JP4774959B2 - Method for growing AlN single crystal - Google Patents

Method for growing AlN single crystal Download PDF

Info

Publication number
JP4774959B2
JP4774959B2 JP2005347648A JP2005347648A JP4774959B2 JP 4774959 B2 JP4774959 B2 JP 4774959B2 JP 2005347648 A JP2005347648 A JP 2005347648A JP 2005347648 A JP2005347648 A JP 2005347648A JP 4774959 B2 JP4774959 B2 JP 4774959B2
Authority
JP
Japan
Prior art keywords
aln
single crystal
growth
aln single
growth chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005347648A
Other languages
Japanese (ja)
Other versions
JP2006315940A (en
Inventor
伸介 藤原
倫正 宮永
奈保 水原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2005347648A priority Critical patent/JP4774959B2/en
Publication of JP2006315940A publication Critical patent/JP2006315940A/en
Application granted granted Critical
Publication of JP4774959B2 publication Critical patent/JP4774959B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明はAlN単結晶の成長方法およびAlN単結晶に関し、特に、高純度のAlN単結晶を成長させることができるとともにAlN単結晶の成長ごとの成長速度のばらつきを低減することができるAlN単結晶の成長方法およびその方法により得られたAlN単結晶に関する。   The present invention relates to an AlN single crystal growth method and an AlN single crystal, and in particular, an AlN single crystal capable of growing a high-purity AlN single crystal and reducing variation in growth rate for each growth of the AlN single crystal. And an AlN single crystal obtained by the method.

また、本発明はAlN単結晶の成長方法およびAlN単結晶に関し、特に、AlN単結晶中に遷移金属および/または炭素を混入する場合においてAlN単結晶の成長ごとにAlN単結晶中に混入される遷移金属量および/または炭素量のばらつきを低減することができるAlN単結晶の成長方法およびその方法により得られたAlN単結晶に関する。   The present invention also relates to an AlN single crystal growth method and an AlN single crystal. In particular, when a transition metal and / or carbon is mixed in an AlN single crystal, the AlN single crystal is mixed into the AlN single crystal every time it grows. The present invention relates to an AlN single crystal growth method capable of reducing variations in the amount of transition metal and / or carbon, and an AlN single crystal obtained by the method.

III族窒化物結晶の中でもAlN(窒化アルミニウム)単結晶は、6.2eVの広いエネルギバンドギャップ、高い熱伝導率および高い電気抵抗を有しているため、種々の光デバイスや電子デバイスなどの半導体デバイス用の基板材料として注目されている。   Among Group III nitride crystals, AlN (aluminum nitride) single crystal has a wide energy band gap of 6.2 eV, high thermal conductivity, and high electrical resistance, and therefore, semiconductors such as various optical devices and electronic devices. It is attracting attention as a substrate material for devices.

一般に、AlN単結晶は昇華法によって成長させられる。昇華法は、たとえば以下のようにして行なわれる。まず、反応管内部に設置された坩堝内部の成長室の内部にAlN多結晶原料と種結晶とを互いに向かい合うようにして設置し、AlN多結晶原料が昇華する温度までAlN多結晶原料を加熱する。この加熱により、AlN多結晶原料が昇華して昇華ガスが生成される。昇華ガスは低温に設定されている種結晶の表面と接触し、種結晶の表面上にAlN単結晶が晶出することによってAlN単結晶が成長する。このAlN単結晶の成長の際には、反応管の内部に適当な圧力および流量の窒素ガスが目的に応じて導入される。
米国特許第5858086号明細書 特開平10−53495号公報 M.Bickermann, B.M.Epelbaum, A.Winnacker, “Characterization of bulk AlN with low oxygen content”, Journal of Crystal Growth, 269, 2004,p.432-442 Lianghong Liu,James H.Edgar, “Transport effects in the sublimation growth of aluminum nitride”,Journal of Crystal Growth, 220, 2000, p.243-253
In general, an AlN single crystal is grown by a sublimation method. The sublimation method is performed as follows, for example. First, an AlN polycrystalline raw material and a seed crystal are placed in a growth chamber inside a crucible installed inside a reaction tube so as to face each other, and the AlN polycrystalline raw material is heated to a temperature at which the AlN polycrystalline raw material sublimes. . By this heating, the AlN polycrystalline raw material is sublimated to generate a sublimation gas. The sublimation gas comes into contact with the surface of the seed crystal set at a low temperature, and the AlN single crystal grows by crystallization of the AlN single crystal on the surface of the seed crystal. During the growth of the AlN single crystal, nitrogen gas having an appropriate pressure and flow rate is introduced into the reaction tube according to the purpose.
US Pat. No. 5,858,086 Japanese Patent Laid-Open No. 10-53495 M. Bickermann, BMEpelbaum, A. Winnacker, “Characterization of bulk AlN with low oxygen content”, Journal of Crystal Growth, 269, 2004, p.432-442 Lianghong Liu, James H. Edgar, “Transport effects in the sublimation growth of aluminum nitride”, Journal of Crystal Growth, 220, 2000, p.243-253

しかしながら、昇華法に用いられるAlN多結晶原料は、一般に数百ppm以上の酸素不純物を含んでいる。この酸素不純物は、安定なAl23の形態で存在している。Al23はAlNよりも昇華しやすいため、AlN多結晶原料の表面に現れたAl23は速やかに昇華し、成長室の内部の気相雰囲気に酸素ガスが混入する。このように、成長室の内部の気相雰囲気に酸素ガスが混合した場入には、成長したAlN単結晶中に酸素が不純物として取り込まれる。AlN単結晶中に取り込まれた酸素はAlN単結晶の熱伝導率を低下させるため好ましくない(たとえば、非特許文献1参照)。 However, the AlN polycrystalline raw material used in the sublimation method generally contains oxygen impurities of several hundred ppm or more. This oxygen impurity is present in the form of stable Al 2 O 3 . Since Al 2 O 3 is more easily sublimated than AlN, Al 2 O 3 appearing on the surface of the AlN polycrystalline raw material is quickly sublimated, and oxygen gas is mixed into the gas phase atmosphere inside the growth chamber. Thus, when oxygen gas is mixed with the gas phase atmosphere inside the growth chamber, oxygen is taken into the grown AlN single crystal as an impurity. Oxygen incorporated into the AlN single crystal is not preferable because it decreases the thermal conductivity of the AlN single crystal (see, for example, Non-Patent Document 1).

AlN単結晶中に取り込まれる酸素濃度は、雰囲気ガス中の酸素濃度よりも少ない。したがって、AlN多結晶原料から酸素が供給され続けると、成長室の内部の雰囲気ガスの酸素濃度は増大し続ける。すなわち、AlN多結晶原料に含まれている酸素不純物の濃度がたとえ数百ppmであったとしても、AlN単結晶の成長が進行するにつれて、成長室の内部の雰囲気ガスの酸素濃度は桁違いに大きくなってしまう。   The oxygen concentration taken into the AlN single crystal is lower than the oxygen concentration in the atmospheric gas. Therefore, when oxygen is continuously supplied from the AlN polycrystalline material, the oxygen concentration of the atmospheric gas inside the growth chamber continues to increase. In other words, even if the concentration of oxygen impurities contained in the AlN polycrystalline raw material is several hundred ppm, the oxygen concentration of the atmospheric gas inside the growth chamber is on the order of magnitude as the growth of the AlN single crystal proceeds. It gets bigger.

