JP2005206391A - Method for guaranteeing resistivity of silicon single crystal substrate, method for manufacturing silicon single crystal substrate, and silicon single crystal substrate - Google Patents

Method for guaranteeing resistivity of silicon single crystal substrate, method for manufacturing silicon single crystal substrate, and silicon single crystal substrate Download PDF

Info

Publication number
JP2005206391A
JP2005206391A JP2004011622A JP2004011622A JP2005206391A JP 2005206391 A JP2005206391 A JP 2005206391A JP 2004011622 A JP2004011622 A JP 2004011622A JP 2004011622 A JP2004011622 A JP 2004011622A JP 2005206391 A JP2005206391 A JP 2005206391A
Authority
JP
Japan
Prior art keywords
single crystal
silicon single
crystal substrate
resistivity
inspection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004011622A
Other languages
Japanese (ja)
Inventor
Akihiro Kimura
明浩 木村
Takeshi Aihara
健 相原
Michihiko Mizuno
亨彦 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2004011622A priority Critical patent/JP2005206391A/en
Publication of JP2005206391A publication Critical patent/JP2005206391A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for guaranteeing the resistivity of a silicon single crystal substrate, by which the accurate resistivity of a silicon single crystal substrate for a product can be guaranteed in a CZ silicon single crystal substrate in which nitrogen is added, and to provide a method for manufacturing the silicon single crystal substrate, and a silicone single crystal substrate. <P>SOLUTION: The method for guaranteeing the resistivity of the silicon single crystal substrate comprises: at least adding nitrogen to a silicon single crystal rod when the silicon single crystal rod is grown by a CZ method; cutting silicon single crystal substrates for inspection from both ends of the constant diameter cylindrical part of a grown silicon single crystal rod; then heat-treating the cut silicon single crystal substrates for inspection by keeping them at a temperature of 800°C to the melting point of silicon at least before the semiconductor element manufacturing process; measuring the resistivity of each silicon single crystal substrate for inspection, subjected to the heat treatment; and utilizing the measured resistivity of the silicon single crystal substrates for inspection as the certification value of the resistivity of each silicon single crystal substrate for a product, which is cut from the remaining part of the constant diameter cylindrical part of the grown silicon single crystal rod. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、チョクラルスキー法(CZ法)で育成され、窒素が添加されたシリコン単結晶基板の抵抗率保証方法及び窒素が添加されたシリコン単結晶基板の製造方法、並びにシリコン単結晶基板に関する。   The present invention relates to a resistivity guarantee method for a silicon single crystal substrate that is grown by the Czochralski method (CZ method) and to which nitrogen is added, a method for manufacturing a silicon single crystal substrate to which nitrogen is added, and a silicon single crystal substrate. .

近年、半導体素子の製造において、半導体回路の高集積化に伴う回路素子の微細化に伴い、その基板となるCZ法で育成されたシリコン単結晶(CZシリコン単結晶)に対する品質要求が高まってきている。特に、CZシリコン単結晶中には、FPD(Flow Pattern Defect)、LSTD(Laser Scattering Tomography Defect)、COP(Crystal Originated Particle)等のGrown−in欠陥と呼ばれ、酸化膜耐圧特性やデバイスの特性を悪化させる単結晶成長起因の欠陥が存在し、その低減が重要視されている。   2. Description of the Related Art In recent years, in the manufacture of semiconductor devices, quality requirements for silicon single crystals (CZ silicon single crystals) grown by the CZ method have increased as circuit elements have become finer due to higher integration of semiconductor circuits. Yes. In particular, in a CZ silicon single crystal, FPD (Flow Pattern Defect), LSTD (Laser Scattering Tomography Defect), COP (Crystal Originated Particle), etc. are called Grown-in defects, and the oxide film withstand voltage characteristics and device characteristics are called. Defects due to single crystal growth that deteriorate are present, and their reduction is regarded as important.

そこで、通常のシリコン単結晶基板上に新たにシリコン層をエピタキシャル成長させたエピタキシャル基板や、水素及びアルゴン雰囲気中で高温にてアニール熱処理を施したアニール基板、そしてCZシリコン単結晶の成長条件を改良して製造された、全面N領域(OSFリングの外側で、転位クラスターの無い領域)基板などGrown−in欠陥の少ない単結晶基板がいくつか開発されている。   Therefore, we improved the growth conditions of the epitaxial substrate in which a new silicon layer was epitaxially grown on a normal silicon single crystal substrate, the annealed substrate annealed at a high temperature in a hydrogen and argon atmosphere, and the CZ silicon single crystal. Several single-crystal substrates with few grown-in defects have been developed, such as a full-surface N region (region outside the OSF ring and no dislocation cluster) substrate.

これらの中で、窒素を添加(ドープ)した窒素ドープ基板にアニール熱処理を施した基板(以下、窒素ドープアニール基板と呼ぶことがある)は、基板表層部のGrown−in欠陥が低減され、かつバルク中のBMD(Bulk Micro Defect)密度も高い基板として非常に有益である。これは、窒素ドープによるGrown−in欠陥凝集抑制効果と酸素析出促進効果を利用して開発された基板で、通常の結晶よりも欠陥のサイズが小さくなるため、アニールによる表層欠陥の消滅効率が良く、バルク中のBMD密度も高いので有効なゲッタリング能力を有する基板である。   Among these, a substrate obtained by performing annealing heat treatment on a nitrogen-doped substrate to which nitrogen is added (doped) (hereinafter sometimes referred to as a nitrogen-doped annealing substrate) has reduced Grown-in defects in the substrate surface layer portion, and A BMD (Bulk Micro Defect) density in the bulk is also very useful as a substrate. This is a substrate developed using the growth-in defect aggregation suppressing effect and oxygen precipitation promoting effect of nitrogen doping, and the defect size is smaller than that of a normal crystal. Since the BMD density in the bulk is high, the substrate has an effective gettering ability.

一方、例えば1000℃以上の高温領域における熱処理の際にシリコン単結晶基板に発生する熱応力による転位発生の抑制、あるいは単結晶育成時の結晶欠陥の発生を防止する目的で、シリコン単結晶育成時に窒素を添加することも知られている。   On the other hand, at the time of silicon single crystal growth, for example, in order to suppress dislocation generation due to thermal stress generated in the silicon single crystal substrate during heat treatment in a high temperature region of 1000 ° C. or higher, or to prevent generation of crystal defects during single crystal growth. It is also known to add nitrogen.

ところが、このように窒素が添加されたシリコン単結晶基板は、熱処理を施すと、基板の抵抗率が熱処理前の値から変化することが知られている。このため、このような窒素が添加されたシリコン単結晶基板に、前述のような半導体素子の製造工程中の熱処理を行うと、基板の抵抗率が変化し、製造する半導体素子の特性も変化してしまうという好ましくない問題があった。   However, it is known that when the silicon single crystal substrate to which nitrogen is added in this way is subjected to heat treatment, the resistivity of the substrate changes from the value before the heat treatment. For this reason, if the silicon single crystal substrate to which nitrogen is added is subjected to the heat treatment during the manufacturing process of the semiconductor element as described above, the resistivity of the substrate changes and the characteristics of the semiconductor element to be manufactured also change. There was an unfavorable problem that it would end up.

このような問題点に対して、少なくとも半導体素子製造工程前に、例えばフローティングゾーン法(FZ法)により育成されたシリコン単結晶基板に900〜1250℃の温度で約10〜60分の熱処理を行うことにより、半導体素子製造工程で行われる熱処理によっても抵抗率が変化しないシリコン単結晶基板を製造する方法が開示されている(例えば特許文献1参照)。   For such problems, at least before the semiconductor element manufacturing process, for example, a silicon single crystal substrate grown by the floating zone method (FZ method) is subjected to a heat treatment at a temperature of 900 to 1250 ° C. for about 10 to 60 minutes. Thus, a method of manufacturing a silicon single crystal substrate whose resistivity does not change even by a heat treatment performed in a semiconductor element manufacturing process is disclosed (for example, see Patent Document 1).

また、CZシリコン単結晶に関しては、単結晶育成時に石英製のルツボを用いるため、ルツボ内壁の石英が溶出してシリコン単結晶中に酸素原子が混入する。このシリコン単結晶の育成後の冷却工程の際に350〜500℃程度の低温熱処理が施されると、複数個の酸素原子が集まって電気的に活性な酸素ドナー(サーマルドナー)が形成され、目標とする抵抗率が得られなかったり、後の半導体素子製造工程中の熱処理によって抵抗率が変化してしまうという問題もある。
この問題を防ぐために、従来、酸素ドナーを消去する熱処理が行なわれていた。通常、この酸素ドナー消去は、シリコン単結晶基板を不活性ガス雰囲気下で、650℃〜700℃の温度で10分〜1時間熱処理することによって行なう。
In addition, regarding the CZ silicon single crystal, since a quartz crucible is used when growing the single crystal, quartz on the inner wall of the crucible is eluted and oxygen atoms are mixed into the silicon single crystal. When a low temperature heat treatment of about 350 to 500 ° C. is performed during the cooling step after the growth of the silicon single crystal, a plurality of oxygen atoms gather to form an electrically active oxygen donor (thermal donor), There is also a problem that the target resistivity cannot be obtained or the resistivity is changed by a heat treatment in a subsequent semiconductor element manufacturing process.
In order to prevent this problem, heat treatment for erasing the oxygen donor has been conventionally performed. Usually, this oxygen donor erasure is performed by heat-treating a silicon single crystal substrate at a temperature of 650 ° C. to 700 ° C. for 10 minutes to 1 hour in an inert gas atmosphere.

また、CZシリコン単結晶基板において、抵抗率が100Ω・cm以上のシリコン単結晶基板に、ゲッタリング能力強化を目的として水素ガス及び/またはアルゴンガスの雰囲気下で1000〜1200℃の温度範囲で1〜20時間の熱処理を行ない酸素を析出させ、格子間酸素濃度を8ppma以下と低くして酸素のドナー化の影響を少なくすることにより、抵抗率の変動を抑制する方法が開示されている(例えば特許文献2参照)。   In addition, in a CZ silicon single crystal substrate, a silicon single crystal substrate having a resistivity of 100 Ω · cm or more is formed at a temperature range of 1000 to 1200 ° C. in an atmosphere of hydrogen gas and / or argon gas for the purpose of enhancing gettering capability. A method for suppressing fluctuation in resistivity by performing heat treatment for ˜20 hours to precipitate oxygen and lowering the interstitial oxygen concentration to 8 ppma or less to reduce the influence of oxygen donor formation (for example, Patent Document 2).

上記の特許文献1及び特許文献2においては、FZ法、CZ法のいずれの方法で育成された結晶においても、抵抗率が100Ω・cmを超える高抵抗結晶の抵抗率変動が大きくなり、問題となることが開示されている。   In the above Patent Document 1 and Patent Document 2, in the crystal grown by either the FZ method or the CZ method, the resistivity variation of the high resistance crystal having a resistivity exceeding 100 Ω · cm increases, Is disclosed.

一方、近年需要が高くなっている抵抗率が20Ω・cm程度のシリコン単結晶基板であっても、それを用いて製造された半導体素子の閾値電圧Vthが設計値からずれてしまうことがあり、半導体素子の特性設計上の問題が生じる場合がある。   On the other hand, the threshold voltage Vth of a semiconductor element manufactured using the silicon single crystal substrate having a resistivity of about 20 Ω · cm, which has been in high demand in recent years, may deviate from the design value. There may be a problem in the characteristic design of the semiconductor element.

特許第2742247号公報Japanese Patent No. 2742247 特開2002−100632号公報JP 2002-1000063 A

本発明は、窒素が添加されたCZシリコン単結晶基板において、製品用シリコン単結晶基板の正確な抵抗率保証を行うことを可能にするシリコン単結晶基板の抵抗率保証方法及びシリコン単結晶基板の製造方法並びにシリコン単結晶基板を提供することを目的とする。   The present invention relates to a silicon single crystal substrate resistivity guarantee method and a silicon single crystal substrate resistance guarantee method capable of accurately guaranteeing the resistivity of a product silicon single crystal substrate in a CZ silicon single crystal substrate to which nitrogen is added. It is an object to provide a manufacturing method and a silicon single crystal substrate.

上記目的達成のため、本発明は、シリコン単結晶基板の抵抗率を保証する方法であって、少なくとも、チョクラルスキー法によりシリコン単結晶棒を育成する際に、前記シリコン単結晶棒に窒素を添加し、前記育成したシリコン単結晶棒の直胴円筒部の両端より検査用シリコン単結晶基板を切断し、前記切断した検査用シリコン単結晶基板を、少なくとも半導体素子製造工程前に800℃〜シリコンの融点の間のいずれかの温度で保持して熱処理し、前記熱処理した検査用シリコン単結晶基板の抵抗率を測定し、前記測定した検査用シリコン単結晶基板の抵抗率の値を、前記シリコン単結晶棒の直胴円筒部分の残りの部分から切断する製品用シリコン単結晶基板の抵抗率の保証値として用いることを特徴とするシリコン単結晶基板の抵抗率保証方法を提供する(請求項1)。   In order to achieve the above object, the present invention is a method for guaranteeing the resistivity of a silicon single crystal substrate, and at least when the silicon single crystal rod is grown by the Czochralski method, nitrogen is added to the silicon single crystal rod. In addition, a silicon single crystal substrate for inspection is cut from both ends of a straight cylindrical portion of the grown silicon single crystal rod, and the cut silicon single crystal substrate for inspection is at least 800 ° C. to silicon before the semiconductor element manufacturing process. And holding the heat treatment at any temperature between the melting points of the silicon, measuring the resistivity of the heat-treated test silicon single crystal substrate, and measuring the measured resistivity value of the test silicon single crystal substrate Maintaining the resistivity of a silicon single crystal substrate, which is used as a guaranteed value of the resistivity of a silicon single crystal substrate for a product that is cut from the remaining portion of the straight cylindrical portion of the single crystal rod A method (claim 1).

このように、窒素を添加してCZ法で育成したシリコン単結晶棒の直胴円筒部の両端より検査用シリコン単結晶基板(以下、単に検査用基板と記載することがある)を切り出して、これらの検査用基板を、少なくとも半導体素子製造工程前に800℃〜シリコンの融点(1420℃)、好ましくは900℃〜1250℃の間のいずれかの温度で保持して熱処理し、その後検査用基板の抵抗率を測定すれば、酸素のみならず、添加した窒素、及び窒素酸素混合物のドナー作用が熱処理により消去された後の抵抗率を測定できる。このようにして測定した検査用基板で得られた抵抗率は、その後基板表層に無欠陥(DZ)層を形成するアニール工程や半導体素子を製造する工程において熱処理が行なわれても大きく変化しない。従って、測定した検査用基板の抵抗率を、検査基板を切り出した後の、シリコン単結晶棒の直胴円筒部分の残りの部分から製品用シリコン単結晶基板(以下、製品用基板ということがある)を切り出した際に、その製品用基板の抵抗率の保証値として用いれば、製品用基板の正確な抵抗率保証が可能となる。   In this way, a silicon single crystal substrate for inspection is cut out from both ends of the straight cylindrical portion of the silicon single crystal rod grown by the CZ method by adding nitrogen, and may be simply described as a substrate for inspection hereinafter. These inspection substrates are heat-treated at least at a temperature between 800 ° C. and a melting point of silicon (1420 ° C.), preferably 900 ° C. to 1250 ° C., at least before the semiconductor element manufacturing process, and then the inspection substrate. The resistivity after the donor action of not only oxygen but also added nitrogen and nitrogen-oxygen mixture is eliminated by heat treatment can be measured. The resistivity obtained with the inspection substrate thus measured does not change greatly even if heat treatment is performed in an annealing process for forming a defect-free (DZ) layer on the substrate surface or a process for manufacturing a semiconductor element. Therefore, the measured resistivity of the inspection substrate may be referred to as a product silicon single crystal substrate (hereinafter referred to as a product substrate) from the remaining portion of the straight cylindrical portion of the silicon single crystal rod after the inspection substrate is cut out. ) Is used as a guaranteed value of the resistivity of the product substrate, it is possible to guarantee the resistivity of the product substrate accurately.

この場合、前記育成するシリコン単結晶棒の初期格子間酸素濃度を8〜20ppmaとすることが好ましい(請求項2)。
このように、シリコン単結晶棒の初期格子間酸素濃度を8〜20ppma(JEIDA:日本電子工業振興協会規格)とすれば、機械的強度が高く、適度にゲッタリング能力を有する高品質のシリコン単結晶となる。
また、酸素濃度を8ppma以上とすれば、酸素のドナーとしての抵抗率に対する寄与が大きいため、その作用を消去する熱処理を行なうことにより抵抗率変化の抑制効果もより高いものとなり、本発明に従う抵抗率保証方法によってより正確な抵抗率保証が可能となる。
In this case, it is preferable that the initial interstitial oxygen concentration of the grown silicon single crystal rod is 8 to 20 ppma.
Thus, when the initial interstitial oxygen concentration of the silicon single crystal rod is 8 to 20 ppma (JEIDA: Japan Electronics Industry Promotion Association standard), high-quality silicon single crystal having high mechanical strength and adequately gettering ability. It becomes a crystal.
Further, if the oxygen concentration is 8 ppma or more, the contribution of oxygen to the resistivity as a donor is large. Therefore, the effect of suppressing the change in resistivity can be enhanced by performing a heat treatment that eliminates the action, and the resistance according to the present invention. A more accurate resistivity guarantee is possible by the rate guarantee method.

また、前記育成するシリコン単結晶棒の窒素濃度を1×1013〜5×1015個/cmとすることが好ましい(請求項3)。
このように、シリコン単結晶棒の窒素濃度を1×1013個/cm以上とすれば、窒素をドープすることによる酸素析出促進効果が明らかであり、5×1015個/cm以下とすれば、単結晶引き上げ時の単結晶化の妨げとなったり、連続操業の不安定化を引き起こしたりすることもない。
また、窒素濃度を1×1013個/cm以上とすれば、窒素のドナーとしての抵抗率に対する寄与が大きいため、その作用を消去する熱処理を行なうことにより抵抗率変化の抑制効果もより高いものとなり、本発明に従う抵抗率測定方法によってより正確な抵抗率保証が可能となる。
The nitrogen concentration of the silicon single crystal rod to be grown is preferably 1 × 10 13 to 5 × 10 15 pieces / cm 3 (Claim 3).
Thus, when the nitrogen concentration of the silicon single crystal rod is 1 × 10 13 pieces / cm 3 or more, the effect of promoting oxygen precipitation by doping nitrogen is clear, and 5 × 10 15 pieces / cm 3 or less. If this is the case, there will be no hindrance to single crystallization at the time of pulling up the single crystal, or destabilization of continuous operation.
Further, if the nitrogen concentration is 1 × 10 13 atoms / cm 3 or more, since the contribution to the resistivity as nitrogen donor is large, the effect of suppressing the change in resistivity is higher by performing heat treatment to eliminate the action. Therefore, the resistivity measurement method according to the present invention enables more accurate resistivity guarantee.

また、前記育成するシリコン単結晶棒の抵抗率を10Ω・cm以上とすることが好ましい(請求項4)。
このように、シリコン単結晶棒の抵抗率を10Ω・cm以上とした場合に、抵抗率に対する酸素、窒素、及び窒素酸素混合物によるドナーの影響が顕著になるので、800℃〜シリコンの融点のいずれかの温度で熱処理してその影響を消去する効果が大きくなる。
The resistivity of the silicon single crystal rod to be grown is preferably 10 Ω · cm or more.
Thus, when the resistivity of the silicon single crystal rod is set to 10 Ω · cm or more, the influence of donors by oxygen, nitrogen, and a nitrogen-oxygen mixture on the resistivity becomes significant. The effect of erasing the influence by heat treatment at a certain temperature is increased.

また、前記検査用シリコン単結晶基板に行う熱処理の雰囲気を、酸素、窒素、水素、アルゴンのうち少なくとも1つ以上を含む雰囲気とすることが好ましい(請求項5)。
このように、検査用基板に行う熱処理の雰囲気を、酸素、窒素、水素、アルゴンのうち少なくとも1つ以上を含む雰囲気とすれば、検査用シリコン単結晶基板中の酸素、窒素、及び窒素酸素混合物のドナーとしての作用の消去を効果的に行なうことができるので、その後より正確かつ迅速に抵抗率を保証することができる。尚、酸素雰囲気はウェットもしくはドライでもよく、酸素と窒素、窒素と水素、窒素とアルゴン、水素とアルゴンを混合した雰囲気としてもよい。
Moreover, it is preferable that the atmosphere of the heat treatment performed on the silicon single crystal substrate for inspection is an atmosphere containing at least one of oxygen, nitrogen, hydrogen, and argon.
As described above, when the atmosphere of the heat treatment performed on the inspection substrate is an atmosphere containing at least one of oxygen, nitrogen, hydrogen, and argon, the oxygen, nitrogen, and nitrogen oxygen mixture in the inspection silicon single crystal substrate is used. Therefore, the resistivity can be guaranteed more accurately and quickly thereafter. The oxygen atmosphere may be wet or dry, and may be an atmosphere in which oxygen and nitrogen, nitrogen and hydrogen, nitrogen and argon, or hydrogen and argon are mixed.

また、前記検査用シリコン単結晶基板に行う熱処理を、抵抗加熱炉または急速加熱炉を用いて行なうことが好ましい(請求項6)。
このように、検査用基板に行なう熱処理を、抵抗加熱炉または急速加熱炉を用いて行なえば、検査用シリコン単結晶基板中の酸素、窒素、及び窒素酸素混合物のドナーとしての作用の消去する熱処理を効果的に行なうことができるので、その後より正確かつ迅速に抵抗率を保証することができる。
The heat treatment performed on the silicon single crystal substrate for inspection is preferably performed using a resistance heating furnace or a rapid heating furnace.
As described above, when the heat treatment performed on the inspection substrate is performed using a resistance heating furnace or a rapid heating furnace, the heat treatment for eliminating the action as a donor of oxygen, nitrogen, and a nitrogen-oxygen mixture in the inspection silicon single crystal substrate. Therefore, the resistivity can be guaranteed more accurately and quickly thereafter.

また、前記検査用シリコン単結晶基板に行う熱処理を、10秒〜120分間行うことが好ましい(請求項7)。
このように、検査用基板に行う熱処理を10秒〜120分間行えば、検査用シリコン単結晶基板中の酸素、窒素、及び窒素酸素混合物のドナーとしての作用の消去を十分に行なうことができるので、その後より正確かつ迅速に抵抗率を保証することができる。
Further, it is preferable that the heat treatment performed on the silicon single crystal substrate for inspection is performed for 10 seconds to 120 minutes.
As described above, if the heat treatment performed on the inspection substrate is performed for 10 seconds to 120 minutes, the action as a donor of the oxygen, nitrogen, and nitrogen-oxygen mixture in the inspection silicon single crystal substrate can be sufficiently performed. Then, the resistivity can be guaranteed more accurately and quickly.

また、本発明は、シリコン単結晶基板を製造する方法であって、少なくとも、チョクラルスキー法によりシリコン単結晶棒を育成する際に、前記シリコン単結晶棒に窒素を添加し、前記育成したシリコン単結晶棒の直胴円筒部の両端より検査用シリコン単結晶基板を切断し、前記切断した検査用シリコン単結晶基板を、800℃〜シリコンの融点の間のいずれかの温度で保持して熱処理し、前記熱処理した検査用シリコン単結晶基板の抵抗率を測定し、前記測定した検査用シリコン単結晶基板の抵抗率の値が所定規格範囲内の値である時、前記シリコン単結晶棒の直胴円筒部分の残りの部分から製品用シリコン単結晶基板を切断することを特徴とするシリコン単結晶基板の製造方法を提供する(請求項8)。   The present invention is also a method for producing a silicon single crystal substrate, and at least when growing a silicon single crystal rod by the Czochralski method, nitrogen is added to the silicon single crystal rod, and the grown silicon The silicon single crystal substrate for inspection is cut from both ends of the straight cylindrical portion of the single crystal rod, and the cut silicon single crystal substrate for inspection is held at any temperature between 800 ° C. and the melting point of silicon for heat treatment. And measuring the resistivity of the heat-treated test silicon single crystal substrate, and when the measured resistivity value of the test silicon single crystal substrate is within a predetermined standard range, A method for producing a silicon single crystal substrate is provided, wherein the product silicon single crystal substrate is cut from the remaining portion of the body cylindrical portion.

このように、窒素を添加してCZ法で育成したシリコン単結晶棒の直胴円筒部の両端より検査用基板を切り出して、検査用基板を、800℃〜シリコンの融点(1420℃)、好ましくは900℃〜1250℃の間のいずれかの温度で保持して熱処理し、その後検査用基板の抵抗率を測定すれば、検査用シリコン単結晶基板中の酸素や添加した窒素、及び窒素酸素混合物のドナー作用が熱処理により消去された後の抵抗率を測定できる。このように測定した基板の抵抗率は、その後基板表層にDZ層を形成するアニール工程や半導体素子を製造する工程において熱処理が行なわれても大きく変化しない。従って、測定した検査用基板の抵抗率の値が所定の規格範囲内の時に、前記シリコン単結晶棒の直胴円筒部分の残りの部分から製品用基板を切り出して製造すれば、その後の半導体素子製造工程等における熱処理により抵抗率の値が規格範囲内になることが保証されたシリコン単結晶基板の提供が可能となる。   Thus, the inspection substrate is cut out from both ends of the straight cylindrical portion of the silicon single crystal rod grown by the CZ method by adding nitrogen, and the inspection substrate is heated to 800 ° C. to the melting point of silicon (1420 ° C.), preferably Is maintained at any temperature between 900 ° C. and 1250 ° C. and heat-treated, and then the resistivity of the inspection substrate is measured, oxygen in the inspection silicon single crystal substrate, added nitrogen, and nitrogen-oxygen mixture It is possible to measure the resistivity after the donor action is eliminated by heat treatment. The resistivity of the substrate thus measured does not change greatly even if heat treatment is performed in an annealing process for forming a DZ layer on the substrate surface or a process for manufacturing a semiconductor element. Therefore, when the measured value of the resistivity of the inspection substrate is within a predetermined standard range, if the product substrate is cut out from the remaining portion of the straight cylindrical portion of the silicon single crystal rod, the subsequent semiconductor element It becomes possible to provide a silicon single crystal substrate in which the resistivity value is guaranteed to be within the standard range by heat treatment in a manufacturing process or the like.

この場合、前記切断した製品用シリコン単結晶基板を、少なくとも半導体素子製造工程前に800℃〜シリコンの融点の間のいずれかの温度で保持して熱処理することが好ましい(請求項9)。
このように、前記切断した製品用基板を、少なくとも半導体素子製造工程前に800℃〜シリコンの融点(1420℃)、好ましくは900℃〜1250℃の間のいずれかの温度で保持して熱処理すれば、検査用基板により保証された規格範囲内の抵抗率となったシリコン単結晶基板の提供が可能となる。
In this case, it is preferable that the cut silicon single crystal substrate for product is heat-treated at least at a temperature between 800 ° C. and the melting point of silicon at least before the semiconductor element manufacturing process.
In this way, the cut product substrate is heat-treated at least at a temperature between 800 ° C. and the melting point of silicon (1420 ° C.), preferably between 900 ° C. and 1250 ° C., at least before the semiconductor element manufacturing process. For example, it is possible to provide a silicon single crystal substrate having a resistivity within the standard range guaranteed by the inspection substrate.

また、前記育成するシリコン単結晶棒の初期格子間酸素濃度を8〜20ppmaとすることが好ましい(請求項10)。
このように、シリコン単結晶棒の初期格子間酸素濃度を8〜20ppmaとすれば、機械的強度が高く、適度にゲッタリング能力を有する高品質のシリコン単結晶となる。また、酸素濃度を8ppma以上とすれば、酸素のドナーとしての抵抗率に対する寄与が大きいため、その作用を消去する熱処理を行なうことにより抵抗率変化の抑制効果もより高いものとなり、本発明に従う製造方法によってより確実に安定した抵抗率のシリコン単結晶基板の提供が可能となる。
The initial interstitial oxygen concentration of the silicon single crystal rod to be grown is preferably 8 to 20 ppma.
Thus, when the initial interstitial oxygen concentration of the silicon single crystal rod is 8 to 20 ppma, a high-quality silicon single crystal having a high mechanical strength and an appropriate gettering ability is obtained. Further, if the oxygen concentration is 8 ppma or more, the contribution of oxygen to the resistivity as a donor is large. Therefore, the effect of suppressing the change in resistivity becomes higher by performing a heat treatment that eliminates the action, and the production according to the present invention. By the method, it is possible to provide a silicon single crystal substrate having a more stable and stable resistivity.

また、前記育成するシリコン単結晶棒の窒素濃度を1×1013〜5×1015個/cmとすることが好ましい(請求項11)。
このように、シリコン単結晶棒の窒素濃度を1×1013個/cm以上とすれば、窒素をドープすることによる酸素析出促進効果が明らかであり、5×1015個/cm以下とすれば、単結晶引き上げ時の単結晶化の妨げとなったり、連続操業の不安定化を引き起こしたりすることもない。また、窒素濃度を1×1013個/cm以上とすれば、窒素のドナーとしての抵抗率に対する寄与が大きいため、その作用を消去する熱処理を行なうことにより抵抗率変化の抑制効果もより高いものとなり、本発明に従う製造方法によってより確実に安定した抵抗率のシリコン単結晶基板の提供が可能となる。
The nitrogen concentration of the silicon single crystal rod to be grown is preferably 1 × 10 13 to 5 × 10 15 pieces / cm 3 .
Thus, when the nitrogen concentration of the silicon single crystal rod is 1 × 10 13 pieces / cm 3 or more, the effect of promoting oxygen precipitation by doping nitrogen is clear, and 5 × 10 15 pieces / cm 3 or less. In this way, there is no hindrance to single crystallization at the time of pulling up the single crystal, or destabilization of continuous operation. Further, if the nitrogen concentration is 1 × 10 13 atoms / cm 3 or more, since the contribution to the resistivity as nitrogen donor is large, the effect of suppressing the change in resistivity is higher by performing heat treatment to eliminate the action. Thus, the manufacturing method according to the present invention can provide a silicon single crystal substrate having a more stable and stable resistivity.

また、前記育成するシリコン単結晶棒の抵抗率を10Ω・cm以上とすることが好ましい(請求項12)。
このように、シリコン単結晶棒の抵抗率を10Ω・cm以上とする場合に、酸素、窒素、及び窒素酸素混合物によるドナーの影響が顕著になるので、800℃〜シリコンの融点のいずれかの温度で熱処理してその影響を消去する効果が大きくなる。
The resistivity of the silicon single crystal rod to be grown is preferably 10 Ω · cm or more.
As described above, when the resistivity of the silicon single crystal rod is 10 Ω · cm or more, the influence of the donor due to oxygen, nitrogen, and the nitrogen-oxygen mixture becomes significant. The effect of erasing the influence by heat treatment is increased.

また、前記検査用又は製品用シリコン単結晶基板に行う熱処理の雰囲気を、酸素、窒素、水素、アルゴンのうち少なくとも1つ以上を含む雰囲気とすることが好ましい(請求項13)。
このように、検査用又は製品用シリコン単結晶基板に行う熱処理の雰囲気を、酸素、窒素、水素、アルゴンのうち少なくとも1つ以上を含む雰囲気とすれば、検査用又は製品用シリコン単結晶基板中の酸素、窒素、及び窒素酸素混合物のドナーとしての作用の消去を効果的に行なうことができるので、その後より正確かつ迅速に抵抗率が保証されたシリコン単結晶基板を製造できる。尚、酸素雰囲気はウェットもしくはドライでもよく、酸素と窒素、窒素と水素、窒素とアルゴン、水素とアルゴンを混合した雰囲気としてもよい。
Moreover, it is preferable that the atmosphere of the heat treatment performed on the silicon single crystal substrate for inspection or product is an atmosphere containing at least one of oxygen, nitrogen, hydrogen, and argon.
Thus, if the atmosphere of the heat treatment performed on the silicon single crystal substrate for inspection or product is an atmosphere containing at least one of oxygen, nitrogen, hydrogen, and argon, the silicon single crystal substrate for inspection or product Since the action of oxygen, nitrogen, and nitrogen-oxygen mixture as a donor can be effectively eliminated, a silicon single crystal substrate with a guaranteed resistivity can be manufactured more accurately and rapidly thereafter. The oxygen atmosphere may be wet or dry, and may be an atmosphere in which oxygen and nitrogen, nitrogen and hydrogen, nitrogen and argon, or hydrogen and argon are mixed.

また、前記検査用又は製品用シリコン単結晶基板に行う熱処理を、抵抗加熱炉または急速加熱炉を用いて行なうことが好ましい(請求項14)。
このように、検査用又は製品用シリコン単結晶基板に行なう熱処理を、抵抗加熱炉または急速加熱炉を用いて行なえば、検査用又は製品用シリコン単結晶基板中の酸素、窒素、及び窒素酸素混合物のドナーとしての作用を消去する熱処理を効果的に行なうことができるので、その後より正確かつ迅速に抵抗率が保証されたシリコン単結晶基板を製造できる。
Moreover, it is preferable to perform the heat treatment performed on the inspection or product silicon single crystal substrate using a resistance heating furnace or a rapid heating furnace.
Thus, if the heat treatment performed on the silicon single crystal substrate for inspection or product is performed using a resistance heating furnace or a rapid heating furnace, oxygen, nitrogen, and a nitrogen-oxygen mixture in the silicon single crystal substrate for inspection or product Since the heat treatment that eliminates the donor action can be effectively performed, a silicon single crystal substrate with a guaranteed resistivity can be manufactured more accurately and rapidly thereafter.

また、前記検査用又は製品用シリコン単結晶基板に行う熱処理を、10秒〜120分間行うことが好ましい(請求項15)。
このように、検査用又は製品用シリコン単結晶基板に行う熱処理を10秒〜120分間行えば、検査用又は製品用シリコン単結晶基板中の酸素、窒素、及び窒素酸素混合物のドナーとしての作用の消去を十分に行なうことができるので、その後より正確かつ迅速に抵抗率が保証されたシリコン単結晶基板を製造できる。
Moreover, it is preferable to perform the heat treatment performed on the silicon single crystal substrate for inspection or product for 10 seconds to 120 minutes.
Thus, if the heat treatment performed on the silicon single crystal substrate for inspection or product is performed for 10 seconds to 120 minutes, it acts as a donor of oxygen, nitrogen, and a mixture of nitrogen and oxygen in the silicon single crystal substrate for inspection or product. Since the erasing can be sufficiently performed, a silicon single crystal substrate whose resistivity is guaranteed more accurately and rapidly can be manufactured thereafter.

また、本発明は、前記のいずれかの方法により製造されたものであることを特徴とするシリコン単結晶基板を提供する(請求項16)。
このように、前記のいずれかの方法により製造されたシリコン単結晶基板であれば、半導体素子製造工程等における熱処理により抵抗率の値が規格範囲内になることが確実に保証された窒素ドープCZシリコン単結晶基板であり、これを基板として作製された半導体素子の抵抗率や閾値電圧の安定性が高く、動作規格の高精度な半導体素子の作製に適し、かつ基板表層の結晶欠陥が極めて少ない高品質のシリコン単結晶基板とすることができる。
The present invention also provides a silicon single crystal substrate manufactured by any one of the methods described above (claim 16).
Thus, in the case of a silicon single crystal substrate manufactured by any of the above-described methods, nitrogen doped CZ in which the resistivity value is reliably guaranteed to be within the standard range by the heat treatment in the semiconductor element manufacturing process or the like. A silicon single crystal substrate, which has a high resistivity and threshold voltage stability of a semiconductor device manufactured using the silicon single crystal substrate as a substrate, is suitable for manufacturing a highly accurate semiconductor device with an operating standard, and has very few crystal defects on the substrate surface layer. A high-quality silicon single crystal substrate can be obtained.

この場合、前記シリコン単結晶基板の直径が150mm以上であることが好ましい(請求項17)。
このように、シリコン単結晶基板の直径が150mm以上の大口径であれば、高品質の半導体素子を収率よく製造するのに適し、特に近年需要が高まっている直径200mmや300mmの大口径基板とすることができる。
In this case, it is preferable that the silicon single crystal substrate has a diameter of 150 mm or more.
Thus, if the diameter of the silicon single crystal substrate is a large diameter of 150 mm or more, it is suitable for manufacturing a high-quality semiconductor element with a high yield, and in particular, a large-diameter substrate having a diameter of 200 mm or 300 mm, which has recently been increasing in demand. It can be.

本発明に従い、窒素を添加してCZ法で育成したシリコン単結晶棒の直胴円筒部の両端より検査用基板を切り出して、検査用基板を、少なくとも半導体素子製造工程前に800℃からシリコンの融点(1420℃)、好ましくは900℃から1250℃の間のいずれかの温度で保持して熱処理し、その後検査用基板の抵抗率を測定し、測定した検査用基板の抵抗率を、シリコン単結晶棒の残りの部分から製品用シリコン単結晶基板を切り出した際に、その製品用基板の抵抗率の保証値として用いれば、製品用基板の正確な抵抗率保証が可能となる。
また、このように測定した検査用基板の抵抗率の値が所定の規格範囲内の時に、前記シリコン単結晶棒の直胴円筒部分の残りの部分から製品用シリコン単結晶基板を切り出して製造すれば、その後の熱処理により抵抗率の値が規格範囲内になることが確実に保証されたシリコン単結晶基板の提供が可能となる。
In accordance with the present invention, an inspection substrate is cut out from both ends of a straight cylindrical portion of a silicon single crystal rod that is grown by CZ method by adding nitrogen, and the inspection substrate is made of silicon at least from 800 ° C. before the semiconductor element manufacturing process. The melting point (1420 ° C.), preferably at a temperature between 900 ° C. and 1250 ° C., is heat-treated, and then the resistivity of the inspection substrate is measured. When the product silicon single crystal substrate is cut out from the remaining portion of the crystal rod, if it is used as the guaranteed value of the resistivity of the product substrate, it is possible to guarantee the resistivity of the product substrate accurately.
Further, when the measured resistivity value of the inspection substrate is within a predetermined standard range, the product silicon single crystal substrate is cut out from the remaining portion of the straight cylindrical portion of the silicon single crystal rod. For example, it is possible to provide a silicon single crystal substrate in which the resistivity value is reliably guaranteed to be within the standard range by the subsequent heat treatment.

以下、本発明について詳述するが、本発明はこれに限定されるものではない。
前述のように、近年需要が高くなっている抵抗率が20Ω・cm程度のシリコン単結晶基板であっても、実際に製造された半導体素子の閾値電圧Vthが設計値からずれてしまうことがあり、特性設計上の問題が生じる場合があった。
Hereinafter, although this invention is explained in full detail, this invention is not limited to this.
As described above, the threshold voltage Vth of an actually manufactured semiconductor device may deviate from the design value even in the case of a silicon single crystal substrate having a resistivity of about 20 Ω · cm, which has been in high demand in recent years. In some cases, there were problems in characteristic design.

本発明者らは、このような閾値電圧の設計値からのずれの原因は、実際のシリコン単結晶基板の抵抗率と、半導体素子設計の際に用いた抵抗率の保証値のずれにより生じていることを見出した。   The inventors of the present invention have caused the deviation of the threshold voltage from the design value due to the deviation of the resistivity of the actual silicon single crystal substrate and the guaranteed value of the resistivity used in designing the semiconductor element. I found out.

上記のように抵抗率のずれが生じるシリコン単結晶基板は、窒素が添加されたCZシリコン単結晶から作製されたものであり、抵抗率の保証値を測定する際には、不活性ガス雰囲気下で650℃、20分の熱処理を施し、酸素ドナーを消去したものであった。そこで本発明者らは、このような抵抗率のずれの発生は、窒素酸素混合物のドナー(NOドナー)が基板内に残留していることが主な原因ではないかと考えた。   The silicon single crystal substrate in which the resistivity shift occurs as described above is manufactured from a CZ silicon single crystal to which nitrogen is added. When measuring a guaranteed value of resistivity, the inert gas atmosphere is used. The heat treatment was performed at 650 ° C. for 20 minutes to eliminate the oxygen donor. Therefore, the present inventors have considered that the occurrence of such a deviation in resistivity is mainly caused by a nitrogen oxygen mixture donor (NO donor) remaining in the substrate.

そこで、これらのドナーを消去する熱処理条件を求めるため、次の実験を行なった。
(実験)
直径200mm、酸素濃度14ppma(JEIDA)、窒素濃度5×1013個/cm、抵抗率20Ω・cm(目標値)のシリコン単結晶棒をCZ法により育成した。このシリコン単結晶棒の直胴円筒部をスライス切断して作製したシリコン単結晶基板を複数用意し、酸素ドナーを消去するため、アルゴン雰囲気下、650℃の温度で20分保持する熱処理を抵抗加熱炉にて行ない、このときの抵抗率(ρ1)を測定した。その後、NOドナーを消去するため、アルゴン雰囲気下、急速加熱炉にて650℃〜1200℃の範囲内の温度で15秒の熱処理を行い、各々の温度で熱処理された基板それぞれの抵抗率(ρ2)を測定した。
Therefore, the following experiment was performed in order to obtain heat treatment conditions for erasing these donors.
(Experiment)
A silicon single crystal rod having a diameter of 200 mm, an oxygen concentration of 14 ppma (JEIDA), a nitrogen concentration of 5 × 10 13 pieces / cm 3 and a resistivity of 20 Ω · cm (target value) was grown by the CZ method. A plurality of silicon single crystal substrates prepared by slicing a straight cylindrical portion of the silicon single crystal rod are prepared, and heat treatment is performed by resistance heating in an argon atmosphere at a temperature of 650 ° C. for 20 minutes in order to erase the oxygen donor. The resistivity (ρ1) at this time was measured in a furnace. Thereafter, in order to erase the NO donor, heat treatment is performed for 15 seconds at a temperature in the range of 650 ° C. to 1200 ° C. in a rapid heating furnace in an argon atmosphere, and the resistivity (ρ 2) of each of the substrates heat-treated at each temperature. ) Was measured.

図1は、上記NOドナー消去のための熱処理温度と、熱処理前後の抵抗率の差(Δ(ρ2−ρ1))、すなわちNOドナー消去の効果を示すグラフである。これより、800℃、より好ましくは900℃以上の熱処理で抵抗率差が大きくなり、NOドナーが消去されること、及び900℃以上であれば抵抗率差がほぼ一定であり、ドナー消去の効果が一様であることが判った。
なお、同様の実験を抵抗率10Ω・cm(目標値)のシリコン単結晶基板について行なったところ、ρ1は約9.83Ω・cm、ρ2は約9.73Ω・cmであり、その差は−0.10Ω・cmであった。このことから、10Ω・cm以上で、NOドナーの影響が顕著になると考えられる。
FIG. 1 is a graph showing the difference between the heat treatment temperature for the NO donor erasure and the resistivity before and after the heat treatment (Δ (ρ2−ρ1)), that is, the effect of NO donor erasure. From this, the resistivity difference becomes large by heat treatment at 800 ° C., more preferably 900 ° C. or more, and the NO donor is erased, and if it is 900 ° C. or more, the resistivity difference is almost constant, and the effect of donor erasure Was found to be uniform.
When a similar experiment was conducted on a silicon single crystal substrate having a resistivity of 10 Ω · cm (target value), ρ1 was about 9.83 Ω · cm, ρ2 was about 9.73 Ω · cm, and the difference was −0. 10 Ω · cm. From this, it is considered that the influence of the NO donor becomes remarkable at 10 Ω · cm or more.

また、上記のシリコン単結晶基板にはNOドナーが存在し、酸素ドナー消去の熱処理では消去されないNOドナーが、上記の熱処理で消去されることを確認するため、FT−IRスペクトル測定を行なった。
図2は、上記実験と同じ条件で作製した基板であって、酸素ドナー消去の熱処理を行なった基板(B)、及びその後NOドナー消去のために抵抗加熱炉にて1200℃で1時間の熱処理をおこなった基板(C)のFT−IRスペクトルであり、横軸は波数、縦軸は吸光度を示す。なお、比較のため、抵抗率を低めに設定し、窒素を添加しない以外は上記実験と同じ条件で作製した基板に酸素ドナー消去の熱処理を行なった基板(A)のFT−IRスペクトルも測定した。
Further, FT-IR spectrum measurement was performed to confirm that NO donors exist in the silicon single crystal substrate and NO donors that are not erased by the heat treatment for erasing oxygen donors are erased by the heat treatment.
FIG. 2 shows a substrate manufactured under the same conditions as in the above experiment, the substrate (B) subjected to heat treatment for oxygen donor erasure, and then heat treated at 1200 ° C. for 1 hour in a resistance heating furnace for erasing NO donor. Is the FT-IR spectrum of the substrate (C) subjected to the above, wherein the horizontal axis indicates the wave number and the vertical axis indicates the absorbance. For comparison, the FT-IR spectrum of a substrate (A) obtained by performing a heat treatment for oxygen donor erasing on a substrate manufactured under the same conditions as in the above experiment except that the resistivity was set low and nitrogen was not added was also measured. .

図中の約245cm−1のピークは抵抗率調整用のドーパントであるボロンの吸収によるピークである。矢印で示した約240cm−1及び250cm−1の位置がNOドナーの吸収の位置であるが、(B)の基板のみNOドナーの吸収が認められ、特に250cm−1で顕著であった。
この結果は、窒素の添加されていない基板にはNOドナーが存在せず、酸素ドナー消去の熱処理では消去されないNOドナーが、その後のNOドナー消去のための1200℃で1時間の熱処理で消去されたことを示している。
The peak at about 245 cm −1 in the figure is a peak due to absorption of boron which is a dopant for adjusting the resistivity. Although the position of about 240 cm -1 and 250 cm -1 indicated by the arrow is the position of the absorption of NO donors, absorption of the substrate only NO donor (B), which was more remarkable especially in 250 cm -1.
As a result, the NO donor is not present in the substrate to which nitrogen is not added, and the NO donor that is not erased by the heat treatment for erasing the oxygen donor is erased by the heat treatment at 1200 ° C. for 1 hour for the subsequent NO donor erase. It shows that.

本発明者らは、これらの実験結果に基づいて、窒素の添加されたCZシリコン単結晶基板の抵抗率の保証方法について鋭意検討し、本発明を完成した。   Based on these experimental results, the present inventors diligently studied a method for guaranteeing the resistivity of a nitrogen-added CZ silicon single crystal substrate and completed the present invention.

以下では、本発明の実施形態について具体的に説明するが、本発明はこれらに限定されるものではない。最初に本発明のシリコン単結晶基板の抵抗率保証方法の一例について具体的に説明する。
まず、回転する石英ルツボ中に収容された多結晶シリコン原料の融液に種結晶を接触させ、これを回転させながらゆっくりと引き上げて所望の直径の単結晶棒を育成する公知のCZ法、あるいはこのCZ法においてシリコン融液に磁場を印加して融液の対流を制御して単結晶を引き上げる公知のMCZ法によりシリコン単結晶棒を育成する。
Hereinafter, embodiments of the present invention will be described in detail, but the present invention is not limited thereto. First, an example of the resistivity guarantee method for a silicon single crystal substrate according to the present invention will be specifically described.
First, a known CZ method for growing a single crystal rod having a desired diameter by bringing a seed crystal into contact with a melt of a polycrystalline silicon raw material housed in a rotating quartz crucible and slowly rotating the seed crystal while rotating it, or In this CZ method, a silicon single crystal rod is grown by a known MCZ method in which a magnetic field is applied to a silicon melt to control the convection of the melt to pull up the single crystal.

このとき、育成するシリコン単結晶棒に窒素を添加するが、窒素の添加は、例えば石英ルツボの原料多結晶中に、予め表面に窒化膜が形成されたシリコン基板等の窒化物を投入しておくことにより容易に行うことができる。このとき、窒素濃度が1×1013〜5×1015個/cmとなるように窒化物を投入することが好ましい。このような窒素濃度とするのに必要な窒化物の量は、原料多結晶の量、及び窒素の偏析係数などから計算により容易に求めることができる。 At this time, nitrogen is added to the silicon single crystal rod to be grown. Nitrogen is added by, for example, introducing a nitride such as a silicon substrate on which a nitride film is formed in advance into a raw material polycrystal of a quartz crucible. This can be done easily. At this time, it is preferable to introduce nitride so that the nitrogen concentration is 1 × 10 13 to 5 × 10 15 atoms / cm 3 . The amount of nitride necessary to obtain such a nitrogen concentration can be easily determined by calculation from the amount of polycrystalline raw material, the segregation coefficient of nitrogen, and the like.

また、シリコン単結晶棒の初期格子間酸素濃度を8〜20ppmaとすることが好ましい。初期格子間酸素濃度を上記の所望の値にするためには、従来の方法を用いればよい。例えば、ルツボの回転数、導入ガス流量、雰囲気圧力、シリコン融液の温度分布及び対流、あるいは印加する磁場強度等のパラメータを適宜に調整することで、ルツボから融け出す酸素の量および結晶に取り込まれる酸素の量を調整することができる。   The initial interstitial oxygen concentration of the silicon single crystal rod is preferably 8 to 20 ppma. In order to set the initial interstitial oxygen concentration to the above desired value, a conventional method may be used. For example, by appropriately adjusting parameters such as the number of revolutions of the crucible, the flow rate of the introduced gas, the atmospheric pressure, the temperature distribution and convection of the silicon melt, or the strength of the applied magnetic field, the amount of oxygen melted from the crucible and taken into the crystal The amount of oxygen produced can be adjusted.

また、シリコン単結晶棒の抵抗率を10Ω・cm以上とすることが好ましい。このような抵抗率にするには、例えば石英ルツボの原料多結晶中に予めボロンやリン等の公知の抵抗率調整用ドーパント等を投入しておくことにより容易に行うことができる。   The resistivity of the silicon single crystal rod is preferably 10 Ω · cm or more. Such resistivity can be easily achieved by, for example, introducing a known resistivity adjusting dopant such as boron or phosphorus into a raw material polycrystal of a quartz crucible in advance.

次に、こうして育成したシリコン単結晶棒の頭部と尾部を、通常の方法に従いワイヤーソーあるいは内周刃スライサー、外周刃スライサー等の切断装置で切断し、直胴円筒部の両端より検査用シリコン単結晶基板を切り出す。このとき、必要に応じてシリコン単結晶棒を2つ以上の単結晶棒に分割し、各々の単結晶棒の両端から検査用基板を切り出してもよい。
このように直胴円筒部の両端より検査用基板を切り出してその両方を検査に用いれば、直胴円筒部の片端より切り出した検査用基板のみを検査に用いる場合より、より正確な検査が可能となる。
Next, the head and tail of the silicon single crystal rod grown in this way are cut with a cutting device such as a wire saw, an inner peripheral blade slicer, or an outer peripheral blade slicer in accordance with a normal method, and silicon for inspection is measured from both ends of the straight cylinder portion. A single crystal substrate is cut out. At this time, if necessary, the silicon single crystal rod may be divided into two or more single crystal rods, and the inspection substrate may be cut out from both ends of each single crystal rod.
In this way, if the inspection substrate is cut out from both ends of the cylinder body and both are used for inspection, more accurate inspection is possible than when only the inspection substrate cut out from one end of the cylinder body is used for inspection. It becomes.

次に、このように切断した検査用基板を、少なくとも半導体素子製造工程前に800℃〜シリコンの融点(1420℃)、好ましくは900℃〜1250℃の間のいずれかの温度で保持して熱処理することにより、窒素や酸素、及び窒素酸素混合物のドナー作用を消去する。このような高温熱処理で、NOドナーのみならず、酸素、窒素ドナーも消去できる。そしてこのような熱処理は、例えば抵抗加熱炉または急速加熱炉を用いて行なうことが可能であり、10秒〜120分間行うことが好ましい。
また、この熱処理の雰囲気は、酸素、窒素、水素、アルゴンのうち少なくとも1つ以上を含む雰囲気とすることが好ましい。このとき酸素雰囲気はドライでもウェットでもよい。また、酸素と窒素、窒素と水素、窒素とアルゴン、水素とアルゴン、あるいは3つ以上を混合した雰囲気としてもよい。
Next, the inspection substrate cut in this way is heat-treated at least at a temperature between 800 ° C. and the melting point of silicon (1420 ° C.), preferably between 900 ° C. and 1250 ° C., at least before the semiconductor element manufacturing process. By doing so, the donor action of nitrogen, oxygen, and nitrogen-oxygen mixture is eliminated. Such high-temperature heat treatment can erase not only NO donors but also oxygen and nitrogen donors. Such heat treatment can be performed using, for example, a resistance heating furnace or a rapid heating furnace, and is preferably performed for 10 seconds to 120 minutes.
The atmosphere for the heat treatment is preferably an atmosphere containing at least one of oxygen, nitrogen, hydrogen, and argon. At this time, the oxygen atmosphere may be dry or wet. Alternatively, oxygen and nitrogen, nitrogen and hydrogen, nitrogen and argon, hydrogen and argon, or an atmosphere in which three or more are mixed may be used.

次に、このようにして熱処理してドナー作用を消去した検査用基板の抵抗率を測定する。測定方法は、例えば四探針法等の公知の方法を用いることができる。
そして、このように測定した基板の抵抗率は、半導体素子を製造する工程等において熱処理が行なわれても大きく変化しない。従って、測定した検査用基板の抵抗率を、検査用基板を切り出した後のシリコン単結晶棒の直胴円筒部分の残りの部分から製品用基板を切り出した際に、その製品用基板の抵抗率の保証値として用いれば、製品用基板の正確な抵抗率保証が可能となる。
Next, the resistivity of the inspection substrate that has been heat-treated in this way and has eliminated the donor action is measured. As a measuring method, for example, a known method such as a four-probe method can be used.
And the resistivity of the substrate measured in this way does not change greatly even if heat treatment is performed in a process of manufacturing a semiconductor element or the like. Accordingly, when the product substrate is cut out from the remaining portion of the straight cylindrical portion of the silicon single crystal rod after cutting out the test substrate, the measured resistivity of the test substrate is measured. If it is used as the guaranteed value, it is possible to guarantee the resistivity of the product substrate accurately.

次に、本発明のシリコン単結晶基板の製造方法の一例について具体的に説明する。シリコン単結晶棒の育成、検査用基板の切断、検査用基板を800℃〜シリコンの融点の間のいずれかの温度で保持して行なう熱処理、検査用基板の抵抗率の測定については、抵抗率保証方法と同様な方法及び手順で行なうことができる。   Next, an example of a method for producing a silicon single crystal substrate of the present invention will be specifically described. For the growth of a silicon single crystal rod, the cutting of the inspection substrate, the heat treatment performed by holding the inspection substrate at any temperature between 800 ° C. and the melting point of silicon, and the measurement of the resistivity of the inspection substrate, the resistivity It can be performed by the same method and procedure as the guarantee method.

次に、このようにして測定した検査用基板の抵抗率を製品の抵抗率の規格値と比較する。そして、検査用基板の抵抗率が、このような所定の規格範囲内の値である時には、前記シリコン単結晶棒の直胴円筒部分の残りの部分から製品用シリコン単結晶基板を前述のような切断装置を用いて切断する。そして、このように切断された製品用基板は、必要に応じて面取り、ラッピング、エッチング、研磨、洗浄等の工程が施される。このようにして、その後の熱処理により抵抗率の値が規格範囲内になることが保証された製品用基板が製造できる。   Next, the resistivity of the inspection substrate measured in this way is compared with the standard value of the resistivity of the product. When the resistivity of the inspection substrate is a value within such a predetermined standard range, the product silicon single crystal substrate is removed from the remaining portion of the cylindrical body of the silicon single crystal rod as described above. Cut using a cutting device. The product substrate thus cut is subjected to processes such as chamfering, lapping, etching, polishing, and washing as necessary. In this way, a product substrate in which the resistivity value is guaranteed to be within the standard range by the subsequent heat treatment can be manufactured.

そして、この製品用基板に、少なくとも半導体素子製造工程前に、800℃〜シリコンの融点(1420℃)、好ましくは900℃〜1250℃の間のいずれかの温度で保持して熱処理することにより、検査用基板と同様に規格範囲内の抵抗率となった製品用基板が製造できる。この熱処理は、前述のように、例えば抵抗加熱炉または急速加熱炉を用いて行なうことが可能であり、10秒〜120分間行うことが好ましい。また、この熱処理の際の雰囲気は、酸素、窒素、水素、アルゴンのうち少なくとも1つ以上を含む雰囲気とすることが好ましい。このとき酸素雰囲気はドライでもウェットでもよい。また、酸素と窒素、窒素と水素、窒素とアルゴン、水素とアルゴン、あるいは3つ以上を混合した雰囲気としてもよい。   And at least prior to the semiconductor element manufacturing process, the product substrate is heat-treated by holding at any temperature between 800 ° C. and silicon melting point (1420 ° C.), preferably 900 ° C. to 1250 ° C., Similar to the inspection substrate, a product substrate having a resistivity within the standard range can be manufactured. As described above, this heat treatment can be performed using, for example, a resistance heating furnace or a rapid heating furnace, and is preferably performed for 10 seconds to 120 minutes. Further, the atmosphere during the heat treatment is preferably an atmosphere containing at least one of oxygen, nitrogen, hydrogen, and argon. At this time, the oxygen atmosphere may be dry or wet. Alternatively, oxygen and nitrogen, nitrogen and hydrogen, nitrogen and argon, hydrogen and argon, or an atmosphere in which three or more are mixed may be used.

そして、上記の方法により製造されたシリコン単結晶基板は、酸素、窒素、及び窒素酸素混合物のドナーとしての作用が十分に消去されたものであり、これを基板として作製された半導体素子の抵抗率や閾値電圧の安定性が高く、設定通りの規格を有する高品質な半導体素子の作製に適し、かつ窒素がドープされているため基板表層の結晶欠陥が極めて少ない高品質のシリコン単結晶基板となる。   The silicon single crystal substrate manufactured by the above method is one in which the action as a donor of oxygen, nitrogen, and a nitrogen-oxygen mixture is sufficiently eliminated, and the resistivity of a semiconductor device manufactured using this as a substrate And high stability of threshold voltage, suitable for the production of high-quality semiconductor elements having the standard as set, and nitrogen doping, resulting in a high-quality silicon single crystal substrate with extremely few crystal defects on the substrate surface layer .

また、このシリコン単結晶基板の直径が150mm以上の大口径であれば、上記のような高品質の半導体素子を収率よく製造するのに適し、特に近年需要が高まっている直径200mmや300mm、あるいはそれ以上の大口径基板とすることができる。   Further, if the diameter of the silicon single crystal substrate is a large diameter of 150 mm or more, it is suitable for manufacturing the high-quality semiconductor element as described above with a high yield. Or it can be set as the large-diameter board | substrate beyond it.

以下に本発明の実施例および比較例をあげてさらに具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例)
直径200mm、酸素濃度14ppma(JEIDA)、窒素濃度5×1013個/cm、抵抗率20Ω・cm(目標規格値)のシリコン単結晶棒をCZ法により育成した。そしてこの単結晶棒の直胴円筒部の両端部より検査用シリコン単結晶基板をスライス切断し、酸素、窒素、窒素酸素混合物のドナーとしての作用を消去する目的で、抵抗加熱炉にて900℃の温度で20分保持する熱処理を行なった。その後抵抗率を測定したところ、20.0〜20.2Ω・cmであった。
Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to these examples.
(Example)
A silicon single crystal rod having a diameter of 200 mm, an oxygen concentration of 14 ppma (JEIDA), a nitrogen concentration of 5 × 10 13 pieces / cm 3 and a resistivity of 20 Ω · cm (target standard value) was grown by the CZ method. Then, the silicon single crystal substrate for inspection is sliced and cut from both ends of the straight cylindrical portion of the single crystal rod, and the resistance as a donor of oxygen, nitrogen, and a nitrogen-oxygen mixture is erased at 900 ° C. in a resistance heating furnace. The heat processing which hold | maintains for 20 minutes at the temperature of was performed. Thereafter, the resistivity was measured and found to be 20.0 to 20.2 Ω · cm.

この値は、目標規格値(20.0±0.2Ω・cm)の範囲内の値であったため、前記単結晶棒の直胴円筒部分の残りの部分からシリコン単結晶基板100枚をスライス切断し、抵抗加熱炉により1200℃の温度で1時間保持するアニール熱処理を行い、アニール基板を作製した。
この100枚のアニール基板の抵抗率を測定したところ、20.0〜20.2Ω・cmの間であった。
Since this value was within the range of the target standard value (20.0 ± 0.2 Ω · cm), 100 silicon single crystal substrates were sliced from the remaining portion of the straight cylindrical portion of the single crystal rod. Then, an annealing heat treatment was performed by holding at a temperature of 1200 ° C. for 1 hour in a resistance heating furnace to produce an annealed substrate.
When the resistivity of the 100 annealed substrates was measured, it was between 20.0 and 20.2 Ω · cm.

(比較例)
実施例と同様に、直径200mm、酸素濃度14ppma(JEIDA)、窒素濃度5×1013個/cm、抵抗率20Ω・cm(目標規格値)のシリコン単結晶棒をCZ法により育成した。そしてこの単結晶棒の直胴円筒部の両端部より検査用シリコン単結晶基板をスライス切断し、酸素のドナーとしての作用を消去する目的で、抵抗加熱炉にて650℃の温度で20分保持する熱処理を行なった。その後抵抗率を測定したところ、20.6〜20.8Ω・cmであった。
(Comparative example)
Similarly to the example, a silicon single crystal rod having a diameter of 200 mm, an oxygen concentration of 14 ppma (JEIDA), a nitrogen concentration of 5 × 10 13 pieces / cm 3 and a resistivity of 20 Ω · cm (target standard value) was grown by the CZ method. Then, the silicon single crystal substrate for inspection is sliced and cut from both ends of the straight cylindrical portion of the single crystal rod, and is held at a temperature of 650 ° C. for 20 minutes in order to eliminate the action of oxygen as a donor. A heat treatment was performed. Thereafter, the resistivity was measured and found to be 20.6 to 20.8 Ω · cm.

次に前記単結晶棒の直胴円筒部分の残りの部分からシリコン単結晶基板100枚をスライス切断し、抵抗加熱炉により1200℃の温度で1時間保持するアニール熱処理を行い、アニール基板を作製した。
この100枚のアニール基板の抵抗率を測定したところ、20.0〜20.2Ω・cmの間であり、検査用基板の抵抗率に対して約0.6Ω・cmだけ低い値となった。
Next, 100 silicon single crystal substrates were sliced from the remaining portion of the straight cylindrical portion of the single crystal rod and annealed by holding at a temperature of 1200 ° C. for 1 hour in a resistance heating furnace to prepare an annealed substrate. .
When the resistivity of these 100 annealed substrates was measured, it was between 20.0 and 20.2 Ω · cm, which was lower by about 0.6 Ω · cm than the resistivity of the inspection substrate.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は単なる例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above embodiment is merely an example, and the present invention has the same configuration as that of the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.

例えば、上記実施例では、シリコン単結晶基板の抵抗率の規格値が20Ω・cmの場合について例示したが、10Ω・cm以上であれば、本発明の効果が得られるものとなる。また、シリコン単結晶基板の直径についても、200mmに限らず、300mmあるいはそれ以上であってもよい。   For example, in the above embodiment, the case where the standard value of resistivity of the silicon single crystal substrate is 20 Ω · cm is exemplified, but the effect of the present invention can be obtained if the resistivity is 10 Ω · cm or more. Further, the diameter of the silicon single crystal substrate is not limited to 200 mm, and may be 300 mm or more.

NOドナー消去のための熱処理温度と、熱処理前後の抵抗率の差(Δ(ρ2−ρ1))、すなわちNOドナー消去の効果を示すグラフである。It is a graph which shows the effect (NO ((rho) 2- (rho) 1)) of the heat processing temperature for NO donor elimination, and the resistivity before and behind heat processing, ie, the effect of NO donor elimination. 酸素ドナー消去の熱処理を行なった基板(B)、及びその後NOドナー消去のために1200℃で1時間の熱処理をおこなった基板(C)、並びに比較のために窒素を添加せずに酸素ドナー消去の熱処理を行なった基板(A)のFT−IRスペクトルである。Substrate (B) subjected to heat treatment for oxygen donor erasure, and substrate (C) subjected to heat treatment at 1200 ° C. for 1 hour for NO donor erasure, and oxygen donor erasure without adding nitrogen for comparison. It is a FT-IR spectrum of the board | substrate (A) which heat-processed this.

Claims (17)

シリコン単結晶基板の抵抗率を保証する方法であって、少なくとも、チョクラルスキー法によりシリコン単結晶棒を育成する際に、前記シリコン単結晶棒に窒素を添加し、前記育成したシリコン単結晶棒の直胴円筒部の両端より検査用シリコン単結晶基板を切断し、前記切断した検査用シリコン単結晶基板を、少なくとも半導体素子製造工程前に800℃〜シリコンの融点の間のいずれかの温度で保持して熱処理し、前記熱処理した検査用シリコン単結晶基板の抵抗率を測定し、前記測定した検査用シリコン単結晶基板の抵抗率の値を、前記シリコン単結晶棒の直胴円筒部分の残りの部分から切断する製品用シリコン単結晶基板の抵抗率の保証値として用いることを特徴とするシリコン単結晶基板の抵抗率保証方法。   A method for guaranteeing resistivity of a silicon single crystal substrate, and at least when growing a silicon single crystal rod by the Czochralski method, nitrogen is added to the silicon single crystal rod, and the grown silicon single crystal rod The silicon single crystal substrate for inspection is cut from both ends of the cylindrical body of the cylinder, and the cut silicon single crystal substrate for inspection is cut at a temperature between 800 ° C. and the melting point of silicon at least before the semiconductor element manufacturing process. Holding and heat-treating, measuring the resistivity of the heat-treated inspection silicon single crystal substrate, and measuring the measured resistivity value of the inspection silicon single-crystal substrate, the remaining cylindrical body portion of the silicon single-crystal rod A method for guaranteeing the resistivity of a silicon single crystal substrate, characterized by being used as a guarantee value of the resistivity of a silicon single crystal substrate for a product that is cut from the portion. 前記育成するシリコン単結晶棒の初期格子間酸素濃度を8〜20ppmaとすることを特徴とする請求項1に記載されたシリコン単結晶基板の抵抗率保証方法。   2. The silicon single crystal substrate resistivity guarantee method according to claim 1, wherein an initial interstitial oxygen concentration of the grown silicon single crystal rod is 8 to 20 ppma. 前記育成するシリコン単結晶棒の窒素濃度を1×1013〜5×1015個/cmとすることを特徴とする請求項1又は請求項2に記載されたシリコン単結晶基板の抵抗率保証方法。 3. The resistivity guarantee of a silicon single crystal substrate according to claim 1 or 2, wherein a nitrogen concentration of the silicon single crystal rod to be grown is 1 × 10 13 to 5 × 10 15 pieces / cm 3. Method. 前記育成するシリコン単結晶棒の抵抗率を10Ω・cm以上とすることを特徴とする請求項1乃至請求項3のいずれか1項に記載されたシリコン単結晶基板の抵抗率保証方法。   The resistivity guarantee method for a silicon single crystal substrate according to any one of claims 1 to 3, wherein a resistivity of the silicon single crystal rod to be grown is 10 Ω · cm or more. 前記検査用シリコン単結晶基板に行う熱処理の雰囲気を、酸素、窒素、水素、アルゴンのうち少なくとも1つ以上を含む雰囲気とすることを特徴とする請求項1乃至請求項4のいずれか1項に記載されたシリコン単結晶基板の抵抗率保証方法。   The atmosphere of the heat treatment performed on the silicon single crystal substrate for inspection is an atmosphere containing at least one of oxygen, nitrogen, hydrogen, and argon. A method for guaranteeing resistivity of the described silicon single crystal substrate. 前記検査用シリコン単結晶基板に行う熱処理を、抵抗加熱炉または急速加熱炉を用いて行なうことを特徴とする請求項1乃至請求項5のいずれか1項に記載されたシリコン単結晶基板の抵抗率保証方法。   6. The resistance of a silicon single crystal substrate according to claim 1, wherein the heat treatment performed on the silicon single crystal substrate for inspection is performed using a resistance heating furnace or a rapid heating furnace. Rate guarantee method. 前記検査用シリコン単結晶基板に行う熱処理を、10秒〜120分間行うことを特徴とする請求項1乃至請求項6のいずれか1項に記載されたシリコン単結晶基板の抵抗率保証方法。   The method for guaranteeing resistivity of a silicon single crystal substrate according to any one of claims 1 to 6, wherein the heat treatment performed on the silicon single crystal substrate for inspection is performed for 10 seconds to 120 minutes. シリコン単結晶基板を製造する方法であって、少なくとも、チョクラルスキー法によりシリコン単結晶棒を育成する際に、前記シリコン単結晶棒に窒素を添加し、前記育成したシリコン単結晶棒の直胴円筒部の両端より検査用シリコン単結晶基板を切断し、前記切断した検査用シリコン単結晶基板を、800℃〜シリコンの融点の間のいずれかの温度で保持して熱処理し、前記熱処理した検査用シリコン単結晶基板の抵抗率を測定し、前記測定した検査用シリコン単結晶基板の抵抗率の値が所定規格範囲内の値である時、前記シリコン単結晶棒の直胴円筒部分の残りの部分から製品用シリコン単結晶基板を切断することを特徴とするシリコン単結晶基板の製造方法。   A method of manufacturing a silicon single crystal substrate, wherein at least when growing a silicon single crystal rod by the Czochralski method, nitrogen is added to the silicon single crystal rod, and the straight body of the grown silicon single crystal rod A silicon single crystal substrate for inspection is cut from both ends of the cylindrical portion, the cut silicon single crystal substrate for inspection is heat-treated while being held at any temperature between 800 ° C. and the melting point of silicon, and the heat-treated inspection is performed. The resistivity of the silicon single crystal substrate is measured, and when the measured resistivity value of the silicon single crystal substrate for inspection is a value within a predetermined standard range, the remaining cylinder portion of the straight cylinder portion of the silicon single crystal rod is measured. A method for producing a silicon single crystal substrate, comprising: cutting a product silicon single crystal substrate from a portion. 前記切断した製品用シリコン単結晶基板を、少なくとも半導体素子製造工程前に800℃〜シリコンの融点の間のいずれかの温度で保持して熱処理することを特徴とする請求項8に記載されたシリコン単結晶基板の製造方法。   9. The silicon according to claim 8, wherein the cut silicon single crystal substrate for product is heat-treated at least at a temperature between 800 ° C. and a melting point of silicon at least before the semiconductor element manufacturing process. A method for manufacturing a single crystal substrate. 前記育成するシリコン単結晶棒の初期格子間酸素濃度を8〜20ppmaとすることを特徴とする請求項8又は請求項9に記載されたシリコン単結晶基板の製造方法。   The method for producing a silicon single crystal substrate according to claim 8 or 9, wherein an initial interstitial oxygen concentration of the silicon single crystal rod to be grown is 8 to 20 ppma. 前記育成するシリコン単結晶棒の窒素濃度を1×1013〜5×1015個/cmとすることを特徴とする請求項8乃至請求項10のいずれか1項に記載されたシリコン単結晶基板の製造方法。 11. The silicon single crystal according to claim 8, wherein the silicon single crystal rod to be grown has a nitrogen concentration of 1 × 10 13 to 5 × 10 15 pieces / cm 3. A method for manufacturing a substrate. 前記育成するシリコン単結晶棒の抵抗率を10Ω・cm以上とすることを特徴とする請求項8乃至請求項11のいずれか1項に記載されたシリコン単結晶基板の製造方法。   The method for manufacturing a silicon single crystal substrate according to any one of claims 8 to 11, wherein a resistivity of the silicon single crystal rod to be grown is set to 10 Ω · cm or more. 前記検査用又は製品用シリコン単結晶基板に行う熱処理の雰囲気を、酸素、窒素、水素、アルゴンのうち少なくとも1つ以上を含む雰囲気とすることを特徴とする請求項8乃至請求項12のいずれか1項に記載されたシリコン単結晶基板の製造方法。   13. The heat treatment atmosphere performed on the inspection or product silicon single crystal substrate is an atmosphere containing at least one of oxygen, nitrogen, hydrogen, and argon. 2. A method for producing a silicon single crystal substrate according to item 1. 前記検査用又は製品用シリコン単結晶基板に行う熱処理を、抵抗加熱炉または急速加熱炉を用いて行なうことを特徴とする請求項8乃至請求項13のいずれか1項に記載されたシリコン単結晶基板の製造方法。   The silicon single crystal according to any one of claims 8 to 13, wherein the heat treatment performed on the silicon single crystal substrate for inspection or product is performed using a resistance heating furnace or a rapid heating furnace. A method for manufacturing a substrate. 前記検査用又は製品用シリコン単結晶基板に行う熱処理を、10秒〜120分間行うことを特徴とする請求項8乃至請求項14のいずれか1項に記載されたシリコン単結晶基板の製造方法。   The method for producing a silicon single crystal substrate according to any one of claims 8 to 14, wherein the heat treatment performed on the silicon single crystal substrate for inspection or product is performed for 10 seconds to 120 minutes. 請求項8乃至請求項15のいずれか1項に記載された方法により製造されたものであることを特徴とするシリコン単結晶基板。   A silicon single crystal substrate manufactured by the method according to any one of claims 8 to 15. 前記シリコン単結晶基板の直径が150mm以上であることを特徴とする請求項16に記載のシリコン単結晶基板。   The silicon single crystal substrate according to claim 16, wherein a diameter of the silicon single crystal substrate is 150 mm or more.
JP2004011622A 2004-01-20 2004-01-20 Method for guaranteeing resistivity of silicon single crystal substrate, method for manufacturing silicon single crystal substrate, and silicon single crystal substrate Pending JP2005206391A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004011622A JP2005206391A (en) 2004-01-20 2004-01-20 Method for guaranteeing resistivity of silicon single crystal substrate, method for manufacturing silicon single crystal substrate, and silicon single crystal substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004011622A JP2005206391A (en) 2004-01-20 2004-01-20 Method for guaranteeing resistivity of silicon single crystal substrate, method for manufacturing silicon single crystal substrate, and silicon single crystal substrate

Publications (1)

Publication Number Publication Date
JP2005206391A true JP2005206391A (en) 2005-08-04

Family

ID=34898261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004011622A Pending JP2005206391A (en) 2004-01-20 2004-01-20 Method for guaranteeing resistivity of silicon single crystal substrate, method for manufacturing silicon single crystal substrate, and silicon single crystal substrate

Country Status (1)

Country Link
JP (1) JP2005206391A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007083476A1 (en) * 2006-01-17 2007-07-26 Shin-Etsu Handotai Co., Ltd. Process for producing silicon single crystal wafer
JP2007220825A (en) * 2006-02-15 2007-08-30 Sumco Corp Production process of silicon wafer
WO2009025337A1 (en) * 2007-08-21 2009-02-26 Sumco Corporation Silicon single crystal wafer for igbt, process for producing silicon single crystal wafer for igbt, and method for ensuring electric resistivity of silicon single crystal wafer for igbt
JP2011231012A (en) * 2007-02-02 2011-11-17 Siltronic Ag Semiconductor wafer of silicon
WO2013035248A1 (en) * 2011-09-08 2013-03-14 信越半導体株式会社 Method for calculating concentration of nitrogen and method for calculating shift amount of resistivity in silicon single crystal
CN104569600A (en) * 2013-10-09 2015-04-29 新余百川技术有限公司 Polycrystalline silicon resistivity tester
WO2017056376A1 (en) * 2015-09-28 2017-04-06 信越半導体株式会社 Method for producing bonded soi wafer
JP2018024580A (en) * 2014-05-28 2018-02-15 インフィネオン テクノロジーズ アーゲーInfineon Technologies Ag Semiconductor element, silicon wafer and silicon ingot
CN109643669A (en) * 2016-08-25 2019-04-16 信越半导体株式会社 The manufacturing method of resistivity master sample and the determination of resistivity method of epitaxy wafer
CN112680787A (en) * 2021-03-17 2021-04-20 杭州晶宝新能源科技有限公司 Growth method of monocrystalline silicon and monocrystalline silicon

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007191320A (en) * 2006-01-17 2007-08-02 Shin Etsu Handotai Co Ltd Method for producing silicon single crystal wafer
WO2007083476A1 (en) * 2006-01-17 2007-07-26 Shin-Etsu Handotai Co., Ltd. Process for producing silicon single crystal wafer
JP2007220825A (en) * 2006-02-15 2007-08-30 Sumco Corp Production process of silicon wafer
JP2011231012A (en) * 2007-02-02 2011-11-17 Siltronic Ag Semiconductor wafer of silicon
JP5321460B2 (en) * 2007-08-21 2013-10-23 株式会社Sumco Manufacturing method of silicon single crystal wafer for IGBT
WO2009025337A1 (en) * 2007-08-21 2009-02-26 Sumco Corporation Silicon single crystal wafer for igbt, process for producing silicon single crystal wafer for igbt, and method for ensuring electric resistivity of silicon single crystal wafer for igbt
JP2013057585A (en) * 2011-09-08 2013-03-28 Shin Etsu Handotai Co Ltd Method for calculating nitrogen concentration in silicon single crystal and method for calculating resistance shift amount
KR101904078B1 (en) * 2011-09-08 2018-10-05 신에쯔 한도타이 가부시키가이샤 Method for calculating concentration of nitrogen and method for calculating shift amount of resistivity in silicon single crystal
KR20140058587A (en) * 2011-09-08 2014-05-14 신에쯔 한도타이 가부시키가이샤 Method for calculating concentration of nitrogen and method for calculating shift amount of resistivity in silicon single crystal
WO2013035248A1 (en) * 2011-09-08 2013-03-14 信越半導体株式会社 Method for calculating concentration of nitrogen and method for calculating shift amount of resistivity in silicon single crystal
CN104569600A (en) * 2013-10-09 2015-04-29 新余百川技术有限公司 Polycrystalline silicon resistivity tester
US10910475B2 (en) 2014-05-28 2021-02-02 Infineon Technologies Ag Method of manufacturing a silicon wafer
JP2018024580A (en) * 2014-05-28 2018-02-15 インフィネオン テクノロジーズ アーゲーInfineon Technologies Ag Semiconductor element, silicon wafer and silicon ingot
JP2020074381A (en) * 2014-05-28 2020-05-14 インフィネオン テクノロジーズ アーゲーInfineon Technologies Ag Semiconductor element, silicon wafer and silicon ingot
WO2017056376A1 (en) * 2015-09-28 2017-04-06 信越半導体株式会社 Method for producing bonded soi wafer
KR20180058713A (en) 2015-09-28 2018-06-01 신에쯔 한도타이 가부시키가이샤 Method for manufacturing a bonded SOI wafer
JP2017069240A (en) * 2015-09-28 2017-04-06 信越半導体株式会社 Manufacturing method of bonded soi wafer
US11056381B2 (en) 2015-09-28 2021-07-06 Shin-Etsu Handotai Co., Ltd. Method for producing bonded SOI wafer
KR102509310B1 (en) 2015-09-28 2023-03-13 신에쯔 한도타이 가부시키가이샤 Manufacturing method of bonded SOI wafer
CN109643669A (en) * 2016-08-25 2019-04-16 信越半导体株式会社 The manufacturing method of resistivity master sample and the determination of resistivity method of epitaxy wafer
CN109643669B (en) * 2016-08-25 2023-05-02 信越半导体株式会社 Method for manufacturing resistivity standard sample and method for measuring resistivity of epitaxial wafer
CN112680787A (en) * 2021-03-17 2021-04-20 杭州晶宝新能源科技有限公司 Growth method of monocrystalline silicon and monocrystalline silicon
CN112680787B (en) * 2021-03-17 2021-06-04 杭州晶宝新能源科技有限公司 Growth method of monocrystalline silicon and monocrystalline silicon

Similar Documents

Publication Publication Date Title
JP5072460B2 (en) Silicon wafer for semiconductor and manufacturing method thereof
TW546422B (en) Method of producing silicon wafer and silicon wafer
JP5321460B2 (en) Manufacturing method of silicon single crystal wafer for IGBT
KR100871626B1 (en) Expitaxial wafer and method for production of epitaxial wafer
US8211228B2 (en) Method for producing single crystal and a method for producing annealed wafer
KR100461893B1 (en) Silicon wafer and method of producing silicon single crystal utilizing same
KR100854673B1 (en) Method for manufacturing annealed wafer
JP2004304095A (en) Silicon wafer, and manufacturing method thereof
KR101446846B1 (en) Silicon single crystal substrate and method of manufacturing the same
JP2010222241A (en) Silicon single crystal wafer for igbt and method for manufacturing silicon single crystal wafer for igbt
JP5387408B2 (en) Manufacturing method of silicon single crystal wafer for IGBT
JP4529416B2 (en) Manufacturing method of silicon single crystal wafer and silicon single crystal wafer
JP2005206391A (en) Method for guaranteeing resistivity of silicon single crystal substrate, method for manufacturing silicon single crystal substrate, and silicon single crystal substrate
JP5278324B2 (en) Manufacturing method of silicon single crystal wafer for IGBT
JP3614019B2 (en) Manufacturing method of silicon single crystal wafer and silicon single crystal wafer
KR101532154B1 (en) Method of manufacturing annealed wafer
US6056931A (en) Silicon wafer for hydrogen heat treatment and method for manufacturing the same
JP3771737B2 (en) Method for producing silicon single crystal wafer
JP5304649B2 (en) Manufacturing method of silicon single crystal wafer for IGBT
JP2007242920A (en) Nitrogen-doped and annealed wafer and method of manufacturing the same
JP4463950B2 (en) Method for manufacturing silicon wafer
JP4360208B2 (en) Method for producing silicon single crystal
KR102676990B1 (en) Method for manufacturing silicon single crystal, epitaxial silicon wafer and silicon single crystal substrate
JP2010114211A (en) Method of manufacturing epitaxial silicon wafer
JPWO2009025339A1 (en) Silicon single crystal wafer for IGBT and manufacturing method of silicon single crystal wafer for IGBT

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20061010

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090811