JPH10101472A - Graphite crucible for pulling up semiconductor monocrystal - Google Patents

Graphite crucible for pulling up semiconductor monocrystal

Info

Publication number
JPH10101472A
JPH10101472A JP28124596A JP28124596A JPH10101472A JP H10101472 A JPH10101472 A JP H10101472A JP 28124596 A JP28124596 A JP 28124596A JP 28124596 A JP28124596 A JP 28124596A JP H10101472 A JPH10101472 A JP H10101472A
Authority
JP
Japan
Prior art keywords
graphite crucible
graphite
pulling
reaction
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28124596A
Other languages
Japanese (ja)
Inventor
Takeshi Notake
毅 野竹
Koichi Isobe
磯部鴻一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Carbon Co Ltd
Original Assignee
Nippon Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Carbon Co Ltd filed Critical Nippon Carbon Co Ltd
Priority to JP28124596A priority Critical patent/JPH10101472A/en
Publication of JPH10101472A publication Critical patent/JPH10101472A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a graphite crucible able to suppress its reaction with SiO glass in a catalytic reaction with quartz glass at a local temperature by heating the graphite crucible at a specific temperature in the final process. SOLUTION: This graphite crucible is produced at a temperature of final process in the range of 2200-2000 deg.C, to preferably have degree of graphitization P(1- P) of 0.05-0.35, bulk density of 1.7 or more, and intrinsic electric resistance of 2000-4000μΩ-cm. Regulating the temperature of the graphite member in the final process is advantageous for grasping process condition because troublesome analyses, such as X-ray diffraction, is required, and furthermore can substantially increase frequency of pulling up semiconductor monocrystals.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【技術分野】本発明は半導体単結晶引上げ用黒鉛ルツボ
に関し特にシリコン等の半導体単結晶引上げ用黒鉛ルツ
ボに高寿命を与える。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a graphite crucible for pulling a semiconductor single crystal, and particularly to a graphite crucible for pulling a semiconductor single crystal such as silicon, which has a long life.

【0002】[0002]

【従来の技術】一般に、半導体物質、特にシリコンの単
結晶は主にチョクラルスキー法と呼ばれる回転引上げ法
によって製造されている。チョクラルスキー法は溶融液
に浸した種結晶を回転させながら引上げて単結晶を作る
結晶育成法である。
2. Description of the Related Art In general, semiconductor materials, particularly single crystals of silicon, are mainly produced by a rotational pulling method called a Czochralski method. The Czochralski method is a crystal growing method in which a single crystal is grown by rotating and pulling a seed crystal immersed in a melt.

【0003】例えばシリコン単結晶を製造する場合に
は、黒鉛ルツボに内装された石英ガラスルツボ内で高純
度のシリコン多結晶を外部のカーボンヒーターにより加
熱溶融し、この溶融液に最初シリコンの種結晶を浸して
回転させながらゆっくり引上げる。
For example, when manufacturing a silicon single crystal, a high-purity polycrystalline silicon is heated and melted by an external carbon heater in a quartz glass crucible housed in a graphite crucible, and a silicon seed crystal is first added to the melt. And slowly pull it up while rotating.

【0004】この操作はシリコンの固−液境界温度であ
る1413℃をはさんで1450℃近くの温度で行われ
るが、石英ガラスは1200℃以上の温度では軟化をは
じめるので、黒鉛ルツボで支えて軟化による変形を防止
している。このようにシリコン単結晶引上げ操作中石英
ガラスと黒鉛は接触し、 SiO2 +C→CO2 + SiO2 の反応で黒鉛ルツボが消耗し減肉が進行する。
[0004] This operation is carried out at a temperature of about 1450 ° C across the solid-liquid boundary temperature of silicon of 1413 ° C. Since quartz glass begins to soften at a temperature of 1200 ° C or more, it is supported by a graphite crucible. Prevents deformation due to softening. As described above, during the operation of pulling the silicon single crystal, the quartz glass and the graphite come into contact with each other, and the reaction of SiO 2 + C → CO 2 + SiO 2 consumes the graphite crucible, thereby reducing the wall thickness.

【0005】これを防止するため例えば特開昭63−1
17988号公報では、FranklinのP値を用い
て計算される黒鉛化度(1−P)の値が温度2500℃
処理後で0.6以下であり、かつ半径が1μm以上の細
孔の占める容積が0.1cm3 /g以下である気孔構造
を有する黒鉛素材からなることを特徴とする半導体単結
晶製造用黒鉛ルツボが提案されているが、単結晶引上げ
操作においては20回前後で黒鉛ルツボの交換を行って
いる。
In order to prevent this, for example, Japanese Patent Laid-Open No. 63-1
In 17988, the value of the degree of graphitization (1-P) calculated using the Franklin P value is determined at a temperature of 2500 ° C.
A graphite for producing a semiconductor single crystal, comprising a graphite material having a pore structure having a pore size of 0.6 or less after treatment and having a radius of 1 µm or more and occupying 0.1 cm 3 / g or less. Although a crucible has been proposed, the graphite crucible is replaced about 20 times in a single crystal pulling operation.