この成長室の内部の雰囲気ガスの酸素濃度の増大に伴ってAlN単結晶中に取り込まれる酸素の量も増大する。しかしながら、AlN単結晶中に取り込まれる酸素の量が、ある臨界値を超えた場合には、AlN単結晶中に酸素が固溶するのではなく、酸素を含む別の結晶構造を持つ固相が晶出する。このようにAlN単結晶以外の結晶の出現はAlN結晶の多結晶化の核となるので、AlN単結晶を成長させる上では避ける必要がある。   As the oxygen concentration of the atmospheric gas inside the growth chamber increases, the amount of oxygen taken into the AlN single crystal also increases. However, when the amount of oxygen taken into the AlN single crystal exceeds a certain critical value, oxygen does not dissolve in the AlN single crystal, but a solid phase having another crystal structure containing oxygen. Crystallize. Thus, the appearance of a crystal other than the AlN single crystal becomes the nucleus of polycrystallization of the AlN crystal, and therefore it is necessary to avoid it when growing the AlN single crystal.

たとえば、特許文献1には、AlN単結晶の原料ガスの排出口を種結晶の近傍に配置し、結晶成長界面近傍のガスを排出することによって、成長速度を高め、AlN単結晶の純度を向上させる方法が開示されている(特許文献1のFig.4等参照)。この方法は、原料側から拡散(および対流)によって結晶成長界面近傍に運ばれてきた原料ガスの一部を結晶成長界面で固化させ、残りの一部を外部に排出する方法であり、酸素などの不純物がAlN単結晶中に取り込まれるのを効果的に防止することができる。   For example, in Patent Document 1, an AlN single crystal source gas discharge port is arranged in the vicinity of a seed crystal, and the gas near the crystal growth interface is discharged to increase the growth rate and improve the purity of the AlN single crystal. (See FIG. 4 of Patent Document 1). This method is a method in which a part of the raw material gas that has been transported from the raw material side to the vicinity of the crystal growth interface by diffusion (and convection) is solidified at the crystal growth interface and the remaining part is discharged to the outside, such as oxygen Can be effectively prevented from being incorporated into the AlN single crystal.

しかしながら、この方法においては、AlN単結晶の成長速度が原料ガスの排出効率によってばらついてしまうという問題があった。原料ガスの排出効率は排出口の大きさなどで制御することになるが、その制御性は必ずしも高くないため、AlN単結晶の成長ごとにAlN単結晶の成長速度が大きくばらついてしまうという問題があった。このようにAlN単結晶の成長ごとの成長速度が大きくばらついてしまう場合には、AlN単結晶の成長を停止するタイミングを把握することができないため、AlN単結晶の製造プロセスに大きな支障をきたす。   However, this method has a problem that the growth rate of the AlN single crystal varies depending on the discharge efficiency of the source gas. Although the exhaust efficiency of the source gas is controlled by the size of the discharge port, etc., the controllability is not necessarily high, so there is a problem that the growth rate of the AlN single crystal varies greatly every time the AlN single crystal grows. there were. In this way, when the growth rate for each growth of the AlN single crystal varies greatly, the timing for stopping the growth of the AlN single crystal cannot be grasped, which greatly hinders the manufacturing process of the AlN single crystal.

また、特許文献2には、遷移金属の酸化物を混入させたAlN多結晶原料を用いて昇華法によりAlN単結晶を成長させ、AlN単結晶中に遷移金属を混入させる方法が開示されている(特許文献2の実施例1参照)。AlN単結晶中に混入した遷移金属はAlN単結晶中の酸素を捕獲し、AlN単結晶中に均一に分布する酸素の量を減らして、酸素の混入によるAlN単結晶の特性の劣化を低減する効果を有する。また、AlN単結晶中に炭素を混入させた場合でもAlN単結晶中に遷移金属を混入させた場合と同様の効果が得られると考えられる。   Further, Patent Document 2 discloses a method of growing an AlN single crystal by a sublimation method using an AlN polycrystalline raw material mixed with an oxide of a transition metal, and mixing the transition metal into the AlN single crystal. (See Example 1 of Patent Document 2). The transition metal mixed in the AlN single crystal captures oxygen in the AlN single crystal, reduces the amount of oxygen uniformly distributed in the AlN single crystal, and reduces the deterioration of the characteristics of the AlN single crystal due to the mixing of oxygen. Has an effect. Further, even when carbon is mixed in the AlN single crystal, it is considered that the same effect as that obtained when a transition metal is mixed in the AlN single crystal can be obtained.

しかしながら、特許文献2に開示された方法を用いてAlN単結晶中に遷移金属および/または炭素を混入させた場合には、AlN単結晶の成長ごとのAlN単結晶中に混入される遷移金属量および/または炭素量のばらつきが大きくなり、遷移金属および/または炭素を所望する量に制御してAlN単結晶中に混入することが困難であった。   However, when a transition metal and / or carbon is mixed in an AlN single crystal using the method disclosed in Patent Document 2, the amount of transition metal mixed in the AlN single crystal for each growth of the AlN single crystal And / or the variation in the amount of carbon becomes large, and it is difficult to mix the transition metal and / or carbon into the AlN single crystal while controlling to a desired amount.

本発明は、成長室の内部にAlN多結晶原料を設置する工程と、AlN多結晶原料を加熱して昇華させる工程と、成長室の内部の種結晶の表面上にAlN単結晶を成長させる工程と、を含み、成長室の内部のAlN多結晶原料の温度におけるAlNの化学量論組成の窒素分圧よりも成長室の外部の窒素分圧を高くし、成長室の内部と外部のガスの交換を可能とする開口部を成長室に設けてAlN単結晶を成長させ、開口部は、種結晶よりもAlN多結晶原料に近く、かつ、種結晶を直接見ない位置にのみ設けられているAlN単結晶の成長方法であることを特徴とする。 The present invention includes a step of installing an AlN polycrystalline raw material inside a growth chamber, a step of heating and sublimating the AlN polycrystalline raw material, and a step of growing an AlN single crystal on the surface of a seed crystal inside the growth chamber. The nitrogen partial pressure outside the growth chamber is higher than the nitrogen partial pressure of the stoichiometric composition of AlN at the temperature of the AlN polycrystalline raw material inside the growth chamber, and the gas inside and outside the growth chamber An opening capable of exchange is provided in the growth chamber to grow an AlN single crystal, and the opening is provided closer to the AlN polycrystalline material than the seed crystal and only at a position where the seed crystal is not directly seen. It is a growth method of an AlN single crystal.

ここで、本発明のAlN単結晶の成長方法において、開口部は、種結晶から見てAlN多結晶原料の背部に設けることができる。   Here, in the AlN single crystal growth method of the present invention, the opening can be provided at the back of the AlN polycrystalline raw material as seen from the seed crystal.

また、本発明のAlN単結晶の成長方法において、成長室は、AlN多結晶原料収容部とAlN単結晶成長部とから構成されており、AlN多結晶原料収容部はAlN単結晶成長部よりも容積が大きく、AlN多結晶原料収容部に開口部が設けられていてもよい。   In the AlN single crystal growth method of the present invention, the growth chamber is composed of an AlN polycrystal raw material storage part and an AlN single crystal growth part, and the AlN polycrystal raw material storage part is larger than the AlN single crystal growth part. The volume may be large, and an opening may be provided in the AlN polycrystalline raw material container.

また、本発明のAlN単結晶の成長方法においては、AlN多結晶原料のうち、成長したAlN単結晶の10%以上100%以下の質量が排気されることが好ましい。   In the AlN single crystal growth method of the present invention, it is preferable that 10% or more and 100% or less of the grown AlN single crystal in the AlN polycrystalline raw material is exhausted.

本発明によれば、高純度のAlN単結晶を成長させることができるとともにAlN単結晶の成長ごとの成長速度のばらつきを低減することができるAlN単結晶の成長方法およびその方法により得られたAlN単結晶を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the growth method of the AlN single crystal which can grow a high purity AlN single crystal and can reduce the dispersion | variation in the growth rate for every growth of an AlN single crystal, and AlN obtained by the method Single crystals can be provided.

また、本発明によれば、AlN単結晶中に遷移金属および/または炭素を混入する場合においてAlN単結晶の成長ごとのAlN単結晶中に混入される遷移金属量および/または炭素量のばらつきを低減することができるAlN単結晶の成長方法およびその方法により得られたAlN単結晶を提供することができる。   Further, according to the present invention, when a transition metal and / or carbon is mixed in an AlN single crystal, variation in the amount of transition metal and / or carbon mixed in the AlN single crystal for each growth of the AlN single crystal is reduced. An AlN single crystal growth method that can be reduced and an AlN single crystal obtained by the method can be provided.

以下、本発明の実施の形態について説明する。なお、本発明の図面において、同一の参照符号は、同一部分または相当部分を表わすものとする。   Embodiments of the present invention will be described below. In the drawings of the present invention, the same reference numerals represent the same or corresponding parts.

本発明のAlN単結晶の成長方法は、成長室の内部にAlN多結晶原料を設置する工程と、AlN多結晶原料を加熱して昇華させる工程と、成長室の内部の種結晶の表面上にAlN単結晶を成長させる工程と、を含み、成長室の内部のAlN多結晶原料の温度におけるAlNの化学量論組成の窒素分圧よりも成長室の外部の窒素分圧を高くし、成長室の内部と外部のガスの交換を可能とする開口部を成長室に設けてAlN単結晶を成長させ、開口部は、種結晶よりもAlN多結晶原料に近く、かつ、種結晶を直接見ない位置に設けられていることを特徴としている。   The AlN single crystal growth method of the present invention comprises a step of placing an AlN polycrystal raw material inside a growth chamber, a step of heating and sublimating the AlN polycrystal raw material, and a surface of a seed crystal inside the growth chamber. A step of growing an AlN single crystal, wherein the nitrogen partial pressure outside the growth chamber is made higher than the nitrogen partial pressure of the stoichiometric composition of AlN at the temperature of the AlN polycrystalline raw material inside the growth chamber, An opening that allows exchange of gas inside and outside is provided in the growth chamber to grow an AlN single crystal, the opening is closer to the AlN polycrystalline material than the seed crystal, and the seed crystal is not seen directly It is characterized by being provided at a position.

従来の特許文献1に開示されている方法のように、AlN単結晶の成長界面近傍から酸素を含むガスを排気する方が高純度のAlN単結晶を得ることができると推測されるが、この排気の影響によってAlN単結晶の成長速度が大きくばらついてしまう。そこで、本発明者が鋭意検討した結果、本発明のように、開口部を、種結晶よりもAlN多結晶原料に近く、かつ、種結晶を直接見ない位置に設けた場合でも、従来の特許文献1に開示されている方法と同様の高純度のAlN単結晶を得ることができることを見出した。すなわち、上述したように、AlN単結晶の成長が進行するにつれて、AlN単結晶の成長界面近傍の酸素濃度は大きくなる。そのため、AlN単結晶の成長界面近傍にある酸素はAlN多結晶原料側に拡散してくる。したがって、本発明の位置に開口部を設けた場合でも酸素を含むガスの排気が可能になると考えられる。したがって、本発明においては、不純物である酸素を含むガスの排気によって高純度のAlN単結晶を成長させることができるとともに、この排気の影響を受けずにAlN単結晶を成長できるためAlN単結晶の成長ごとの成長速度のばらつきを低減することができるのである。   As in the conventional method disclosed in Patent Document 1, it is presumed that a high-purity AlN single crystal can be obtained by exhausting a gas containing oxygen from the vicinity of the growth interface of the AlN single crystal. The growth rate of the AlN single crystal varies greatly due to the influence of exhaust. Therefore, as a result of intensive studies by the present inventor, as in the present invention, even when the opening is provided closer to the AlN polycrystalline material than the seed crystal and at a position where the seed crystal is not directly seen, It has been found that a high-purity AlN single crystal similar to the method disclosed in Document 1 can be obtained. That is, as described above, as the growth of the AlN single crystal proceeds, the oxygen concentration near the growth interface of the AlN single crystal increases. Therefore, oxygen in the vicinity of the growth interface of the AlN single crystal diffuses to the AlN polycrystalline material side. Therefore, it is considered that the gas containing oxygen can be exhausted even when the opening is provided at the position of the present invention. Therefore, in the present invention, a high-purity AlN single crystal can be grown by exhausting a gas containing oxygen, which is an impurity, and an AlN single crystal can be grown without being affected by this exhaust. Variations in the growth rate for each growth can be reduced.

ここで、本発明においては、成長室の内部のAlN多結晶原料の温度におけるAlNの化学量論組成の窒素分圧よりも成長室の外部の窒素分圧を高くしてAlN単結晶の成長が行なわれる。   Here, in the present invention, the growth of the AlN single crystal is achieved by increasing the nitrogen partial pressure outside the growth chamber to be higher than the nitrogen partial pressure of the stoichiometric composition of AlN at the temperature of the AlN polycrystalline raw material inside the growth chamber. Done.

なお、本発明において、「成長室の内部のAlN多結晶原料の温度におけるAlNの化学量論組成の窒素分圧」は、非特許文献2を参照して以下の式(1)により求めることができる。   In the present invention, “the nitrogen partial pressure of the stoichiometric composition of AlN at the temperature of the AlN polycrystalline raw material inside the growth chamber” is obtained by the following formula (1) with reference to Non-Patent Document 2. it can.

Al(PN21/2=exp(A−B/T)………(1)
式(1)において、PAlは成長室の内部のアルミニウムガスの分圧を示し、PN2は成長室の内部の窒素ガスの分圧を示している。また、式(1)において、A=27.055であり、B=75788であって、Tは成長室の内部のAlN多結晶原料の温度(K)である。ここで、AlNの化学量論組成はAl: 2 =2:1であるため、PAl=2PN2として、式(1)からPN2を算出することによって、本発明における「成長室の内部のAlN多結晶原料の温度におけるAlNの化学量論組成の窒素分圧」を求めることができる。
P Al (P N2 ) 1/2 = exp (AB / T) (1)
In formula (1), P Al represents the partial pressure of the aluminum gas inside the growth chamber, and P N2 represents the partial pressure of the nitrogen gas inside the growth chamber. In the formula (1), A = 27.055, B = 75788, and T is the temperature (K) of the AlN polycrystalline material inside the growth chamber. Here, since the stoichiometric composition of AlN is Al: N 2 = 2: 1, by calculating P N2 from the formula (1) with P Al = 2P N2 , “inside the growth chamber” The nitrogen partial pressure of the stoichiometric composition of AlN at the temperature of the AlN polycrystalline raw material can be obtained.

また、本発明において、開口部は、種結晶よりもAlN多結晶原料に近く、かつ、種結晶を直接見ない位置に設けられている。ここで、本発明において、「種結晶を直接見ない位置」とは、成長室の内部に設置されている種結晶およびAlN多結晶原料をそれぞれ仮定した場合に、成長室の外部から開口部を通して成長室の内部を覗いたとき、たとえば開口部の物理的な位置および/またはAlN多結晶原料の存在などによって、開口部から種結晶を直接見ることができない位置のことをいう。   In the present invention, the opening is provided closer to the AlN polycrystalline material than the seed crystal and at a position where the seed crystal is not seen directly. Here, in the present invention, the “position where the seed crystal is not directly seen” means that the seed crystal and the AlN polycrystalline raw material installed inside the growth chamber are assumed to pass through the opening from the outside of the growth chamber. When looking inside the growth chamber, it means a position where the seed crystal cannot be directly seen from the opening due to, for example, the physical position of the opening and / or the presence of an AlN polycrystalline raw material.

また、開口部は、成長室の内部と外部のガスの交換を可能とするため、たとえば成長室の壁面の一部を貫通する孔を形成することなどによって設けることができる。   Further, the opening can be provided by, for example, forming a hole penetrating a part of the wall surface of the growth chamber in order to exchange the gas inside and outside the growth chamber.

また、本発明において、開口部からは、AlN多結晶原料のうち、成長したAlN単結晶の10%以上100%以下の質量が排気されることが好ましい。排気されるAlN多結晶原料の質量が成長したAlN単結晶の質量の10%未満である場合には開口部を設けた効果を十分に得ることができない傾向にあり、100%よりも多い場合には、排気量が多くなりすぎて、排気の開口部を本発明で規定する位置に配しても、種結晶上へのAlN単結晶の成長速度が低下する傾向にある。   In the present invention, it is preferable that 10% or more and 100% or less of the grown AlN single crystal in the AlN polycrystalline raw material is exhausted from the opening. When the mass of the AlN polycrystal raw material to be evacuated is less than 10% of the mass of the grown AlN single crystal, the effect of providing the opening tends not to be obtained sufficiently, and when it is more than 100% The amount of exhaust is too large, and even if the exhaust opening is disposed at the position defined by the present invention, the growth rate of the AlN single crystal on the seed crystal tends to decrease.

また、本発明のAlN単結晶の成長方法は、成長室の内部にAlN多結晶原料を設置する工程と、AlN多結晶原料を加熱して昇華させる工程と、成長室の内部の種結晶の表面上にAlN単結晶を成長させる工程と、を含み、成長室の内部のAlN多結晶原料の温度におけるAlNの化学量論組成の窒素分圧よりも成長室の外部の窒素分圧を高くし、成長室の内部と外部のガスの交換を可能とする開口部を成長室に設けるとともに、遷移金属および炭素からなる群から選択された少なくとも1種を含むガスを生成するガス生成室を成長室とは別に設けてガス生成室を成長室に連結させ、ガス生成室からのガスを成長室に導入しながらAlN単結晶を成長させることを特徴としている。   In addition, the AlN single crystal growth method of the present invention includes a step of installing an AlN polycrystalline raw material inside a growth chamber, a step of heating and sublimating the AlN polycrystalline raw material, and a surface of a seed crystal inside the growth chamber. A step of growing an AlN single crystal on the substrate, wherein the nitrogen partial pressure outside the growth chamber is made higher than the nitrogen partial pressure of the stoichiometric composition of AlN at the temperature of the AlN polycrystalline raw material inside the growth chamber, The growth chamber is provided with an opening that enables exchange of gas inside and outside the growth chamber, and a gas generation chamber that generates a gas containing at least one selected from the group consisting of transition metals and carbon is defined as a growth chamber. In another feature, the gas generation chamber is connected to the growth chamber, and the AlN single crystal is grown while introducing the gas from the gas generation chamber into the growth chamber.

上述したように、従来の特許文献2に開示されている方法を用いてAlN単結晶中に遷移金属および/または炭素を混入させる場合には、AlN単結晶の成長ごとのAlN単結晶中に混入される遷移金属量および/または炭素量のばらつきが大きくなり、遷移金属および/または炭素を所望する量に制御してAlN単結晶中に混入することが困難である。しかしながら、本発明においては、遷移金属および炭素からなる群から選択された少なくとも1種を含むガスを生成するガス生成室を成長室とは別に設け、このガス生成室を成長室に連結させ、ガス生成室からのガスを成長室に導入する。これに加えて、成長室の内部のガスの一部を成長室の内部と外部のガスの交換を可能とする開口部から成長室の外部に排気しながらAlN単結晶を成長させることによって、成長室の内部の遷移金属量および/または炭素量の制御性が格段に向上する。   As described above, when the transition metal and / or carbon is mixed in the AlN single crystal using the method disclosed in the conventional patent document 2, the AlN single crystal is mixed in every growth of the AlN single crystal. The variation of the amount of transition metal and / or carbon to be increased becomes large, and it is difficult to mix the transition metal and / or carbon into the AlN single crystal while controlling the amount of the transition metal and / or carbon to a desired amount. However, in the present invention, a gas generation chamber that generates a gas containing at least one selected from the group consisting of a transition metal and carbon is provided separately from the growth chamber, the gas generation chamber is connected to the growth chamber, Gas from the generation chamber is introduced into the growth chamber. In addition to this, growth is achieved by growing an AlN single crystal while exhausting part of the gas inside the growth chamber to the outside of the growth chamber through an opening that allows exchange of gas inside and outside the growth chamber. Controllability of the amount of transition metal and / or carbon in the chamber is remarkably improved.

その理由としては、成長室の内部の各ガスの濃度はAlN多結晶原料の表面とガス生成室の内部の局所平衡と、ガス生成室−成長室間、成長室の内部−成長室の外部のガス輸送によって一意に決定されるためと考えられる。ここで、成長室とガス生成室との連結は、たとえば、成長室の一部およびガス生成室の一部にそれぞれ連結のための開口部を設け、これらの開口部を中空の部材などからなる連結部により繋げる方法などにより行なうことができる。また、ガス輸送効率は、成長室の内部と外部のガスの交換を可能とするために成長室に設けられた開口部の大きさおよび/または形状、ならびにガス生成室と成長室との連結のためにガス生成室および成長室にそれぞれ設けられた開口部のそれぞれの大きさおよび/または形状を適宜設定することにより制御することができる。したがって、成長室の内部における遷移金属および/または炭素を含むガスの濃度は適宜設定することが可能である。なお、本発明に用いられる遷移金属としては、たとえば、Ti、V、Cr、Mn、Fe、Co、NiおよびCuからなる群から選択された少なくとも1種を用いることができる。   The reason for this is that the concentration of each gas inside the growth chamber depends on the local equilibrium between the surface of the AlN polycrystal raw material and the gas generation chamber, between the gas generation chamber and the growth chamber, between the growth chamber and the outside of the growth chamber. This is considered to be uniquely determined by gas transportation. Here, the connection between the growth chamber and the gas generation chamber is, for example, provided with openings for connection in a part of the growth chamber and a part of the gas generation chamber, and these openings are made of a hollow member or the like. It can be performed by a method of connecting with a connecting portion. In addition, the gas transport efficiency is determined by the size and / or shape of the opening provided in the growth chamber in order to enable the exchange of gas inside and outside the growth chamber, and the connection between the gas generation chamber and the growth chamber. Therefore, it can be controlled by appropriately setting the size and / or shape of the openings provided in the gas generation chamber and the growth chamber, respectively. Therefore, the concentration of the transition metal and / or carbon-containing gas inside the growth chamber can be set as appropriate. In addition, as a transition metal used for this invention, at least 1 sort (s) selected from the group which consists of Ti, V, Cr, Mn, Fe, Co, Ni, and Cu can be used, for example.

また、本発明においては、ガス生成室との連結のために成長室に設けられた開口部が、成長室の内部と外部のガスの交換を可能とするために成長室に設けられた開口部と比べて種結晶から遠い位置にあることが好ましい。この場合には、成長室の内部における遷移金属および/または炭素を含むガスの濃度が高くなりすぎるのを抑制できる傾向にある。   Further, in the present invention, the opening provided in the growth chamber for connection with the gas generation chamber is an opening provided in the growth chamber to enable exchange of gas inside and outside the growth chamber. It is preferable that it is in a position far from the seed crystal as compared with. In this case, the concentration of the gas containing the transition metal and / or carbon in the growth chamber tends to be suppressed from becoming too high.

また、本発明においては、ガス生成室と成長室とを連結するためにガス生成室および成長室のそれぞれに設けられた開口部を繋ぐ連結部の温度をAlN多結晶原料の温度よりも高くしてAlN単結晶を成長させることが好ましい。   In the present invention, in order to connect the gas generation chamber and the growth chamber, the temperature of the connecting portion connecting the openings provided in the gas generation chamber and the growth chamber is set higher than the temperature of the AlN polycrystalline raw material. It is preferable to grow an AlN single crystal.

なお、本発明においては、成長室の内部に予め種結晶を設置せずにAlN単結晶の成長を開始してもよく、この場合にはAlN単結晶の成長開始の初期段階に成長室の低温部に形成された結晶核を種結晶とみなす。   In the present invention, the growth of the AlN single crystal may be started without previously setting a seed crystal inside the growth chamber. In this case, the growth temperature of the growth chamber is low at the initial stage of the growth start of the AlN single crystal. The crystal nucleus formed in the part is regarded as a seed crystal.

(実施例1)
図1の模式的断面図に示す装置を用いてAlN単結晶の成長を行なった。この装置は、反応管1と、反応管1の内部に設置されたグラファイト製の坩堝2と、坩堝2の内部に設置された成長室3と、坩堝2の外周に設置されている断熱材6と、反応管1の外周を取り巻く高周波加熱コイル7と、を含んでいる。また、反応管1の上部にはガス排気口9が設けられており、反応管1の下部にはガス導入口8が設けられている。また、反応管1の上部および下部にはそれぞれ放射温度計10が設置されている。さらに、成長室3の下面の一部に開口部4が設けられ、坩堝2の側面の一部に排気孔5が設けられており、開口部4から排気されたガスは成長室3と坩堝2との間に設けられている空間を通過した後、排気孔5を通過し、坩堝2と断熱材6との間に設けられている空間を通して反応管1の内部に放出される。ここで、開口部4は、直径4mmの円形状に形成され、その長さ(成長室3の下壁の厚さ)は3mmであった。
Example 1
An AlN single crystal was grown using the apparatus shown in the schematic sectional view of FIG. This apparatus includes a reaction tube 1, a graphite crucible 2 installed in the reaction tube 1, a growth chamber 3 installed in the crucible 2, and a heat insulating material 6 installed on the outer periphery of the crucible 2. And a high-frequency heating coil 7 surrounding the outer periphery of the reaction tube 1. A gas exhaust port 9 is provided at the upper part of the reaction tube 1, and a gas introduction port 8 is provided at the lower part of the reaction tube 1. In addition, a radiation thermometer 10 is installed on each of the upper and lower portions of the reaction tube 1. Furthermore, an opening 4 is provided in a part of the lower surface of the growth chamber 3, and an exhaust hole 5 is provided in a part of the side surface of the crucible 2, and the gas exhausted from the opening 4 is the growth chamber 3 and the crucible 2. After passing through a space provided between the crucible and the heat insulating material 6, it passes through the exhaust hole 5 and is discharged into the reaction tube 1 through the space provided between the crucible 2 and the heat insulating material 6. Here, the opening 4 was formed in a circular shape having a diameter of 4 mm, and its length (the thickness of the lower wall of the growth chamber 3) was 3 mm.

この装置の成長室3の上面に種結晶12として直径30mm、厚さ0.25mmおよび面方位(0001)のAlN単結晶を設置し、成長室3の下面上に酸素濃度が500ppmで質量が100gのAlN多結晶原料11を設置した。このとき、開口部4は、種結晶12から見てAlN多結晶原料11の背部に設けられていることになる。したがって、開口部4は、種結晶12よりもAlN多結晶原料11に近い位置に設置されており、開口部4から成長室3の内部を覗いたときAlN多結晶原料11により種結晶12を直接見ることができなかった。   An AlN single crystal having a diameter of 30 mm, a thickness of 0.25 mm and a plane orientation (0001) is installed as a seed crystal 12 on the upper surface of the growth chamber 3 of this apparatus, and the oxygen concentration is 500 ppm and the mass is 100 g on the lower surface of the growth chamber 3. The AlN polycrystalline raw material 11 was installed. At this time, the opening 4 is provided on the back of the AlN polycrystalline raw material 11 when viewed from the seed crystal 12. Therefore, the opening 4 is installed at a position closer to the AlN polycrystalline raw material 11 than the seed crystal 12, and when looking into the inside of the growth chamber 3 from the opening 4, the AlN polycrystalline raw material 11 directly connects the seed crystal 12. I couldn't see it.

ガス導入口8から反応管1の内部に100sccmの窒素ガスを導入しながらガス排気口9から排気し、反応管1の内部の圧力を700torrに保持した。そして、高周波加熱コイル7によって、坩堝2の上面が2100℃、坩堝2の下面が2000℃になるまで加熱してAlN多結晶原料11を昇華させ、その温度で1時間保持した後、坩堝2の上面が2000℃、坩堝2の下面が2100℃になるように坩堝2の位置および加熱パワーを調整して、種結晶12の表面上にAlN単結晶の成長を開始した。ここで、坩堝2の上面および下面の温度はそれぞれ放射温度計10によって測定された。   While introducing 100 sccm of nitrogen gas from the gas inlet 8 into the reaction tube 1, the gas was discharged from the gas exhaust port 9, and the pressure inside the reaction tube 1 was maintained at 700 torr. Then, the upper surface of the crucible 2 is heated by the high frequency heating coil 7 to 2100 ° C. and the lower surface of the crucible 2 is 2000 ° C. to sublimate the AlN polycrystal raw material 11 and held at that temperature for 1 hour. The position of the crucible 2 and the heating power were adjusted so that the upper surface was 2000 ° C. and the lower surface of the crucible 2 was 2100 ° C., and the growth of the AlN single crystal on the surface of the seed crystal 12 was started. Here, the temperatures of the upper surface and the lower surface of the crucible 2 were measured by the radiation thermometer 10, respectively.

そして、AlN単結晶の成長開始から100時間経過した後、室温まで冷却してAlN単結晶を成長室3から取り出した。ここで、PAl(PN21/2=exp(A−B/T)の式から、成長室3の内部のAlN多結晶原料11の温度が2100℃のときのAlNの化学量論組成の窒素分圧を算出するとPN2=0.024atmになり、成長室3の外部の圧力は700torr(=0.92atm)になるため、成長室3の内部のAlN多結晶原料11の温度におけるAlNの化学量論組成の窒素分圧よりも成長室3の外部の窒素分圧を高くした状態でAlN単結晶の成長が行なわれたことが確認された。 Then, after 100 hours had elapsed from the start of growth of the AlN single crystal, it was cooled to room temperature, and the AlN single crystal was taken out from the growth chamber 3. Here, from the formula P Al (P N2 ) 1/2 = exp (AB / T), the stoichiometric composition of AlN when the temperature of the AlN polycrystalline material 11 inside the growth chamber 3 is 2100 ° C. When the partial pressure of nitrogen is calculated, P N2 = 0.024 atm and the pressure outside the growth chamber 3 becomes 700 torr (= 0.92 atm), so that AlN at the temperature of the AlN polycrystalline raw material 11 inside the growth chamber 3 becomes AlN. It was confirmed that the AlN single crystal was grown in a state where the nitrogen partial pressure outside the growth chamber 3 was higher than the nitrogen partial pressure of the stoichiometric composition.

実施例1においては、AlN多結晶原料11の減少量は72gであって、種結晶の表面上に成長したAlN単結晶の質量は54gであった。このことから、成長室3の内部から排気されたガスの質量は18gであることがわかった。また、実施例1で成長させたAlN単結晶を切り出し、AlN単結晶の中央部の酸素濃度を二次イオン質量分析法(SIMS)によって測定したところ150ppmであった。   In Example 1, the reduction amount of the AlN polycrystalline raw material 11 was 72 g, and the mass of the AlN single crystal grown on the surface of the seed crystal was 54 g. From this, it was found that the mass of the gas exhausted from the inside of the growth chamber 3 was 18 g. Further, the AlN single crystal grown in Example 1 was cut out, and the oxygen concentration at the center of the AlN single crystal was measured by secondary ion mass spectrometry (SIMS), and found to be 150 ppm.

(比較例1)
図3の模式的断面図に示す装置を用いたこと以外は実施例1と同一の条件でAlN単結晶を成長させた。ここで、図3に示す装置の開口部4は、種結晶12の両隣にそれぞれ設置された。したがって、比較例1において、開口部4はAlN多結晶原料11よりも種結晶12に近い位置に設置されたことになる。また、開口部4は、それぞれ直径2mmの円形状に形成され、それぞれの開口部4の長さ(成長室3の上壁の厚さ)は3mmであった。
(Comparative Example 1)
An AlN single crystal was grown under the same conditions as in Example 1 except that the apparatus shown in the schematic cross-sectional view of FIG. 3 was used. Here, the opening 4 of the apparatus shown in FIG. 3 was installed on both sides of the seed crystal 12. Therefore, in Comparative Example 1, the opening 4 is installed at a position closer to the seed crystal 12 than the AlN polycrystalline raw material 11. The openings 4 were each formed in a circular shape having a diameter of 2 mm, and the length of each opening 4 (the thickness of the upper wall of the growth chamber 3) was 3 mm.

比較例1においては、AlN多結晶原料11の減少量は70gであって、種結晶の表面上に成長したAlN単結晶の質量は49gであった。このことから、成長室3の内部から排気されたガスの質量は21gであることがわかった。また、比較例1で成長させたAlN単結晶を切り出し、AlN単結晶の中央部の酸素濃度を実施例1と同一の方法で測定したところ140ppmであった。したがって、比較例1と実施例1とでは、AlN単結晶に取り込まれた酸素の量はほとんど変わらないことが確認された。   In Comparative Example 1, the reduction amount of the AlN polycrystalline raw material 11 was 70 g, and the mass of the AlN single crystal grown on the surface of the seed crystal was 49 g. From this, it was found that the mass of the gas exhausted from the inside of the growth chamber 3 was 21 g. Moreover, when the AlN single crystal grown in Comparative Example 1 was cut out and the oxygen concentration at the center of the AlN single crystal was measured by the same method as in Example 1, it was 140 ppm. Therefore, it was confirmed that the amount of oxygen taken into the AlN single crystal was hardly changed between Comparative Example 1 and Example 1.

(実施例2)
AlN単結晶の成長ごとの成長速度のばらつきを調べるために、図1に示す装置を用いて実施例1と同一の条件でAlN単結晶を5回成長させ、それぞれのAlN単結晶の成長速度を調べた。その結果を表1に示す。なお、図1に示す反応管1の内部に設置されている坩堝2および成長室3などの部材はAlN単結晶の成長ごとに交換した。
(Example 2)
In order to investigate the variation in the growth rate for each growth of the AlN single crystal, an AlN single crystal is grown five times under the same conditions as in Example 1 using the apparatus shown in FIG. 1, and the growth rate of each AlN single crystal is determined. Examined. The results are shown in Table 1. The members such as the crucible 2 and the growth chamber 3 installed inside the reaction tube 1 shown in FIG. 1 were exchanged for every growth of the AlN single crystal.

表1に示すように、実施例2におけるAlN単結晶の成長速度の平均は0.516(g/h)であって、分散は0.003344であった。   As shown in Table 1, the average growth rate of the AlN single crystal in Example 2 was 0.516 (g / h), and the dispersion was 0.003344.

(実施例3)
図2の模式的断面図に示す装置を用い、250gの質量のAlN多結晶原料11を用いたこと以外は実施例2と同一にしてAlN単結晶を5回成長させ、それぞれのAlN単結晶の成長速度を調べた。その結果を表1に示す。
(Example 3)
Using the apparatus shown in the schematic cross-sectional view of FIG. 2, an AlN single crystal was grown five times in the same manner as in Example 2 except that an AlN polycrystalline material 11 having a mass of 250 g was used. The growth rate was examined. The results are shown in Table 1.

図2に示す装置において、成長室3は、AlN多結晶原料収容部3aとAlN単結晶成長部3bとから構成されており、AlN多結晶原料収容部3aはAlN単結晶成長部3bよりも容積が大きく設定された。また、開口部4は、AlN多結晶原料収容部3aの両側面に設けられた。したがって、開口部4は、種結晶12よりもAlN多結晶原料11に近い位置にあり、開口部4を通して成長室3の外部から成長室3の内部を覗いた場合でも開口部4の物理的な位置によって種結晶12を直接見ることはできなかった。また、開口部4は、それぞれ直径2mmの円形状に形成されており、それぞれの開口部4の長さ(成長室3の側壁の厚さ)は2mmであった。   In the apparatus shown in FIG. 2, the growth chamber 3 is composed of an AlN polycrystal raw material storage unit 3a and an AlN single crystal growth unit 3b, and the AlN polycrystal raw material storage unit 3a is larger in volume than the AlN single crystal growth unit 3b. Was set larger. Moreover, the opening part 4 was provided in the both sides | surfaces of the AlN polycrystal raw material accommodating part 3a. Therefore, the opening 4 is located closer to the AlN polycrystalline raw material 11 than the seed crystal 12, and even when the inside of the growth chamber 3 is viewed from the outside of the growth chamber 3 through the opening 4, the opening 4 is physically present. The seed crystal 12 could not be seen directly depending on the position. The openings 4 were each formed in a circular shape having a diameter of 2 mm, and the length of each opening 4 (thickness of the side wall of the growth chamber 3) was 2 mm.

表1に示すように、実施例3におけるAlN単結晶の成長速度の平均は0.564(g/h)であって、分散は0.001264であった。   As shown in Table 1, the average growth rate of the AlN single crystal in Example 3 was 0.564 (g / h), and the dispersion was 0.001264.

(比較例2)
図3に示す装置を用いたこと以外は実施例2と同一にしてAlN単結晶を5回成長させ、それぞれのAlN単結晶の成長速度を調べた。その結果を表1に示す。
(Comparative Example 2)
The AlN single crystal was grown five times in the same manner as in Example 2 except that the apparatus shown in FIG. 3 was used, and the growth rate of each AlN single crystal was examined. The results are shown in Table 1.

表1に示すように、比較例2におけるAlN単結晶の成長速度の平均は0.456(g/h)であって、分散は0.010384であった。したがって、比較例2においては、実施例2および実施例3よりも分散が大きくなるため、AlN単結晶の成長ごとの成長速度のばらつきが大きくなることが確認された。   As shown in Table 1, the average growth rate of the AlN single crystal in Comparative Example 2 was 0.456 (g / h), and the dispersion was 0.010384. Therefore, in Comparative Example 2, since the dispersion is larger than in Example 2 and Example 3, it was confirmed that the variation in the growth rate for each growth of the AlN single crystal was increased.

Figure 0004774959
Figure 0004774959

(実施例4)
図1に示す装置の開口部4の直径を変えることによって、ガスの排気量を様々に調節してAlN単結晶を成長させた。そして、AlN単結晶の成長ごとに、AlN単結晶の成長速度および酸素濃度を調査した。その結果を表2に示す。ここで、開口部4の直径はAlN単結晶の成長ごとに変化させた。また、AlN単結晶の成長条件はすべての成長において実施例1と同一の条件とし、AlN単結晶中の酸素濃度は実施例1と同一の方法で調査した。また、表2において、排気量(%)の値は、以下の式(2)により算出された。
排気量(%)=100×(AlN多結晶原料の質量の減少量−成長したAlN単結晶の質量)/(成長したAlN単結晶の質量)………(2)
Example 4
By changing the diameter of the opening 4 of the apparatus shown in FIG. 1, the amount of gas exhausted was variously adjusted to grow an AlN single crystal. Then, for each growth of the AlN single crystal, the growth rate and oxygen concentration of the AlN single crystal were investigated. The results are shown in Table 2. Here, the diameter of the opening 4 was changed every time the AlN single crystal was grown. The growth conditions of the AlN single crystal were the same as those in Example 1 in all growths, and the oxygen concentration in the AlN single crystal was investigated by the same method as in Example 1. In Table 2, the displacement (%) value was calculated by the following equation (2).
Displacement (%) = 100 × (Reduction in mass of AlN polycrystal raw material−Mass of grown AlN single crystal) / (Mass of grown AlN single crystal) (2)

Figure 0004774959
Figure 0004774959

表2に示すように、AlN多結晶原料のうち、成長したAlN単結晶の質量の10%未満が排気された場合にはAlN単結晶中の酸素濃度が高くなる傾向が認められ、成長したAlN単結晶の質量の100%よりも多く排気された場合にはAlN単結晶中の酸素濃度は多少減少するが、AlN単結晶の成長速度が大きく低下する傾向にあった。また、AlN多結晶原料のうち、成長したAlN単結晶の質量の10%以上100%以下を排気した場合には、酸素濃度が低く高純度のAlN単結晶を大きな成長速度で成長できることがわかった。   As shown in Table 2, when less than 10% of the mass of the grown AlN single crystal is exhausted among the AlN polycrystalline raw materials, the oxygen concentration in the AlN single crystal tends to increase, and the grown AlN When more than 100% of the mass of the single crystal was exhausted, the oxygen concentration in the AlN single crystal decreased somewhat, but the growth rate of the AlN single crystal tended to decrease greatly. Further, it was found that, when the AlN polycrystal raw material exhausted 10% or more and 100% or less of the mass of the grown AlN single crystal, a high purity AlN single crystal having a low oxygen concentration can be grown at a high growth rate. .

(実施例5)
図4の模式的断面図に示す装置を用いてAlN単結晶を5回成長させた。図4に示す装置は、成長室3の下方に成長室3とは別に設けられ、成長室3に連結されているガス生成室13を備えていることに特徴がある。
(Example 5)
An AlN single crystal was grown five times using the apparatus shown in the schematic cross-sectional view of FIG. The apparatus shown in FIG. 4 is characterized in that a gas generation chamber 13 is provided below the growth chamber 3 separately from the growth chamber 3 and connected to the growth chamber 3.

ここで、図4に示す装置においては、成長室3の下面にガス生成室13と連結するための開口部15aが設けられ、ガス生成室13の上面に成長室3と連結するための開口部15bが設けられている。そして、これらの開口部15aと開口部15bとは成長室3の下面およびガス生成室13の上面を構成している板状部材の中空部の壁面からなる連結部14により連結されている。また、ガス生成室13の内部には炭素16が設置されており、高周波加熱コイル7を用いてガス生成室13を加熱することにより、ガス生成室13から成長室3の内部に炭素を含むガスを導入しながら種結晶12の表面上にAlN単結晶を成長させた。ここで、AlN単結晶は、成長室3に設けられた開口部15aとガス生成室13に設けられた開口部15bとを連結する連結部14の温度をAlN多結晶原料11の温度よりも高くした状態で成長させた。   Here, in the apparatus shown in FIG. 4, an opening 15 a for connecting to the gas generation chamber 13 is provided on the lower surface of the growth chamber 3, and an opening for connecting to the growth chamber 3 on the upper surface of the gas generation chamber 13. 15b is provided. The opening 15a and the opening 15b are connected to each other by a connecting portion 14 including a wall surface of a hollow portion of a plate-like member constituting the lower surface of the growth chamber 3 and the upper surface of the gas generation chamber 13. In addition, carbon 16 is installed inside the gas generation chamber 13, and the gas generation chamber 13 is heated by using the high-frequency heating coil 7, whereby a gas containing carbon from the gas generation chamber 13 to the inside of the growth chamber 3. An AlN single crystal was grown on the surface of the seed crystal 12 while introducing. Here, in the AlN single crystal, the temperature of the connecting portion 14 that connects the opening 15 a provided in the growth chamber 3 and the opening 15 b provided in the gas generation chamber 13 is higher than the temperature of the AlN polycrystalline raw material 11. It was grown in the state.

また、図4に示す装置において、ガス生成室13との連結のために成長室3に設けられた開口部15aは、成長室3の内部と外部のガスの交換を可能とする開口部4と比べて種結晶12から遠い位置にあった。   In addition, in the apparatus shown in FIG. 4, the opening 15 a provided in the growth chamber 3 for connection to the gas generation chamber 13 includes an opening 4 that enables exchange of gas inside and outside the growth chamber 3. Compared to the seed crystal 12, it was far from the seed crystal 12.

また、ここでも、開口部4は、種結晶12よりもAlN多結晶原料11に近い位置にあり、開口部4を通して成長室3の外部から成長室3の内部を覗いた場合でも開口部4の物理的な位置によって種結晶12を直接見ることはできなかった。また、開口部4は、それぞれ直径2mmの円形状に形成されており、それぞれの開口部4の長さ(成長室3の側壁の厚さ)は2mmであった。   Also here, the opening 4 is closer to the AlN polycrystalline material 11 than the seed crystal 12, and even when the inside of the growth chamber 3 is viewed from the outside of the growth chamber 3 through the opening 4, The seed crystal 12 could not be seen directly depending on the physical position. The openings 4 were each formed in a circular shape having a diameter of 2 mm, and the length of each opening 4 (thickness of the side wall of the growth chamber 3) was 2 mm.

なお、上記以外は、実施例1と同一の方法および同一の条件でAlN単結晶を成長させた。   Except for the above, an AlN single crystal was grown by the same method and the same conditions as in Example 1.

そして、成長させたそれぞれのAlN単結晶中の炭素濃度を不活性ガス融解−赤外検出法により測定したところ、炭素濃度はすべて250±50ppmの範囲内にあり、AlN単結晶の成長ごとのAlN単結晶中の炭素濃度のばらつきが少なく、AlN単結晶中の炭素量が良好に制御できていることが確認された。   Then, when the carbon concentration in each grown AlN single crystal was measured by an inert gas melting-infrared detection method, all the carbon concentrations were in the range of 250 ± 50 ppm, and AlN for each growth of the AlN single crystal. It was confirmed that the carbon concentration in the single crystal was small and the amount of carbon in the AlN single crystal was well controlled.

今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   It should be understood that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

本発明のAlN単結晶の成長方法により得られたAlN単結晶は、たとえば発光素子(発光ダイオード、レーザダイオードなど)、電子素子(整流器、バイポーラトランジスタ、電界効果トタンジスタ、HEMT(高電子移動度トランジスタ)など)、半導体センサ(温度センサ、圧力センサ、放射線センサ、可視−紫外光検出器など)、SAW(表面弾性波)デバイス、加速度センサ、MEMS(マイクロマシン)部品、圧電振動子、共振器または圧電アクチュエータなどの基板として用いることができる。   The AlN single crystal obtained by the AlN single crystal growth method of the present invention includes, for example, a light emitting device (light emitting diode, laser diode, etc.), an electronic device (rectifier, bipolar transistor, field effect transistor, HEMT (high electron mobility transistor)). Etc.), semiconductor sensors (temperature sensors, pressure sensors, radiation sensors, visible-ultraviolet light detectors, etc.), SAW (surface acoustic wave) devices, acceleration sensors, MEMS (micromachine) parts, piezoelectric vibrators, resonators or piezoelectric actuators It can be used as a substrate.

本発明のAlN単結晶の成長方法に用いられる装置の好ましい一例の模式的な断面図である。It is typical sectional drawing of a preferable example of the apparatus used for the growth method of the AlN single crystal of this invention. 本発明のAlN単結晶の成長方法に用いられる装置の他の好ましい一例の模式的な断面図である。It is typical sectional drawing of another preferable example of the apparatus used for the growth method of the AlN single crystal of this invention. 従来のAlN単結晶の成長方法に用いられる装置の模式的な断面図である。It is typical sectional drawing of the apparatus used for the growth method of the conventional AlN single crystal. 本発明のAlN単結晶の成長方法に用いられる装置のさらに他の好ましい一例の模式的な断面図である。FIG. 6 is a schematic cross-sectional view of still another preferred example of an apparatus used in the AlN single crystal growth method of the present invention.

符号の説明Explanation of symbols

1 反応管、2 坩堝、3 成長室、3a AlN多結晶原料収容部、3b AlN単結晶成長部、4 開口部、5 排気孔、6 断熱材、7 高周波加熱コイル、8 ガス導入口、9 ガス排気口、10 放射温度計、11 AlN多結晶原料、12 種結晶、13 ガス生成室、14 連結部、15a,15b 開口部、16 炭素。   1 reaction tube, 2 crucible, 3 growth chamber, 3a AlN polycrystal raw material container, 3b AlN single crystal growth part, 4 opening, 5 exhaust hole, 6 heat insulating material, 7 high frequency heating coil, 8 gas inlet, 9 gas Exhaust port, 10 radiation thermometer, 11 AlN polycrystal raw material, 12 seed crystals, 13 gas generation chamber, 14 connecting part, 15a, 15b opening, 16 carbon.

Claims (4)

成長室の内部にAlN多結晶原料を設置する工程と、前記AlN多結晶原料を加熱して昇華させる工程と、前記成長室の内部の種結晶の表面上にAlN単結晶を成長させる工程と、を含み、
前記成長室の内部の前記AlN多結晶原料の温度におけるAlNの化学量論組成の窒素分圧よりも前記成長室の外部の窒素分圧を高くし、前記成長室の内部と外部のガスの交換を可能とする開口部を前記成長室に設けてAlN単結晶を成長させ、
前記開口部は、前記種結晶よりも前記AlN多結晶原料に近く、かつ、前記種結晶を直接見ない位置にのみ設けられていることを特徴とする、AlN単結晶の成長方法。
A step of installing an AlN polycrystalline raw material inside the growth chamber, a step of heating and sublimating the AlN polycrystalline raw material, a step of growing an AlN single crystal on the surface of a seed crystal inside the growth chamber, Including
Exchange of the gas inside and outside the growth chamber by making the nitrogen partial pressure outside the growth chamber higher than the nitrogen partial pressure of the stoichiometric composition of AlN at the temperature of the AlN polycrystalline raw material inside the growth chamber. An opening for enabling the growth is provided in the growth chamber to grow an AlN single crystal,
The method of growing an AlN single crystal, wherein the opening is provided closer to the AlN polycrystal raw material than the seed crystal and only at a position where the seed crystal is not directly seen.
前記開口部は、前記種結晶から見て前記AlN多結晶原料の背部に設けられていることを特徴とする、請求項1に記載のAlN単結晶の成長方法。   2. The method for growing an AlN single crystal according to claim 1, wherein the opening is provided on a back portion of the AlN polycrystalline raw material when viewed from the seed crystal. 前記成長室は、AlN多結晶原料収容部と、AlN単結晶成長部と、から構成されており、
前記AlN多結晶原料収容部は前記AlN単結晶成長部よりも容積が大きく、
前記AlN多結晶原料収容部に前記開口部が設けられていることを特徴とする、請求項1に記載のAlN単結晶の成長方法。
The growth chamber is composed of an AlN polycrystal raw material storage part and an AlN single crystal growth part,
The AlN polycrystalline raw material container has a larger volume than the AlN single crystal growth part,
The method for growing an AlN single crystal according to claim 1, wherein the opening is provided in the AlN polycrystalline raw material container.
前記AlN多結晶原料のうち、成長したAlN単結晶の10%以上100%以下の質量が排気されることを特徴とする、請求項1から3のいずれかに記載のAlN単結晶の成長方法。   4. The method for growing an AlN single crystal according to claim 1, wherein a mass of 10% to 100% of the grown AlN single crystal is exhausted from the AlN polycrystalline raw material. 5.
JP2005347648A 2005-04-13 2005-12-01 Method for growing AlN single crystal Expired - Fee Related JP4774959B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005347648A JP4774959B2 (en) 2005-04-13 2005-12-01 Method for growing AlN single crystal

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005115698 2005-04-13
JP2005115698 2005-04-13
JP2005347648A JP4774959B2 (en) 2005-04-13 2005-12-01 Method for growing AlN single crystal

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010172162A Division JP5310669B2 (en) 2005-04-13 2010-07-30 Method for growing AlN single crystal

Publications (2)

Publication Number Publication Date
JP2006315940A JP2006315940A (en) 2006-11-24
JP4774959B2 true JP4774959B2 (en) 2011-09-21

Family

ID=37536932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005347648A Expired - Fee Related JP4774959B2 (en) 2005-04-13 2005-12-01 Method for growing AlN single crystal

Country Status (1)

Country Link
JP (1) JP4774959B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010001804A1 (en) * 2008-07-01 2010-01-07 住友電気工業株式会社 PROCESS FOR PRODUCTION OF AlXGa(1-X)N SINGLE CRYSTAL, AlXGa(1-X)N SINGLE CRYSTAL, AND OPTICS
JPWO2010001803A1 (en) * 2008-07-01 2011-12-22 住友電気工業株式会社 Method for producing AlxGa (1-x) N single crystal, AlxGa (1-x) N single crystal, and optical lens
JP2010042981A (en) * 2008-07-17 2010-02-25 Sumitomo Electric Ind Ltd METHOD FOR PRODUCING AlGaN BULK CRYSTAL AND METHOD FOR PRODUCING AlGaN SUBSTRATE
CN108275664B (en) * 2017-12-29 2021-12-07 奥趋光电技术(杭州)有限公司 High-temperature sintering purification method for aluminum nitride

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62283900A (en) * 1986-06-02 1987-12-09 Tokai Carbon Co Ltd Production of aln whisker
DE10335538A1 (en) * 2003-07-31 2005-02-24 Sicrystal Ag Process and apparatus for AIN single crystal production with gas permeable crucible wall

Also Published As

Publication number Publication date
JP2006315940A (en) 2006-11-24

Similar Documents

Publication Publication Date Title
US7056383B2 (en) Tantalum based crucible
JP5304792B2 (en) Method and apparatus for producing SiC single crystal film
JP3876473B2 (en) Nitride single crystal and manufacturing method thereof
WO2010122801A1 (en) Apparatus for manufacturing aluminum nitride single crystal, method for manufacturing aluminum nitride single crystal, and aluminum nitride single crystal
JP5186733B2 (en) AlN crystal growth method
JP2006111478A (en) Silicon carbide single crystal ingot, silicon carbide single crystal wafer, and its manufacturing method
JP4600160B2 (en) Group III nitride crystal growth method
JP4774959B2 (en) Method for growing AlN single crystal
JP4604728B2 (en) Method for producing silicon carbide single crystal
JP4460236B2 (en) Silicon carbide single crystal wafer
JP5310669B2 (en) Method for growing AlN single crystal
WO2010082574A1 (en) Method for producing nitride semiconductor crystal, nitride semiconductor crystal, and apparatus for producing nitride semiconductor crystal
WO2009096123A1 (en) METHOD FOR GROWING AlxGa1-xN SINGLE CRYSTAL
JP2010077023A (en) Silicon carbide single crystal and method of manufacturing the same
US20160090304A1 (en) Method for producing group iii nitride crystal, and apparatus for producing the same
JP2007145679A (en) Apparatus for and method of producing aluminum nitride single crystal
JP4595592B2 (en) Single crystal growth method
WO1998019964A1 (en) Method for the synthesis of group iii nitride crystals
JP4736365B2 (en) Method for producing aluminum nitride single crystal
JP5657949B2 (en) Low nitrogen concentration graphite material and storage method thereof
JP2001192299A (en) Method and device for producing silicon carbide single crystal
JP5252495B2 (en) Method for producing aluminum nitride single crystal
JP4590636B2 (en) Method for producing aluminum nitride single crystal
JP4779848B2 (en) Group 13 metal nitride crystal manufacturing method and semiconductor device manufacturing method using the same
KR200412993Y1 (en) Apparatus for growing single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110613

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees