度907〜1,410℃の反応炉内において気相反応を行わせ高純度多結晶シリコンを得るにあたり、反応炉内にてシリコンを析出せしめ、反応及び結晶化終了後反応ガスの供給を停止し、さらに反応炉内を減圧とし、該反応炉内温度を1,410〜1,600℃に昇温して該シリコンを溶融し、しかる後に該溶融シリコンを坩堝等容器に移液し融点以下にて固化又は再結晶化することを特徴とする多結晶シリコンの製造方法であって、反応及び結晶化終了後に減圧にした反応炉内でシリコン融液中に溶解した不純物成分をガスとして取り除くと共に該融液を坩堝などの容器に移行して徐冷することにより、外気に取り出すことなく、任意の大きさを有する、多結晶バルク状結晶として得ることが出来る。
以下詳細に説明する。
【0006】
本発明ではシリコンの生成を四塩化珪素と亜鉛との反応によって行い、生成物としてシリコンと塩化亜鉛を得るが、この方法の特徴としては、▲1▼反応が極めて早いこと、▲2▼また反応温度範囲によるが1,000℃以上では四塩化珪素、亜鉛、及び反応生成物である塩化亜鉛が共に気体であり、生成物であるシリコンのみが固体となり、生成したシリコンと原料、反応生成物である塩化亜鉛との分離が容易である。▲3▼反応生成物である塩化亜鉛は直接の電解によって塩素と亜鉛に分解でき、塩素は原料のシリコンと反応させて四塩化珪素の製造に、又亜鉛はそのまま原材料として反応に使用できるので、ほぼ完全なクローズド化が出来る。等で有るが、一方、▲4▼生成したシリコンは一般に粉末状乃至針状晶であり、反応炉の炉壁面に付着しているために、取り扱いに注意を要すると共に、▲5▼大気中に取り出す時に、空気と触れて表面に不純物となる酸素を吸着するので、その除去、精製を必須条件としていた。本発明では生成シリコンを炉中で融体化し、しかる後に融液として取り出し固化乃至再結晶化する事によって、高純度シリコンのバルク結晶を得ることが可能となった。
【0007】
使用する反応炉の形式は特には指定されず、流動床式、ロータリーキルン式或いは固定床式等のいずれでも良い。この場合、主に壁面にシリコンが形成され、それを炉中で溶融してしまうので、溶融シリコンと反応が起こらないよう、内壁は石英ガラスや高純度酸化マグネシウムセラミックスであることが望ましく、特に石英ガラス内張を有することが望ましい。この炉中に反応ガスである四塩化珪素と亜鉛をガス状で送り込み反応を起こさせてシリコンと塩化亜鉛ガスを生成させる。この時、供給ガスが四塩化珪素と亜鉛だけでは反応及び結晶化が早く進みすぎる可能性があり、生成したシリコン中にこれらのガスがトラップされる可能性があるが、反応生成物である塩化亜鉛ガスを雰囲気ガスとして残すことによってこれを制御する事ができる。
反応式は   SiC14+ Zn⇔ZnC12+Si↓
で示され、高温では可逆反応であるので、原料であるSiC14やZnの相対濃度を増加すると反応は右寄りに進む、つまりシリコンの生成速度が増加する。また、反応炉内のZnC12の濃度が増加すると反応速度が遅くなる。尚ここでシリコンは固体であり系外に出ると考えて良い。又圧力を高くすることにより、それを緩和する方向に反応が進むために目的反応速度が大きくなり、圧力を低くすると反応速度は遅くなる。反応炉内の圧力は1から5気圧程度に加圧することが望ましい。また供給ガスは理論組成でも良いが操作性の点からは従来のバルク状シリコンを得るのとは異なり、ここでは亜鉛を理論組成よりわずかに多くしておくことがよい。つまりわずかに過剰な亜鉛の一部が、分解して生成した塩素を吸収し、分解塩素が生成した微粒シリコン中の結晶性の不十分な部分を塩化珪素として浸食することを防ぎ結晶性の良好なシリコン結晶を得ることが出来る。但し、四塩化珪素を過剰に加えても本プロセスが成立することは言うまでもない。
【0008】
又反応炉内に予めシリコンの種結晶を配することにより、すぐれた結晶性を有し、含有不純物のより少ないバルク結晶を形成できる。つまり温度を亜鉛の沸点907℃以上、シリコンの溶融温度1,410℃以下とすると共に、反応ガスを四塩化珪素、亜鉛、並びに塩化亜鉛とする事によって、さらには反応炉内に結晶性の優れた種結晶を置くことによって高度な結晶性を有するバルク結晶が得られる。つまり反応速度が早くなる条件である塩化亜鉛の量比を減らすことによってシリコンの析出速度は速くなり、微細な非晶又は結晶の集積となってしまう。と同時に生成シリコン中の不純物が増加する。一方塩化亜鉛ガスが大過剰の場合は核生成が少なくなり結晶成長が優先される結果、良く発達した針状晶が得られるが、生産量が減ってしまう。これは運転温度によっても変化するので温度、ガス組成を合わせて合目的な状態にしておくことが必要である。尚、反応炉内にシリコンの種結晶が入っているとそのハビットに従った成長があるようであり、針状晶が得られ易くなり、シリコン内への不純物の巻き込みをより少なくすることが出来る。
【0009】
このようにして反応炉内にシリコンを成長させるが、ある程度成長したところで、反応ガスの供給を止め、反応が止まったところで、必要に応じて、雰囲気ガスを抜き、炉温を1,410℃以上、つまり、シリコンの融点以上に上昇させる。この時、雰囲気ガスを抜き減圧とするには外部に反応生成ガス冷却器を設置し、塩化亜鉛の沸点である732℃以下とすれば未反応亜鉛も液化除去され減圧となるため、特に減圧ポンプ或いはブロワー等の手段を使うことなく達成可能である。本発明の一端である雰囲気ガスに反応生成物である塩化亜鉛を使用する目的の一つがこれであり、アルゴン等の不活性ガスを使用する場合との大きな差異である。以上によって析出或いは晶出したシリコンは加温により融液となり、中に含まれる揮発性の未反応物や不純物がガスとなってシリコン中から除かれる。又、これによって、生成したシリコンは融液になると共に減圧下で含有する揮発物質が除かれることによって実質的に精製され、シックスナイン以上の高純度を有するシリコン融液が生成すると共に、坩堝等に移液後、結晶化炉に送られ保持される。尚この時の温度はシリコンの融点である1,410℃以上であることは勿論であるが、高温になるほど不純物の除去には有効であるが、シリコンの蒸気圧が高くなってしまいシリコン自身が揮散してしまうことによる収率の低下が起こるので、本目的用としては、1,410℃〜1,600℃が良い。尚石英ガラスを炉内壁に使用した場合、1,600℃以上では炉内壁の損傷が極端に早くなるという点からも1,600℃以下であることが必要である。
【0010】
このようにして精製し溶融化されたシリコン融液は、坩堝或いは結晶化容器に入れて徐冷して結晶化する。結晶化の条件は特には指定されないが、1,300〜1,400℃、つまりシリコンの固化温度よりわずかに低い温度に保持した坩堝、或いは結晶化容器に注いで結晶化を行うことが望ましい。つまり、冷却速度が早いと、結晶にひずみや割れが起こりやすくなると共に、グレインサイズが小さくなり、太陽電池用として十分な特性を示しにくくなる場合があるので注意を要する。
【0011】
一方反応生成物である塩化亜鉛は液状を保つ温度で溶融塩電解を行い、陽極で塩素を生成し、陰極に亜鉛を生成させる。塩化亜鉛の電気分解は一度塩化亜鉛を冷却して固体で取り出してからでも良いが、反応炉の減圧時に液体として取り出した塩化亜鉛をそのまま電解槽に送りいわゆる溶融塩電解法によって電解することが出来る。底に亜鉛取り出し用のドレイン抜き口を設けた電解槽の底面の壺部を生成亜鉛溜めとした電解槽に該塩化亜鉛液を送り、電解を行う。陽極からは塩素ガスが出るのでこれを上方に集めると共に、後工程の四塩化珪素製造装置に送り、又底部の陰極生成物である亜鉛は適宜ドレイン抜き口を通じて取り出し、再度原料として使用する。
これにより、殆ど廃棄物無しに、シリコン多結晶を得ることが出来る。
【0012】
反応炉及びこれに付随するガス循環系統、製品抜き出し系統に使用する材質は、製品シリコンへの汚染を防ぎ且つ高温の腐食性のガスに耐える事が重要な点であり、特に反応炉はシリコン融液が主に炉壁面に接触して移動するようになるのでシリコン融液とも反応しないことが重要であり、この為には壁面は石英ガラスや高純度酸化マグネシウム、特に石英ガラスが極めて有効である。
【0013】
【発明の効果】
本発明により、
1)  太陽電池を製造する多結晶シリコンをバルクとして連続的に高効率で製造することにが出来るので、シリコンの歩留まりが極めて良く、
2)  シリコンの精製、製造が実質的に反応炉内で出来、製品は多結晶として得られるので、製品品質が高く、且つ連続運転が可能であるため製造にかかる手間も最小限に押さえることが出来る。
3)  反応系は高温を保持したまま連続運転が可能等シリコンの製造に掛かるエネルギー消費を極めて小さく保持することが出来、
4)  しかも生成したシリコンは、従来の同様なプロセスではほぼ非晶質であったものが、結晶性の良好な多結晶であり、安定性と、エネルギー効率に優れ、
5)  反応生成物である塩化亜鉛は電解により原材料である亜鉛に戻すと共に、塩素は四塩化珪素原料としてリサイクルするようにするため、殆ど廃棄物をださない。
というエネルギー面から、また環境の面からも最も優れたバルク多結晶シリコンを得ることが出来た。
【発明の実施の形態】
【シリコン製造工程図】
図1は、本発明に記載された反応炉及び製造工程の概略図である。
【図面の簡単な説明】
【図1】多結晶シリコン製造工程図。
【符号の説明】
1 反応炉
2 反応・結晶化炉兼シリコン融液貯槽
3 ミストセパレーター
4 冷却器
5 塩化亜鉛電解工程
6 四塩化珪素合成塔及び精溜装置
7 原料金属珪素貯槽
8 亜鉛蒸発・加熱器
9 シリコン融液徐冷工程
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing high-purity polycrystalline silicon for a solar cell, and more specifically, evaporates and introduces silicon tetrachloride and zinc into a reaction furnace to perform a gas phase zinc reduction reaction to produce silicon, The present invention relates to a production method for obtaining high-purity polycrystalline silicon by liquefying in a reaction furnace without taking it out and further taking out the melt out of the reaction system and solidifying or recrystallizing it.
[0002]
[Prior art]
Conventionally, silicon for solar cells often uses non-compliant silicon for semiconductors.In such cases, however, there is a problem that supply will not be sufficient to meet dramatic demand for solar cells in the future. Is left. For this reason, a so-called metal melting method in which molten zinc is reacted with silicon tetrachloride is known as a method for independently producing silicon crystals. Due to the difficulty of processing and the difficulty of casting, the cost is high and it has not been put to practical use.
For this reason, silicon production by a vapor phase zinc reduction method has been proposed, but zinc chloride is by-produced at a weight ratio of about 10 times with silicon, and its treatment tends to be a problem, and practical use is limited to only a part. I have. Recently, as described in JP-A-11-92130, silicon is obtained by spraying silicon tetrachloride on the surface of molten zinc, and the generated zinc chloride is electrolyzed to take out zinc metal. For example, a method used for producing silicon tetrachloride has been proposed. Although it achieves its purpose in terms of reusing zinc chloride, the resulting silicon is a mixture with molten zinc, so silicon itself becomes fine particles, and thus the surface area of the generated silicon particles is large. Therefore, there has been a problem that high purification is difficult. In addition, there is a method using monosilane, disilane, or trichlorosilane as a raw material. In addition to the problem that the reaction rate is low and thus energy consumption is large, the recovery of coexisting hydrogen is also a problem. Not only that, there is a problem in handling by-product chlorine or hydrochloric acid.
[0003]
[Problems of the prior art]
As indicated above, most of the prior art has focused on producing silicon as a solid or as a crystal, and little consideration has been given to the properties of the produced solid or crystalline silicon. It is taken out into the atmosphere and melted and liquefied and recrystallized, which prevents oxidation of the silicon surface and contamination of impurities, leaving problems such as the need for repurification before recrystallization. I was
[0004]
[Problems to be solved by the invention]
The present invention mainly provides polycrystalline high-purity silicon for solar cells, that is, bulk high-purity silicon obtained by a gas phase reaction between silicon tetrachloride and zinc. The task was to obtain silicon.
[0005]
[Means for Solving the Problems]
The invention claimed in the present application to solve the above problems is as follows.
That is, in order to obtain a high-purity polycrystalline silicon by performing a gas phase reaction between silicon tetrachloride and zinc in a reaction furnace at a temperature of 907 to 1,410 ° C., silicon is precipitated in the reaction furnace, and the reaction and crystallization are performed. After completion of the reaction, the supply of the reaction gas is stopped, the pressure in the reaction furnace is further reduced, the temperature in the reaction furnace is raised to 1,410 to 1,600 ° C., and the silicon is melted. A method for producing polycrystalline silicon, comprising transferring liquid to an equal container and solidifying or recrystallizing at a temperature below the melting point, wherein the polycrystalline silicon is dissolved in the silicon melt in a reduced-pressure reactor after completion of the reaction and crystallization. By removing the impurity component as a gas and transferring the melt to a container such as a crucible and gradually cooling it, a polycrystalline bulk crystal having an arbitrary size can be obtained without taking it out to the outside air.
The details will be described below.
[0006]
In the present invention, silicon is produced by a reaction between silicon tetrachloride and zinc to obtain silicon and zinc chloride as products. The features of this method are that (1) the reaction is extremely fast, (2) and Above 1,000 ° C, depending on the temperature range, silicon tetrachloride, zinc, and zinc chloride as a reaction product are both gases, and only silicon as a product becomes solid. Separation from certain zinc chloride is easy. (3) Zinc chloride, a reaction product, can be decomposed into chlorine and zinc by direct electrolysis, and chlorine can be reacted with silicon as a raw material to produce silicon tetrachloride, and zinc can be used as a raw material for the reaction. Almost completely closed. On the other hand, (4) the produced silicon is generally in the form of powder or needle-like crystals and adheres to the furnace wall of the reaction furnace. At the time of removal, oxygen, which is an impurity, is adsorbed on the surface by contact with air, so that its removal and purification are essential conditions. In the present invention, it is possible to obtain a bulk crystal of high-purity silicon by melting the produced silicon in a furnace and then taking it out as a melt and solidifying or recrystallizing it.
[0007]
The type of the reaction furnace to be used is not particularly specified, and may be any of a fluidized bed type, a rotary kiln type, and a fixed bed type. In this case, silicon is mainly formed on the wall surface and it is melted in the furnace, so that the inner wall is desirably made of quartz glass or high-purity magnesium oxide ceramics, especially quartz so that no reaction occurs with the molten silicon. It is desirable to have a glass lining. Silicon tetrachloride and zinc, which are reaction gases, are fed into the furnace in a gaseous state to cause a reaction to generate silicon and zinc chloride gas. At this time, the reaction and crystallization may proceed too quickly if the supply gases are only silicon tetrachloride and zinc, and these gases may be trapped in the generated silicon. This can be controlled by leaving zinc gas as atmospheric gas.
The reaction formula is SiC14 + Zn⇔ZnC12 + Si ↓
Since the reaction is a reversible reaction at a high temperature, if the relative concentration of the raw materials SiC14 and Zn is increased, the reaction proceeds to the right, that is, the production rate of silicon increases. Also, as the concentration of ZnC12 in the reaction furnace increases, the reaction speed decreases. Here, silicon may be considered to be solid and go out of the system. In addition, when the pressure is increased, the reaction proceeds in a direction in which the pressure is reduced, so that the target reaction rate is increased. When the pressure is decreased, the reaction rate is decreased. The pressure in the reactor is desirably increased to about 1 to 5 atm. Although the supply gas may have a theoretical composition, it is different from the conventional method of obtaining bulk silicon in terms of operability. Here, it is preferable that zinc be slightly larger than the theoretical composition. In other words, a part of the zinc, which is slightly excessive, absorbs the chlorine generated by the decomposition, and prevents the insufficiently crystalline portion in the fine silicon particles generated by the decomposed chlorine from eroding as silicon chloride, thereby improving the crystallinity. Silicon crystal can be obtained. However, it goes without saying that the present process is established even if silicon tetrachloride is excessively added.
[0008]
By disposing a seed crystal of silicon in the reactor in advance, a bulk crystal having excellent crystallinity and containing less impurities can be formed. In other words, by setting the temperature to 907 ° C. or higher of the boiling point of zinc and 1,410 ° C. or lower to the melting point of silicon, and by setting the reaction gas to silicon tetrachloride, zinc, and zinc chloride, the crystallinity in the reaction furnace is further improved. By placing seed crystals, bulk crystals having a high degree of crystallinity can be obtained. In other words, reducing the amount ratio of zinc chloride, which is a condition for increasing the reaction rate, increases the deposition rate of silicon, resulting in the accumulation of fine amorphous or crystals. At the same time, impurities in the generated silicon increase. On the other hand, if the zinc chloride gas is in a large excess, nucleation is reduced and crystal growth is prioritized. As a result, well-developed needle crystals are obtained, but the production amount is reduced. Since this varies depending on the operating temperature, it is necessary to adjust the temperature and gas composition to a suitable state. It should be noted that if a silicon seed crystal is contained in the reaction furnace, it seems that there is growth in accordance with the habit, needle-like crystals are easily obtained, and entrapment of impurities into silicon can be further reduced. .
[0009]
In this way, silicon is grown in the reaction furnace. When the silicon has grown to some extent, the supply of the reaction gas is stopped, and when the reaction stops, the atmosphere gas is removed as necessary, and the furnace temperature is raised to 1,410 ° C. or higher. That is, the temperature is raised to a temperature higher than the melting point of silicon. At this time, in order to remove the atmospheric gas and reduce the pressure, a reaction product gas cooler is installed outside. If the temperature is set to 732 ° C. or less, which is the boiling point of zinc chloride, unreacted zinc is liquefied and removed, and the pressure is reduced. Alternatively, it can be achieved without using a means such as a blower. This is one of the purposes of using the reaction product zinc chloride as the atmosphere gas which is one end of the present invention, which is a great difference from the case where an inert gas such as argon is used. The silicon thus precipitated or crystallized becomes a melt by heating, and volatile unreacted substances and impurities contained therein become gas and are removed from the silicon. Further, by this, the generated silicon becomes a melt and is substantially purified by removing volatile substances contained under reduced pressure, thereby producing a silicon melt having a high purity of Six Nine or higher, and in a crucible or the like. After the liquid transfer, it is sent to the crystallization furnace and held. The temperature at this time is, of course, not less than 1,410 ° C., which is the melting point of silicon, but the higher the temperature, the more effective it is for removing impurities, but the vapor pressure of silicon increases and silicon itself becomes Since the volatilization lowers the yield due to volatilization, the temperature is preferably from 1,410 ° C to 1,600 ° C for this purpose. When quartz glass is used for the furnace inner wall, the temperature must be 1600 ° C. or less from the viewpoint that the damage to the furnace inner wall becomes extremely rapid at 1600 ° C. or more.
[0010]
The silicon melt refined and melted in this way is put into a crucible or a crystallization vessel and gradually cooled to be crystallized. The crystallization conditions are not particularly specified, but it is desirable to perform crystallization by pouring into a crucible or a crystallization container maintained at 1,300 to 1,400 ° C., that is, a temperature slightly lower than the solidification temperature of silicon. That is, when the cooling rate is high, it is necessary to pay attention to the fact that the crystal is likely to be strained or cracked, and the grain size is reduced, so that it may be difficult to exhibit sufficient characteristics for a solar cell.
[0011]
On the other hand, zinc chloride, which is a reaction product, is subjected to molten salt electrolysis at a temperature that maintains a liquid state, chlorine is generated at the anode, and zinc is generated at the cathode. The electrolysis of zinc chloride may be performed after cooling zinc chloride once and taking it out as a solid, but zinc chloride taken out as a liquid when the reactor is depressurized can be sent to the electrolytic cell as it is to perform electrolysis by the so-called molten salt electrolysis method. . The zinc chloride solution is fed to an electrolytic cell in which a bottom portion of the electrolytic cell provided with a drain outlet for taking out zinc at the bottom and a pot formed on the bottom of the electrolytic cell is used as a zinc reservoir to perform electrolysis. Since chlorine gas is emitted from the anode, the chlorine gas is collected upward and sent to a silicon tetrachloride manufacturing apparatus in the subsequent step. Zinc, which is a cathode product at the bottom, is appropriately taken out through a drain outlet and used again as a raw material.
Thereby, polycrystalline silicon can be obtained with almost no waste.
[0012]
It is important that the material used in the reactor and its associated gas circulation system and product withdrawal system prevent contamination of the product silicon and withstand high-temperature corrosive gases. Since the liquid mainly comes into contact with the furnace wall and moves, it is important that the liquid does not react with the silicon melt. For this purpose, quartz glass or high-purity magnesium oxide, especially quartz glass, is very effective for the wall. .
[0013]
【The invention's effect】
According to the present invention,
1) Since polycrystalline silicon for manufacturing solar cells can be continuously manufactured with high efficiency as a bulk, the yield of silicon is extremely good.
2) Refining and manufacturing of silicon can be performed substantially in a reactor, and the product can be obtained as polycrystal, so the product quality is high and continuous operation is possible, minimizing the manufacturing time. I can do it.
3) It is possible to keep the energy consumption for silicon production extremely small, such as continuous operation possible while maintaining high temperature in the reaction system.
4) In addition, the produced silicon, which was substantially amorphous in the same process as the conventional one, is polycrystalline with good crystallinity, and has excellent stability and energy efficiency.
5) Zinc chloride as a reaction product is returned to zinc as a raw material by electrolysis, and chlorine is recycled as a raw material of silicon tetrachloride, so that little waste is produced.
Thus, bulk polycrystalline silicon, which is the best in terms of energy and environment, was obtained.
BEST MODE FOR CARRYING OUT THE INVENTION
[Silicon manufacturing process diagram]
FIG. 1 is a schematic view of a reactor and a manufacturing process described in the present invention.
[Brief description of the drawings]
FIG. 1 is a manufacturing process diagram of polycrystalline silicon.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Reactor 2 Reaction / crystallization furnace / silicon melt storage tank 3 Mist separator 4 Cooler 5 Zinc chloride electrolysis step 6 Silicon tetrachloride synthesis tower and rectifying device 7 Raw metal silicon storage tank 8 Zinc evaporation / heater 9 Silicon melt Slow cooling process

Claims (9)

四塩化珪素と亜鉛とを温度907〜1,410℃の反応炉内において気相反応を行わせ高純度多結晶シリコンを得るにあたり、反応炉内にてシリコン結晶を析出せしめた後反応ガスの供給を停止し、該反応炉内温度を1,410〜1,600℃に昇温して該結晶シリコンを溶融し、しかる後融液として坩堝等容器に移液し融点以下にて固化又は再結晶化することを特徴とする多結晶シリコンの製造方法。In order to obtain high-purity polycrystalline silicon by performing a gas phase reaction between silicon tetrachloride and zinc in a reaction furnace at a temperature of 907 to 1,410 ° C., a silicon crystal is precipitated in the reaction furnace, and then a reaction gas is supplied. Is stopped, the temperature in the reaction furnace is raised to 1,410 to 1,600 ° C. to melt the crystalline silicon, and then transferred to a vessel such as a crucible as a melt and solidified or recrystallized below the melting point. A method for producing polycrystalline silicon. 該反応炉内温度を1,410〜1,600℃に昇温して該シリコンを溶融する際、反応炉内を大気圧以下に減圧してシリコン融液中のガス抜きを容易とすることを特徴とする請求項1記載の多結晶シリコンの製造方法。When the temperature inside the reaction furnace is raised to 1,410 to 1,600 ° C. to melt the silicon, the pressure inside the reaction furnace is reduced to an atmospheric pressure or less to facilitate degassing of the silicon melt. 2. The method for producing polycrystalline silicon according to claim 1, wherein: 温度907〜1,410℃にて行う反応及び結晶化工程と、該反応炉内温度を1,410〜1,600℃に昇温して該シリコンを溶融し融液として抜き出す工程とを、交互に連続的に行う事を特徴とする請求項1及び2記載の多結晶シリコンの製造方法。A reaction and crystallization step performed at a temperature of 907 to 1,410 ° C. and a step of raising the temperature in the reaction furnace to 1,410 to 1,600 ° C. to melt the silicon and withdraw as a melt are alternately performed. 3. The method according to claim 1, wherein the method is performed continuously. 副生塩化亜鉛の一部を該気相反応の雰囲気ガスとして使用する事を特徴とする請求項1から3記載の多結晶シリコンの製造方法。4. The method for producing polycrystalline silicon according to claim 1, wherein a part of zinc chloride by-product is used as an atmosphere gas for the gas phase reaction. 未反応亜鉛又は/及び四塩化珪素を含む副生塩化亜鉛をバイパスにより抜き出し、系内圧力を5気圧以下に保つように冷却・液化分離して反応系から除外する事を特徴とする請求項1から4記載の多結晶シリコンの製造方法。2. A method according to claim 1, wherein unreacted zinc and / or by-product zinc chloride containing silicon tetrachloride is withdrawn by bypass, cooled, liquefied and separated so as to keep the pressure in the system at 5 atm or less. 5. The method for producing polycrystalline silicon according to items 4 to 4. 反応系より液化分離された塩化亜鉛を、電解液として使用し、溶融塩電解により塩素及び亜鉛に分解し、亜鉛は四塩化珪素の還元に、塩素は原料金属珪素と反応させ四塩化珪素として再使用し循環する事を特徴とする請求項1から5記載の多結晶シリコンの製造方法。The zinc chloride liquefied and separated from the reaction system is used as an electrolytic solution and decomposed into chlorine and zinc by molten salt electrolysis.Zinc reacts with silicon tetrachloride for reduction, and chlorine reacts with raw metal silicon to produce silicon tetrachloride. 6. The method for producing polycrystalline silicon according to claim 1, wherein the method is used and circulated. 反応炉の炉内壁が石英ガラスで形成してなることを特徴とする請求項1から6記載の多結晶シリコンの製造方法。7. The method for producing polycrystalline silicon according to claim 1, wherein the inner wall of the reactor is formed of quartz glass. 反応炉内にあらかじめシリコン種結晶を投入し、該種結晶上にシリコンを晶出させることを特徴とする請求項1から7記載の多結晶シリコンの製造方法。8. The method for producing polycrystalline silicon according to claim 1, wherein a silicon seed crystal is previously charged into the reactor, and silicon is crystallized on the seed crystal. 該反応により内面がCVD(Chemical Vapor Deposition)シリコンコーティングされた反応炉を繰り返し使用し、該反応炉内壁の付着シリコンを種結晶として活用することを特徴とする請求項1から8記載の多結晶シリコンの製造方法。9. The polycrystalline silicon according to claim 1, wherein a reaction furnace whose inner surface is coated with CVD (Chemical Vapor Deposition) silicon by the reaction is repeatedly used, and silicon deposited on the inner wall of the reaction furnace is used as a seed crystal. Manufacturing method.
JP2002224179A 2002-06-28 2002-06-28 Method of manufacturing polycrystalline silicon Pending JP2004035382A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002224179A JP2004035382A (en) 2002-06-28 2002-06-28 Method of manufacturing polycrystalline silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002224179A JP2004035382A (en) 2002-06-28 2002-06-28 Method of manufacturing polycrystalline silicon

Publications (1)

Publication Number Publication Date
JP2004035382A true JP2004035382A (en) 2004-02-05

Family

ID=31711496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002224179A Pending JP2004035382A (en) 2002-06-28 2002-06-28 Method of manufacturing polycrystalline silicon

Country Status (1)

Country Link
JP (1) JP2004035382A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006298740A (en) * 2005-04-19 2006-11-02 Kinotech Corp Method for manufacturing silicon
JP2007145663A (en) * 2005-11-29 2007-06-14 Chisso Corp Method for producing high purity polycrystalline silicon
JP2007217262A (en) * 2006-02-14 2007-08-30 Kinotech Corp Apparatus for manufacturing silicon
JP2008230871A (en) * 2007-03-19 2008-10-02 Chisso Corp Method for manufacturing polycrystalline silicon
WO2008153181A1 (en) * 2007-06-15 2008-12-18 Solar Silicon Technology Corporation Reactor for producing silicon material for solar cell
JP2009280456A (en) * 2008-05-23 2009-12-03 Mitsubishi Materials Corp Apparatus for manufacturing polycrystalline silicon
JP2010235322A (en) * 2009-03-30 2010-10-21 Cosmo Oil Co Ltd Production method of polycrystalline silicon ingot
JP2010235321A (en) * 2009-03-30 2010-10-21 Cosmo Oil Co Ltd Method for melting polycrystalline silicon
TWI386526B (en) * 2005-11-29 2013-02-21 Jnc Corp Production process for high purity polycrystal silicon and production apparatus for the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006298740A (en) * 2005-04-19 2006-11-02 Kinotech Corp Method for manufacturing silicon
JP4713941B2 (en) * 2005-04-19 2011-06-29 旭硝子株式会社 Method for producing silicon
JP4692247B2 (en) * 2005-11-29 2011-06-01 チッソ株式会社 Method for producing high-purity polycrystalline silicon
JP2007145663A (en) * 2005-11-29 2007-06-14 Chisso Corp Method for producing high purity polycrystalline silicon
TWI386526B (en) * 2005-11-29 2013-02-21 Jnc Corp Production process for high purity polycrystal silicon and production apparatus for the same
JP2007217262A (en) * 2006-02-14 2007-08-30 Kinotech Corp Apparatus for manufacturing silicon
JP2008230871A (en) * 2007-03-19 2008-10-02 Chisso Corp Method for manufacturing polycrystalline silicon
KR101365171B1 (en) 2007-03-19 2014-02-21 제이엔씨 주식회사 Method for producing polycrystalline silicon
JPWO2008153181A1 (en) * 2007-06-15 2010-08-26 ソーラーシリコンテクノロジー株式会社 Reactor for producing silicon raw materials for solar cells
WO2008153181A1 (en) * 2007-06-15 2008-12-18 Solar Silicon Technology Corporation Reactor for producing silicon material for solar cell
JP2009280456A (en) * 2008-05-23 2009-12-03 Mitsubishi Materials Corp Apparatus for manufacturing polycrystalline silicon
JP2010235322A (en) * 2009-03-30 2010-10-21 Cosmo Oil Co Ltd Production method of polycrystalline silicon ingot
JP2010235321A (en) * 2009-03-30 2010-10-21 Cosmo Oil Co Ltd Method for melting polycrystalline silicon

Similar Documents

Publication Publication Date Title
US20090202415A1 (en) Process for producing high-purity silicon and apparatus
US4753783A (en) Process and apparatus for obtaining silicon from fluosilicic acid
CN101460398B (en) Production of silicon through a closed-loop process
US4525334A (en) Process for the production of silicon
JP4038110B2 (en) Method for producing silicon
WO2010029894A1 (en) High-purity crystalline silicon, high-purity silicon tetrachloride, and processes for producing same
MX2007011733A (en) Process for the production of si by reduction of siclj with liquid zn.
JP2003342016A (en) Method for manufacturing polycrystalline silicon
JPH1111925A (en) Production of polycrystalline silicon and zinc oxide
JP2004035382A (en) Method of manufacturing polycrystalline silicon
JP4713941B2 (en) Method for producing silicon
JP2004284935A (en) Apparatus and method for manufacturing silicon
JP2004210594A (en) Method of manufacturing high purity silicon
JP2004099421A (en) Method for manufacturing silicon
JP2004010472A (en) Method for producing silicon
JP5217162B2 (en) Method for producing polycrystalline silicon
WO2001048277A1 (en) Method and apparatus for producing single crystal of silicon carbide
JP4392670B2 (en) Manufacturing method of high purity silicon
KR101525859B1 (en) Apparatus for manufacturing fine powder of high purity silicon
JP2016175806A (en) Manufacturing method of high-purity silicon
JP2007217262A (en) Apparatus for manufacturing silicon
US20190071794A1 (en) Efficient solar grade silicon production system
US20100024882A1 (en) Process for the Production of Si by Reduction of SiHCl3 with Liquid Zn
US20130206056A1 (en) Methods of producing crystalline semiconductor materials
JPH11180710A (en) Apparatus for production of silicon ingot