【0006】[0006]

【発明が解決しようとする課題】このように従来は黒鉛
ルツボの耐久寿命が短い欠点があり、この耐久寿命の延
長が求められていた。石英ガラスとの高温での接触反応
や、SiOガス雰囲気との反応を防止する方法が確立し
ていない。
As described above, conventionally, graphite crucibles have a drawback that the durable life is short, and it has been demanded to extend the durable life. A method for preventing a contact reaction with quartz glass at a high temperature or a reaction with a SiO gas atmosphere has not been established.

【0007】特開昭63−117988号公報で黒鉛化
度(1−P)の値が0.6以下は現実の人造黒鉛材の全
てであって、特に長寿命を期待することは不可能であ
る。又、X線回折による分析は、測定が面倒であり簡便
な検査方法が望まれていた。
Japanese Unexamined Patent Publication (Kokai) No. 63-117988 discloses that if the degree of graphitization (1-P) is 0.6 or less, it is all of the actual artificial graphite materials, and it is impossible to expect a particularly long life. is there. Further, analysis by X-ray diffraction is troublesome to measure, and a simple inspection method has been desired.

【0008】[0008]

【課題を解決するための手段】本発明者は、かかる問題
を解決すべく、黒鉛材とシリコンの反応について種々検
討した結果、黒鉛ルツボに、使用する黒鉛材の最終熱処
理温度が重要な要因であり、特に2000〜2200℃
熱処理されたものが顕著な効果を得ることを見出した。
この際に黒鉛材のかさ比重が高いもの程、開気孔面積が
小さく従って反応面積が小さくなるので望ましい結果を
得た。
The present inventor has conducted various studies on the reaction between graphite material and silicon in order to solve such a problem. As a result, the final heat treatment temperature of the graphite material used in a graphite crucible is an important factor. Yes, especially 2000-2200 ° C
It has been found that a heat-treated one obtains a remarkable effect.
At this time, the higher the bulk specific gravity of the graphite material, the smaller the open pore area and the smaller the reaction area, so that a desirable result was obtained.

【0009】[0009]

【発明の効果】本発明は黒鉛材の最終熱処理温度さえ規
制すれば、面倒なX線回折等による分析を要しないの
で、工程把握の上で有利である。本発明の半導体単結晶
引上げ用黒鉛ルツボは、シリコン、SiOガス等との反
応が抑制されるので、半導体単結晶引上げ回数を大巾に
増加できる。以下に本発明を説明する。
As described above, the present invention is advantageous in grasping the process because it does not require complicated analysis by X-ray diffraction or the like as long as the final heat treatment temperature of the graphite material is regulated. In the graphite crucible for pulling a semiconductor single crystal of the present invention, since the reaction with silicon, SiO gas and the like is suppressed, the number of times of pulling a semiconductor single crystal can be greatly increased. Hereinafter, the present invention will be described.

【0010】かさ比重1.5〜1.8の炭素材(未黒鉛
化材)を熱処理温度を変えて黒鉛化したものを用意し
て、溶融シリコンに浸漬し、ケイ化反応をX線回折によ
り分析した。結果を表1に示めす。使用した素材のかさ
比重は1.7前後のものである。
A carbon material (ungraphitized material) having a bulk specific gravity of 1.5 to 1.8, which has been graphitized by changing the heat treatment temperature, is immersed in molten silicon, and the silicidation reaction is performed by X-ray diffraction. analyzed. The results are shown in Table 1. The bulk specific gravity of the used material is around 1.7.

【0011】[0011]

【表1】 [Table 1]

【0012】このときの黒鉛材で最良の結果を得たもの
は最終熱処理温度が2000〜2200℃であり、X線
回折でのP値P(1-P) は0.05〜0.35、かさ比重
1.7〜1.86であった。電気固有抵抗は2000〜
4000μΩ−cmであった。
The best results obtained with the graphite material at this time are those in which the final heat treatment temperature is 2000-2200 ° C., the P value P (1-P) in X-ray diffraction is 0.05-0.35, The bulk specific gravity was 1.7 to 1.86. Electric resistivity is 2000-
4000 μΩ-cm.

【0013】シリコン単結晶引上げ用黒鉛ルツボの反応
は、石英ガラス(SiO2 )、SiOガス溶融シリコン
との反応である。反応メカニズムを検討すると次のよう
な理論が成り立つと考える。
The reaction of a graphite crucible for pulling a silicon single crystal is a reaction with quartz glass (SiO 2 ) and silicon fused with SiO gas. Considering the reaction mechanism, we believe that the following theory holds.

【0014】溶融シリコンとの反応は表1に見る通り
で、2000〜2200℃処理、黒鉛化度P(1-P)
0.1〜0.3の半黒鉛質が良好な結果を得ている。こ
のことから炭素材とSiとの反応生成物であるSiC
は、黒鉛結晶化度の小さい半黒鉛質材が、接触反応を抑
制できる。
The reaction with the molten silicon is as shown in Table 1, and the results obtained are as follows: a treatment at 2000 to 2200 ° C. and a semi - graphite having a degree of graphitization P (1-P) of 0.1 to 0.3 give good results. I have. From this, SiC which is a reaction product of carbon material and Si is obtained.
The semi-graphitic material having a low degree of graphite crystallinity can suppress the contact reaction.

【0015】反応の難易は炭素材の結晶構造に依存し、
黒鉛化度が低くく無秩序層の存在する割合が大きいと反
応が抑制される。しかし結晶子の小さい炭素質(未黒鉛
化)材では、Siとの接触面が大きくなるためSiC反
応が大きくなると推定される。
The difficulty of the reaction depends on the crystal structure of the carbon material.
When the degree of graphitization is low and the proportion of the disordered layer is large, the reaction is suppressed. However, a carbonaceous (ungraphitized) material having a small crystallite is presumed to have a large SiC reaction due to a large contact surface with Si.

【0016】気体であるSiOとの反応は、ルツボ材中
へのガス拡散反応であり、平均気孔径が小さく気孔率の
小さいものがガス拡散が少ない。従って気孔率の小さい
かさ比重大のルツボ材が望ましい。
The reaction with SiO, which is a gas, is a gas diffusion reaction into the crucible material. A gas having a small average pore diameter and a small porosity has a small gas diffusion. Therefore, a crucible material having a small porosity and a significant bulk ratio is desirable.

【0017】固体であるSiO2 との反応は接触反応で
あるので、溶融シリコンとの反応と同様に半黒鉛質の炭
素材である2000〜2200℃処理品が秀れている考
えられる。単結晶引上げにおいては通常コンタミ防止の
ため不純物発生の少ない高純度材料が用いられる。従っ
て黒鉛ルツボは、加工前の素材又は加工後高純度化処理
を行う。
Since the reaction with SiO 2 which is a solid is a contact reaction, a product treated at 2000 to 2200 ° C., which is a semi-graphitic carbon material, is considered to be superior to the reaction with molten silicon. In pulling a single crystal, a high-purity material with little generation of impurities is usually used to prevent contamination. Therefore, the graphite crucible is subjected to a material before processing or a high-purification treatment after processing.

【0018】[0018]

【実施例】半導体単結晶製造用黒鉛ルツボの耐久寿命
は、SiOガスとの反応が支配的であり、本発明による
SiOとの反応試験を実施した。試験条件は試験片寸法
4t×20×50(単位:mm)、SiO粉末中に、試
験片を埋め込み、アルゴンガス60torr雰囲気、温
度1550℃、60分間保持し炭素材の重量減少量を測
定した。その結果を表2に示す。
EXAMPLES The durability life of graphite crucibles for producing semiconductor single crystals is dominated by the reaction with SiO gas, and a reaction test with SiO according to the present invention was carried out. The test conditions were as follows: the test piece was 4 t × 20 × 50 (unit: mm), the test piece was embedded in SiO powder, the atmosphere was kept at 60 torr in argon gas, at 1550 ° C. for 60 minutes, and the weight loss of the carbon material was measured. Table 2 shows the results.

【0019】[0019]

【表2】 [Table 2]

【0020】表2の結果重量減少量で2000℃処理品
が、従来品の2800℃処理品に比較して57%の減少
であり、43%も少ない結果であった。この結果をもと
に等方性炭素材を2000℃処理した半黒鉛質材から、
ルツボ加工し、高純度化処理をして総灰分20ppm以
下とした半導体単結晶製造用黒鉛ルツボを使用したとこ
ろ、従来20回程度に対し30〜40回の単結晶引上げ
回数を得た。
As shown in Table 2, the weight loss of the product treated at 2000 ° C. was 57% smaller than that of the conventional product treated at 2800 ° C., which was 43% less. From the semi-graphitic material obtained by treating the isotropic carbon material at 2000 ° C based on this result,
When a graphite crucible for producing a semiconductor single crystal having a total ash content of 20 ppm or less after crucible processing and high-purity treatment was used, the number of single crystal pulling times was 30 to 40 times as compared with about 20 times in the past.

【0021】この黒鉛ルツボ材の特性は、黒鉛化度P
(1-P) が0.05〜0.35、電気固有抵抗が2000
〜4000μΩ−cm、かさ比重1.75〜1.83、
総灰分が10〜20ppmであった。
The characteristics of this graphite crucible material are graphitization degree P
(1-P) is 0.05-0.35 and electric resistivity is 2000
44000 μΩ-cm, bulk specific gravity 1.75 to 1.83,
Total ash was 10-20 ppm.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】最終処理温度を2200〜2000℃とし
た黒鉛材からなることを特徴とする半導体単結晶引上げ
用黒鉛ルツボ。
1. A graphite crucible for pulling a semiconductor single crystal, wherein the graphite crucible is made of a graphite material having a final processing temperature of 2200 to 2000 ° C.
【請求項2】黒鉛材の黒鉛化度P(1-P) が0.05〜
0.35、かさ比重1.7以上、電気固有抵抗2000
〜4000μΩ−cmである請求項1の半導体単結晶引
上げ用黒鉛ルツボ。
2. A graphite material having a graphitization degree P (1-P) of 0.05 to 0.05.
0.35, bulk specific gravity 1.7 or more, electrical resistivity 2000
2. The graphite crucible for pulling up a semiconductor single crystal according to claim 1, which has a thickness of about 4000 [mu] [Omega] -cm.
JP28124596A 1996-10-03 1996-10-03 Graphite crucible for pulling up semiconductor monocrystal Pending JPH10101472A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28124596A JPH10101472A (en) 1996-10-03 1996-10-03 Graphite crucible for pulling up semiconductor monocrystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28124596A JPH10101472A (en) 1996-10-03 1996-10-03 Graphite crucible for pulling up semiconductor monocrystal

Publications (1)

Publication Number Publication Date
JPH10101472A true JPH10101472A (en) 1998-04-21

Family

ID=17636388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28124596A Pending JPH10101472A (en) 1996-10-03 1996-10-03 Graphite crucible for pulling up semiconductor monocrystal

Country Status (1)

Country Link
JP (1) JPH10101472A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010100443A (en) * 2008-10-21 2010-05-06 Shin Etsu Handotai Co Ltd Method for evaluating life of graphite member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010100443A (en) * 2008-10-21 2010-05-06 Shin Etsu Handotai Co Ltd Method for evaluating life of graphite member

Similar Documents

Publication Publication Date Title
JP2650064B2 (en) Polycrystalline silicon capable of producing long-lived single-crystal silicon
JPH05294781A (en) Glassy carbon-coated graphite component for producing silicon crystal and production thereof
US4515755A (en) Apparatus for producing a silicon single crystal from a silicon melt
JPH11314997A (en) Production of semiconductor silicon single crystal wafer
JP2000351670A (en) Graphite material, graphite material for forming sic film and part for device for pulling silicon single crystal
JPH10101472A (en) Graphite crucible for pulling up semiconductor monocrystal
JP2005206391A (en) Method for guaranteeing resistivity of silicon single crystal substrate, method for manufacturing silicon single crystal substrate, and silicon single crystal substrate
RU2154698C2 (en) Monocrystalline sic and method of preparation thereof
JP4184622B2 (en) Method for producing silicon carbide single crystal ingot
JPH0798715B2 (en) Method for producing silicon single crystal
JP2959464B2 (en) Component management method and apparatus for single crystal pulling apparatus
US20020071803A1 (en) Method of producing silicon carbide power
JPH03184345A (en) Silicon wafer and manufacture thereof
JP3685365B2 (en) Refined silicon carbide powder for semiconductor device member, purification method thereof, and method for producing sintered body for semiconductor device member obtained from the powder
JP2002293691A (en) Method of manufacturing silicon single crystal and silicon single crystal as well as silicon wafer
JPH08290995A (en) Silicon single crystal and its production
JPH0132165B2 (en)
JPS62223090A (en) Device for pulling up semiconductor single crystal
US6497829B2 (en) Method of producing silicon carbide: heating and lighting elements
JPH07291783A (en) Silicon single crystal and production thereof
EP3578513B1 (en) Polycrystalline silicon rod
JP3900816B2 (en) Silicon wafer manufacturing method
JPH06279188A (en) Silicon single crystal rod and drawing method for that
JP3132956B2 (en) Method for producing oxide single crystal
JP2961340B2 (en) Method for producing high-purity silicon single crystal and high-purity silicon single crystal

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020903