JP2006027988A - Method for producing nitride single crystal - Google Patents

Method for producing nitride single crystal Download PDF

Info

Publication number
JP2006027988A
JP2006027988A JP2004213287A JP2004213287A JP2006027988A JP 2006027988 A JP2006027988 A JP 2006027988A JP 2004213287 A JP2004213287 A JP 2004213287A JP 2004213287 A JP2004213287 A JP 2004213287A JP 2006027988 A JP2006027988 A JP 2006027988A
Authority
JP
Japan
Prior art keywords
single crystal
nitride
raw material
carbon
nitride single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004213287A
Other languages
Japanese (ja)
Other versions
JP4736365B2 (en
Inventor
Noboru Ichinose
昇 一ノ瀬
Shintaro Miyazawa
信太郎 宮澤
Toshiaki Mabuchi
利明 馬淵
Kazuo Sanada
和夫 真田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Waseda University
Original Assignee
Fujikura Ltd
Waseda University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd, Waseda University filed Critical Fujikura Ltd
Priority to JP2004213287A priority Critical patent/JP4736365B2/en
Publication of JP2006027988A publication Critical patent/JP2006027988A/en
Application granted granted Critical
Publication of JP4736365B2 publication Critical patent/JP4736365B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide techniques of producing a nitride single crystal by which a high-quality nitride single crystal can be produced by a sublimation method. <P>SOLUTION: A source material 9 for a nitride single crystal is heated and sublimated in a heating furnace 1, and the sublimated source material is crystallized on a seed crystal 7 disposed in the furnace to grow a single crystal. In the above method for producing a nitride single crystal, a mixture source material preliminarily prepared by mixing an appropriate amount of carbon in aluminum nitride as a source material is heated and sublimated. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、窒化物単結晶の製造方法に関する。   The present invention relates to a method for producing a nitride single crystal.

III族元素の窒化物のうち、窒化アルミニウムの単結晶材料は、窒化ガリウムを用いた半導体発光デバイスの基板として期待されている。これは、窒化ガリウムの光半導体デバイスの基板には、従来、サファイアの単結晶材料が用いられているところ、窒化アルミニウムは、サファイアに比べて熱伝導率が高く、かつ、窒化ガリウムとの格子の不整合性が小さいからであり、また、バンドギャップの大きさも、サファイアと同様に可視領域での光吸収が無い程度以上の大きさを具備しているからである。   Among group III element nitrides, aluminum nitride single crystal material is expected as a substrate for semiconductor light emitting devices using gallium nitride. This is because sapphire single crystal material is conventionally used for the substrate of gallium nitride optical semiconductor devices. Aluminum nitride has higher thermal conductivity than sapphire and has a lattice with gallium nitride. This is because the mismatch is small, and the band gap has a size larger than the extent that there is no light absorption in the visible region like sapphire.

このようなIII族元素の窒化物の単結晶材料は、工業的に用いられる温度、圧力の条件下では安定な液相を持たないことから、シリコンの単結晶のように液相から種子結晶を引き上げるなどの方法では製造することができない。そのため、種々の方法が提案されている。   Such a single crystal material of a nitride of a group III element does not have a stable liquid phase under the temperature and pressure conditions that are used industrially. It cannot be manufactured by a method such as pulling up. For this reason, various methods have been proposed.

例えば、Glen A.SLACK and T.F.McNELLY, Journal of Crystal Growth 34(1976), p.263-279(非特許文献1)には、高純度AlNの結晶成長に関して、昇華法やその他の結晶粒成長技術について概説されており、このうち、昇華法に関しては、AlNを装入したカーボン製のるつぼを加熱して、AlN単結晶が製造可能であることが記されている。しかし、この非特許文献1に開示されているAlN単結晶は、粉状又は粒状程度の微小な単結晶であって、半導体発光デバイスの基板として使用できる大きさの単結晶については開示されていない。また、R.Shelesser, Z.Sitar, Journal of Crystal Growth 234(2002), p.349-353(非特許文献2)には、アルミニウムを窒素雰囲気中で蒸発させることにより、AlN単結晶の成長が確認できたことが記載されている。   For example, Glen A. SLACK and TFMcNELLY, Journal of Crystal Growth 34 (1976), p.263-279 (Non-patent Document 1) describes a sublimation method and other crystal grain growth techniques for crystal growth of high-purity AlN. Among them, regarding the sublimation method, it is described that an AlN single crystal can be produced by heating a carbon crucible charged with AlN. However, the AlN single crystal disclosed in Non-Patent Document 1 is a fine single crystal in a powdery or granular form, and is not disclosed for a single crystal having a size that can be used as a substrate of a semiconductor light emitting device. . In addition, R. Shelesser, Z. Sitar, Journal of Crystal Growth 234 (2002), p. 349-353 (Non-patent Document 2) describes the growth of AlN single crystals by evaporating aluminum in a nitrogen atmosphere. It is described that it was confirmed.

近年では、窒化物単結晶の製造方法として、昇華法が有望視されるようになってきており、この昇華法について技術開発が進められている。例えば、特開平10−053495号公報(特許文献1)には、窒化物の粉末と、この窒化物と反応して窒化物を分解気化させる酸化物の粉末とを混合し、窒素雰囲気などで昇華温度よりも低い温度で加熱することにより、バルク素材として実用に供し得る大きさの窒化物単結晶が得られたことが記載されている。   In recent years, the sublimation method has come to be regarded as promising as a method for producing a nitride single crystal, and technical development of this sublimation method is underway. For example, in Japanese Patent Laid-Open No. 10-053495 (Patent Document 1), a nitride powder and an oxide powder that reacts with the nitride to decompose and vaporize the nitride are mixed and sublimated in a nitrogen atmosphere or the like. It is described that a nitride single crystal having a size that can be practically used as a bulk material was obtained by heating at a temperature lower than the temperature.

図4は、昇華法を用いた従来の一般的な窒化物単結晶の製造装置を示している。図中1は加熱炉であり、この加熱炉1は、加熱手段である誘導加熱コイル2と、この誘導加熱コイル2の内側に配置された加熱炉本体3とを備えている。加熱炉本体3の内側下部には、窒化物単結晶の原料9を収容する黒鉛るつぼ4が設けられている。また、加熱炉本体3には雰囲気ガスの流入口5及び排出口6が設けられていて、流入口5から雰囲気ガスを導入する一方、排出口6から排出させて、加熱炉本体3の内側を所定のガス雰囲気でかつ、所定のガス圧力に調整できるようになっている。また、加熱炉本体3の内側上部には、窒化物単結晶の種子結晶7が貼り付けられたサセプター8が固定されている。このサセプター8は、黒鉛などからなる板状のものであり、その種子結晶7を貼り付ける面は、原料9を収容した黒鉛るつぼ4と対向するように水平に配置されている。また、種子結晶7の表面もサセプター8の表面と平行となるように、水平に配置されている。   FIG. 4 shows a conventional general nitride single crystal manufacturing apparatus using a sublimation method. In the figure, reference numeral 1 denotes a heating furnace, and the heating furnace 1 includes an induction heating coil 2 that is a heating means, and a heating furnace main body 3 disposed inside the induction heating coil 2. A graphite crucible 4 that contains a nitride single crystal raw material 9 is provided at the inner lower portion of the heating furnace body 3. In addition, the heating furnace body 3 is provided with an inlet 5 and an outlet 6 for the atmospheric gas, and the atmospheric gas is introduced from the inlet 5 while being discharged from the outlet 6 so that the inside of the heating furnace body 3 A predetermined gas atmosphere can be adjusted to a predetermined gas pressure. A susceptor 8 to which a seed crystal 7 of nitride single crystal is attached is fixed to the inner upper portion of the heating furnace body 3. The susceptor 8 is a plate-shaped member made of graphite or the like, and the surface to which the seed crystal 7 is attached is horizontally arranged so as to face the graphite crucible 4 containing the raw material 9. Further, the surface of the seed crystal 7 is also arranged horizontally so as to be parallel to the surface of the susceptor 8.

このような窒化物単結晶の製造装置を用いて昇華法により窒化物単結晶を製造するときには、まず、黒鉛るつぼ4の内側に原料9となる窒化物の粉末や焼結体などを配置する。次いで、加熱炉1内を排出口6に接続された図示しない排気ポンプにより真空排気した後、雰囲気ガスの流入口5から窒素などの雰囲気ガスを導入する。そして、誘導加熱コイル2を動作させることにより、黒鉛るつぼ4内に収容した原料9である窒化物粉末や焼結体を所定の昇華温度になるよう加熱するとともに、サセプター8及び種子結晶7を所定の析出温度になるよう加熱する。また、加熱中は、加熱炉1上部の排出口6から加熱炉1内の雰囲気ガスを排気しつつ下部の流入口5から雰囲気ガスを加熱炉1内に供給することにより、加熱炉1内のガス圧力、流量を適切に調整している。   When a nitride single crystal is manufactured by a sublimation method using such a nitride single crystal manufacturing apparatus, first, a nitride powder or a sintered body as a raw material 9 is placed inside the graphite crucible 4. Next, after the inside of the heating furnace 1 is evacuated by an exhaust pump (not shown) connected to the discharge port 6, an atmosphere gas such as nitrogen is introduced from the atmosphere gas inlet 5. Then, by operating the induction heating coil 2, the nitride powder or the sintered body, which is the raw material 9 accommodated in the graphite crucible 4, is heated to a predetermined sublimation temperature, and the susceptor 8 and the seed crystal 7 are predetermined. Heat to a precipitation temperature of. During heating, the atmospheric gas in the heating furnace 1 is exhausted from the discharge port 6 at the upper part of the heating furnace 1 while the atmospheric gas is supplied into the heating furnace 1 from the lower inlet 5. The gas pressure and flow rate are adjusted appropriately.

この炉内加熱により、黒鉛るつぼ4に収容された原料9である窒化物粉末などが溶融、昇華し、昇華した窒化物の原料ガスが種子結晶7の表面で析出することにより、窒化物の単結晶が結晶成長する。この結晶成長中においては、種子結晶7上での結晶成長の結晶化速度を制御するため、種子結晶7の温度と原料9から昇華する昇華ガスの昇華速度(単位時間当たりの昇華量)とをそれぞれ最適化する温度制御が行われている。   By heating in the furnace, the nitride powder as the raw material 9 accommodated in the graphite crucible 4 is melted and sublimated, and the sublimated nitride raw material gas is precipitated on the surface of the seed crystal 7, so that the nitride single substance is obtained. Crystal grows. During the crystal growth, in order to control the crystallization speed of the crystal growth on the seed crystal 7, the temperature of the seed crystal 7 and the sublimation speed (sublimation amount per unit time) of the sublimation gas sublimated from the raw material 9 are set. Each temperature control is optimized.

しかし、上述の昇華法による窒化物単結晶の製造方法では、原料に窒化アルミニウムを採用する場合、不純物として酸素の存在が不可避である。このように酸素が存在してしまうと熱伝導率が悪くなってしまい、半導体発光デバイスの基板として使用できなくなってしまう。これは、原料となる窒化アルミニウムが、その表面及び内部に酸素を不純物として含有しており、特に表面にはアルミニウムの酸化(アルミナ)層が存在するためであり、プロセス中でも酸素はアルミニウムと強固に結合して安定なアルミナを生成するため、その除去は非常に困難である。
特開平10−053495号公報 Glen A.SLACK and T.F.McNELLY, Journal of Crystal Growth 34(1976), pp.263-279 R.Shelesser, Z.Sitar, Journal of Crystal Growth 234(2002), pp.349-353
However, in the above-described method for producing a nitride single crystal by the sublimation method, when aluminum nitride is employed as a raw material, the presence of oxygen as an impurity is unavoidable. When oxygen is present in this way, the thermal conductivity is deteriorated and cannot be used as a substrate of a semiconductor light emitting device. This is because aluminum nitride as a raw material contains oxygen as an impurity on the surface and inside thereof, and in particular, there is an aluminum oxide (alumina) layer on the surface. Because it combines to produce stable alumina, its removal is very difficult.
Japanese Patent Laid-Open No. 10-053495 Glen A. SLACK and TFMcNELLY, Journal of Crystal Growth 34 (1976), pp.263-279 R. Shelesser, Z. Sitar, Journal of Crystal Growth 234 (2002), pp.349-353

本発明は、このような従来の技術的課題に鑑みてなされたものであり、昇華による窒化物の単結晶製造中に、原料として採用する窒化アルミニウムに不純物として存在する酸素を効果的に除去することができる窒化物単結晶の製造方法を提供することを目的とする。   The present invention has been made in view of such conventional technical problems, and effectively removes oxygen present as impurities in aluminum nitride employed as a raw material during the production of a nitride single crystal by sublimation. An object of the present invention is to provide a method for producing a nitride single crystal that can be used.

請求項1の発明は、加熱炉内で窒化物単結晶用の原料を加熱して昇華させ、昇華させた原料を、前記加熱炉内に設けられた種子結晶上に析出させて単結晶を成長させる窒化物単結晶の製造方法において、原料の窒化アルミニウムに適量のカーボンをあらかじめ混合した混合原料を加熱、昇華させることを特徴とするものである。   According to the first aspect of the present invention, a single crystal is grown by heating and sublimating a raw material for a nitride single crystal in a heating furnace, and depositing the sublimated raw material on a seed crystal provided in the heating furnace. The nitride single crystal manufacturing method is characterized by heating and sublimating a mixed raw material in which an appropriate amount of carbon is mixed in advance with a raw material aluminum nitride.

請求項2の発明は、請求項1の窒化物単結晶の製造方法において、前記カーボンとしてアセチレンブラックを使用することを特徴とするものである。   The invention of claim 2 is characterized in that, in the method for producing a nitride single crystal of claim 1, acetylene black is used as the carbon.

請求項3の発明は、請求項1の窒化物単結晶の製造方法において、前記カーボンとしてカーボンブラック、カーボンナノチューブ又はフラーレンを使用することを特徴とするものである。   According to a third aspect of the present invention, in the method for producing a nitride single crystal according to the first aspect, carbon black, carbon nanotube, or fullerene is used as the carbon.

本発明によれば、窒化アルミニウムを原料とし、昇華法によって窒化物単結晶を製造するにおいて、あらかじめカーボンを原料に混合した混合原料を加熱・昇華させることにより、単結晶の酸素を除去することができ、良質な窒化物単結晶を製造することができる。   According to the present invention, in producing a nitride single crystal by a sublimation method using aluminum nitride as a raw material, oxygen in the single crystal can be removed by heating and sublimating a mixed raw material in which carbon is mixed with the raw material in advance. And a high-quality nitride single crystal can be manufactured.

以下、本発明の実施の形態を詳説する。上記昇華法により窒化アルミニウムの単結晶を製造する際に得られる単結晶に、不純物である酸化物を少なくし、良質で大口径の単結晶を効率よく製造できるようにするため、原料の窒化アルミニウムに適量のカーボンを混合した混合原料を使用する。   Hereinafter, embodiments of the present invention will be described in detail. In order to make it possible to efficiently produce a high quality, large-diameter single crystal in the single crystal obtained when the single crystal of aluminum nitride is produced by the above-described sublimation method, the amount of oxides as impurities is reduced. A mixed raw material in which an appropriate amount of carbon is mixed is used.

そして、従来例と同様に図4に示した窒化物単結晶の製造装置において、黒鉛るつぼ4内に窒化アルミニウムに所定割合でカーボンを混合した混合原料9の粉末や焼結体を配置する。次いで、加熱炉1内を排出口6に接続された図示しない排気ポンプにより真空排気した後、雰囲気ガスの流入口5から窒素などの雰囲気ガスを導入する。そして、誘導加熱コイル2を動作させることにより、黒鉛るつぼ4内に収容した原料9である窒化物粉末や焼結体を所定の昇華温度になるよう加熱するとともに、サセプター8及び種子結晶7を所定の析出温度になるよう加熱する。また、加熱中は、加熱炉1上部の排出口6から加熱炉1内の雰囲気ガスを排気しつつ下部の流入口5から雰囲気ガスを加熱炉1内に供給することにより、加熱炉1内のガス圧力、流量を適切に調整している。   As in the conventional example, in the nitride single crystal manufacturing apparatus shown in FIG. 4, the powder or sintered body of the mixed raw material 9 in which carbon is mixed with aluminum nitride at a predetermined ratio is placed in the graphite crucible 4. Next, after the inside of the heating furnace 1 is evacuated by an exhaust pump (not shown) connected to the discharge port 6, an atmosphere gas such as nitrogen is introduced from the atmosphere gas inlet 5. Then, by operating the induction heating coil 2, the nitride powder or the sintered body, which is the raw material 9 accommodated in the graphite crucible 4, is heated to a predetermined sublimation temperature, and the susceptor 8 and the seed crystal 7 are predetermined. Heat to a precipitation temperature of. During heating, the atmospheric gas in the heating furnace 1 is exhausted from the discharge port 6 at the upper part of the heating furnace 1 while the atmospheric gas is supplied into the heating furnace 1 from the lower inlet 5. The gas pressure and flow rate are adjusted appropriately.

この炉内加熱により、黒鉛るつぼ4に収容された混合原料9である窒化物粉末などが溶融、昇華し、昇華した窒化物の原料ガスが種子結晶7の表面で析出することにより、窒化物の単結晶が結晶成長する。この結晶成長中においては、種子結晶7上での結晶成長の結晶化速度を制御するため、種子結晶7の温度と混合原料9から昇華する昇華ガスの昇華速度(単位時間当たりの昇華量)とをそれぞれ最適化する温度制御を行う。なお、カーボン原料として、アセチレンブラックやファーネスブラックの粉末を使用することができるが、特に他の不純物、例えばSの含有率の小さいアセチレンブラックの粉末、またカーボンナノチューブ、フラーレンが好ましい。また、カーボンの混入率は、化学量論比から、窒化アルミニウム材料中の酸素含有量の50〜150質量%が良く、特に60〜100質量%が好適である。   By heating in the furnace, the nitride powder as the mixed raw material 9 accommodated in the graphite crucible 4 is melted and sublimated, and the sublimated nitride raw material gas is precipitated on the surface of the seed crystal 7, thereby A single crystal grows. During the crystal growth, in order to control the crystallization speed of the crystal growth on the seed crystal 7, the temperature of the seed crystal 7 and the sublimation speed of the sublimation gas sublimated from the mixed raw material 9 (sublimation amount per unit time) Perform temperature control to optimize each. As the carbon raw material, acetylene black or furnace black powder can be used, but other impurities such as acetylene black powder having a low S content, carbon nanotubes, and fullerene are particularly preferable. Further, the mixing ratio of carbon is preferably 50 to 150% by mass, particularly preferably 60 to 100% by mass, based on the stoichiometric ratio, based on the oxygen content in the aluminum nitride material.

こうして窒化アルミニウムにカーボンが混合された混合原料9を採用することで、窒化アルミニウムに結合して含有される酸素分が、次の化1式によって、
〔化1〕
Al+3C+N→2AlN+3CO
減量中に混合されているカーボンと反応して一酸化炭素を生成し、窒化アルミニウムAlNの単結晶の表面付近に酸素が存在し単結晶を酸化するのを抑制し、良質の単結晶を析出させる。これにより、本実施の形態の窒化物単結晶の製造方法では不純物として酸化アルミニウムが存在しない良質な窒化アルミニウムの単結晶を製造することができる。
By adopting the mixed raw material 9 in which carbon is mixed with aluminum nitride in this way, the oxygen content contained by being bonded to aluminum nitride is expressed by the following chemical formula 1.
[Chemical formula 1]
Al 2 O 3 + 3C + N 2 → 2AlN + 3CO
Reacts with the carbon mixed during weight loss to produce carbon monoxide, suppresses the presence of oxygen near the surface of the aluminum nitride AlN single crystal and oxidizes the single crystal, precipitating a high quality single crystal . Thereby, in the method for manufacturing a nitride single crystal according to the present embodiment, a high-quality aluminum nitride single crystal that does not contain aluminum oxide as an impurity can be manufactured.

図1の表は原料である窒化アルミニウムにカーボンを混合して生成した場合の実験結果を示す表である。カーボンの混入割合は窒化アルミニウム100単位に対してアセチレンブラック、ファーネスブラック0.1%、0.3%、0.5%の質量割合とした。   The table in FIG. 1 is a table showing the experimental results when carbon nitride is mixed with the raw material aluminum nitride. The mixing ratio of carbon was a mass ratio of 0.1%, 0.3%, and 0.5% of acetylene black and furnace black with respect to 100 units of aluminum nitride.

実験1はカーボンを混合せずに窒化アルミニウム粉末のみを原料として生成した場合の比較例である。単結晶中の酸素濃度は0.5質量%であった。   Experiment 1 is a comparative example in which only aluminum nitride powder is produced as a raw material without mixing carbon. The oxygen concentration in the single crystal was 0.5% by mass.

実験2〜4は混合するカーボンにアセチレンブラックを用いた場合の実験結果である。このアセチレンブラックを0.1質量%、0.3質量%、0.5質量%それぞれ混入することで、単結晶中の酸素濃度はそれぞれ0.3質量%、0.1質量%、0.05質量%と改善されていた。   Experiments 2 to 4 are experimental results when acetylene black is used for carbon to be mixed. By mixing 0.1% by mass, 0.3% by mass and 0.5% by mass of this acetylene black, the oxygen concentration in the single crystal is 0.3% by mass, 0.1% by mass and 0.05% by mass, respectively. The mass was improved.

実験5〜7は混合するカーボンにファーネスブラックを用いた場合の実験結果である。このファーネスブラックを0.1質量%、0.3質量%、0.5質量%それぞれ混入することで、単結晶中の酸素濃度はそれぞれ0.4質量%、0.2質量%、0.1質量%と改善されていた。   Experiments 5 to 7 are experimental results when furnace black is used for carbon to be mixed. By mixing the furnace black with 0.1% by mass, 0.3% by mass, and 0.5% by mass, the oxygen concentration in the single crystal is 0.4% by mass, 0.2% by mass, 0.1% by mass, respectively. The mass was improved.

図1の結果より、窒化物単結晶中の酸素濃度を、カーボンを混合することにより低減することが可能であることが確認できた。そしてアセチレンブラックを採用した方が良質の単結晶を析出できることも確認できた。これは、ファーネスブラックは石油の燃焼によって得る物質であるため、硫黄等の不純物が混ざっているためである。   From the result of FIG. 1, it was confirmed that the oxygen concentration in the nitride single crystal can be reduced by mixing carbon. It was also confirmed that the use of acetylene black can precipitate a good quality single crystal. This is because furnace black is a substance obtained by burning oil, and therefore impurities such as sulfur are mixed.

図2の表は原料として酸素濃度が異なる窒化アルミニウムを採用し、また酸素除去機能を付与するためにカーボンブラックを混合した混合原料を用いたときの、単結晶生成時の製品による酸素濃度の違いを示す表である。酸素含有濃度の異なる窒化アルミニウムとして、酸素濃度0.9質量%(AlN(1))、1.4質量%(AlN(2))、0.4質量%(AlN(3))のものを原料として採用した。   The table in FIG. 2 adopts aluminum nitride with different oxygen concentration as a raw material, and when using a mixed raw material mixed with carbon black to provide an oxygen removal function, the difference in oxygen concentration depending on the product during single crystal formation It is a table | surface which shows. As the aluminum nitride having different oxygen-containing concentrations, raw materials having oxygen concentrations of 0.9 mass% (AlN (1)), 1.4 mass% (AlN (2)), and 0.4 mass% (AlN (3)) Adopted as.

実験1〜3はカーボンブラックを混合しない上記3種類の酸素濃度の窒化アルミニウムのみを原料として用い、窒化物単結晶を生成した従来の比較例である。実験4〜8は本発明のカーボンブラックを混合した場合の実験結果である。   Experiments 1 to 3 are conventional comparative examples in which a nitride single crystal was formed using only the above-mentioned three types of oxygen nitrides with no carbon black as raw materials. Experiments 4 to 8 are experimental results when the carbon black of the present invention is mixed.

どの原料を用いてもカーボンを混合することで窒化物単結晶中の酸素濃度を低減することができることが確認できた。とりわけ原料の酸素濃度が低いほど純度の高い単結晶を得ることができることが確認できた。   It has been confirmed that the oxygen concentration in the nitride single crystal can be reduced by mixing carbon regardless of which raw material is used. In particular, it was confirmed that a single crystal with higher purity can be obtained as the oxygen concentration of the raw material is lower.

図3の表は原料として酸素含有濃度が0.9質量%である高純度窒化アルミニウムを採用し、酸素除去機能に優れたカーボンの種類を特定するためにカーボンナノチューブ(C1)、フラーレン(C2)、実施例2と同様のカーボンブラック(C3)を混合した混合原料を用いたときの、単結晶生成時の製品による酸素濃度の違いを示す表である。この実験により、カーボンナノチューブ(C1)>フラーレン(C2)>カーボンブラック(C3)の順に酸素除去機能が高いことが確認できた。   The table of FIG. 3 employs high-purity aluminum nitride having an oxygen-containing concentration of 0.9% by mass as a raw material, and carbon nanotubes (C1) and fullerenes (C2) are used to identify the types of carbon having an excellent oxygen removal function. 4 is a table showing a difference in oxygen concentration depending on a product when a single crystal is formed when a mixed raw material mixed with carbon black (C3) similar to that in Example 2 is used. From this experiment, it was confirmed that the oxygen removal function was high in the order of carbon nanotube (C1)> fullerene (C2)> carbon black (C3).

本発明の窒化物単結晶の製造方法の実施例1の実験結果を示す表。The table | surface which shows the experimental result of Example 1 of the manufacturing method of the nitride single crystal of this invention. 本発明の窒化物単結晶の製造方法の実施例2の実験結果を示す表。The table | surface which shows the experimental result of Example 2 of the manufacturing method of the nitride single crystal of this invention. 本発明の窒化物単結晶の製造方法の実施例3の実験結果を示す表。The table | surface which shows the experimental result of Example 3 of the manufacturing method of the nitride single crystal of this invention. 一般的な窒化物単結晶の製造装置の断面図。Sectional drawing of the manufacturing apparatus of a common nitride single crystal.

符号の説明Explanation of symbols

1 加熱炉
2 誘導加熱コイル
3 加熱炉本体
4 黒鉛るつぼ
5 雰囲気ガス流入口
6 雰囲気ガス排出口
7 種子結晶
8 サセプター
9 原料
1 Heating furnace 2 Induction heating coil 3 Heating furnace body 4 Graphite crucible 5 Atmospheric gas inlet 6 Atmospheric gas outlet 7 Seed crystal 8 Susceptor 9 Raw material

Claims (3)

加熱炉内で窒化物単結晶用の原料を加熱して昇華させ、昇華させた原料を、前記加熱炉内に設けられた種子結晶上に析出させて単結晶を成長させる窒化物単結晶の製造方法において、
原料の窒化アルミニウムに適量のカーボンをあらかじめ混合した混合原料を加熱、昇華させることを特徴とする窒化物単結晶の製造方法。
Production of nitride single crystal in which a raw material for nitride single crystal is heated and sublimated in a heating furnace, and the sublimated raw material is deposited on a seed crystal provided in the heating furnace to grow a single crystal. In the method
A method for producing a nitride single crystal, comprising heating and sublimating a mixed raw material in which an appropriate amount of carbon is mixed in advance with aluminum nitride as a raw material.
前記カーボンとしてアセチレンブラックを使用することを特徴とする請求項1に記載の窒化物単結晶の製造方法。   The method for producing a nitride single crystal according to claim 1, wherein acetylene black is used as the carbon. 前記カーボンとしてカーボンブラック、カーボンナノチューブ又はフラーレンを使用することを特徴とする請求項1に記載の窒化物単結晶の製造方法。

The method for producing a nitride single crystal according to claim 1, wherein carbon, carbon nanotube, or fullerene is used as the carbon.

JP2004213287A 2004-07-21 2004-07-21 Method for producing aluminum nitride single crystal Expired - Fee Related JP4736365B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004213287A JP4736365B2 (en) 2004-07-21 2004-07-21 Method for producing aluminum nitride single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004213287A JP4736365B2 (en) 2004-07-21 2004-07-21 Method for producing aluminum nitride single crystal

Publications (2)

Publication Number Publication Date
JP2006027988A true JP2006027988A (en) 2006-02-02
JP4736365B2 JP4736365B2 (en) 2011-07-27

Family

ID=35894777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004213287A Expired - Fee Related JP4736365B2 (en) 2004-07-21 2004-07-21 Method for producing aluminum nitride single crystal

Country Status (1)

Country Link
JP (1) JP4736365B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007111219A1 (en) 2006-03-29 2007-10-04 Sumitomo Electric Industries, Ltd. Method for growing iii nitride single crystal
WO2010082574A1 (en) 2009-01-16 2010-07-22 住友電気工業株式会社 Method for producing nitride semiconductor crystal, nitride semiconductor crystal, and apparatus for producing nitride semiconductor crystal
WO2010084863A1 (en) 2009-01-23 2010-07-29 住友電気工業株式会社 Apparatus for producing nitride semiconductor crystal, method for producing nitride semiconductor crystal, and nitride semiconductor crystal
JP2010241679A (en) * 2009-04-03 2010-10-28 Sicrystal Ag Method for producing low-oxygen aluminum nitride massive single crystal, and low-oxygen single crystal aluminum nitride substrate
KR101025530B1 (en) * 2006-06-20 2011-04-04 스미토모덴키고교가부시키가이샤 METHOD FOR GROWING AlxGa1-xN CRYSTAL, AND AlxGa1-xN CRYSTAL SUBSTRATE
WO2023181258A1 (en) * 2022-03-24 2023-09-28 日本碍子株式会社 Aln single crystal substrate and device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01308898A (en) * 1988-06-06 1989-12-13 Mitsubishi Gas Chem Co Inc Production of aluminum nitride whisker
JPH1053495A (en) * 1996-06-04 1998-02-24 Sumitomo Electric Ind Ltd Nitride single crystal and its production
JP2004137142A (en) * 2002-03-14 2004-05-13 Rikogaku Shinkokai Single crystal aluminum nitride membrane and forming method thereof, underlying substrate for group iii nitride membrane, luminescent element, as well as surface elastic wave device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01308898A (en) * 1988-06-06 1989-12-13 Mitsubishi Gas Chem Co Inc Production of aluminum nitride whisker
JPH1053495A (en) * 1996-06-04 1998-02-24 Sumitomo Electric Ind Ltd Nitride single crystal and its production
JP2004137142A (en) * 2002-03-14 2004-05-13 Rikogaku Shinkokai Single crystal aluminum nitride membrane and forming method thereof, underlying substrate for group iii nitride membrane, luminescent element, as well as surface elastic wave device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007111219A1 (en) 2006-03-29 2007-10-04 Sumitomo Electric Industries, Ltd. Method for growing iii nitride single crystal
US8361226B2 (en) 2006-03-29 2013-01-29 Sumitomo Electric Industries, Ltd. III-nitride single-crystal growth method
JP5374872B2 (en) * 2006-03-29 2013-12-25 住友電気工業株式会社 Group III nitride single crystal growth method
KR101346501B1 (en) 2006-03-29 2013-12-31 스미토모덴키고교가부시키가이샤 Method for growing ⅲ nitride single crystal
KR101025530B1 (en) * 2006-06-20 2011-04-04 스미토모덴키고교가부시키가이샤 METHOD FOR GROWING AlxGa1-xN CRYSTAL, AND AlxGa1-xN CRYSTAL SUBSTRATE
US8293012B2 (en) 2006-06-20 2012-10-23 Sumitomo Electric Industries, Ltd. Method for growing AlxGa1-xN crystal, and AlxGa1-xN crystal substrate
WO2010082574A1 (en) 2009-01-16 2010-07-22 住友電気工業株式会社 Method for producing nitride semiconductor crystal, nitride semiconductor crystal, and apparatus for producing nitride semiconductor crystal
WO2010084863A1 (en) 2009-01-23 2010-07-29 住友電気工業株式会社 Apparatus for producing nitride semiconductor crystal, method for producing nitride semiconductor crystal, and nitride semiconductor crystal
US8613802B2 (en) 2009-01-23 2013-12-24 Sumitomo Electric Industies, Ltd. Nitride semiconductor crystal manufacturing apparatus, nitride semiconductor crystal manufacturing method, and nitride semiconductor crystal
JP2010241679A (en) * 2009-04-03 2010-10-28 Sicrystal Ag Method for producing low-oxygen aluminum nitride massive single crystal, and low-oxygen single crystal aluminum nitride substrate
WO2023181258A1 (en) * 2022-03-24 2023-09-28 日本碍子株式会社 Aln single crystal substrate and device

Also Published As

Publication number Publication date
JP4736365B2 (en) 2011-07-27

Similar Documents

Publication Publication Date Title
TWI409371B (en) Methods for producing metal nitrides and metal nitrides
Rao et al. Carbon-assisted synthesis of inorganic nanowires
EP2000567B1 (en) Method for growing iii nitride single crystal
Zhang et al. Synthesis of thin Si whiskers (nanowires) using SiCl4
JPH10291899A (en) Production of silicon carbide single crystal and apparatus for production therefor
JPH05208900A (en) Apparatus for growing silicon carbide single crystal
JP4733882B2 (en) Silicon carbide single crystal, method for producing the same, and silicon carbide crystal raw material for growing silicon carbide single crystal
JP2008169111A (en) Method for producing silicon carbide single crystal
JP4736365B2 (en) Method for producing aluminum nitride single crystal
JP6217825B2 (en) GaN crystal
JP4788524B2 (en) Group 13 metal nitride crystal production methods and solutions and melts used in these production methods
Yu et al. Evolution of aluminum nitride nanostructures from nanoflower to thin film on silicon substrate by direct nitridation of aluminum precursor
JP2009280436A (en) Method for producing silicon carbide single crystal thin film
Bickermann et al. Vapor transport growth of wide bandgap materials
JP4774959B2 (en) Method for growing AlN single crystal
JP5252002B2 (en) Group 13 metal nitride crystal manufacturing method and semiconductor device manufacturing method
JP5326865B2 (en) Method for producing sapphire single crystal
Fu et al. The O2-dependent growth of ZnO nanowires and their photoluminescence properties
RU2369669C2 (en) Substrate for growing of epitaxial layers of gallium nitride
JP4910760B2 (en) Crystal growth rate control method, compound crystal and manufacturing method thereof, and manufacturing method of semiconductor device
JP2008050174A (en) SINGLE CRYSTAL SiC AND METHOD FOR PRODUCING THE SAME
Xue et al. A simple method for the growth of high-quality GaN nanobelts
JP5392317B2 (en) Crystal manufacturing method and crystal growth rate control method
Sakrani et al. Zinc oxide nanowires synthesized using a hot tube thermal evaporation under intermediate heating period
JP2009023846A (en) Method for producing silicon carbide single crystal and apparatus for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110418

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees