JP2000351670A - Graphite material, graphite material for forming sic film and part for device for pulling silicon single crystal - Google Patents

Graphite material, graphite material for forming sic film and part for device for pulling silicon single crystal

Info

Publication number
JP2000351670A
JP2000351670A JP2000107975A JP2000107975A JP2000351670A JP 2000351670 A JP2000351670 A JP 2000351670A JP 2000107975 A JP2000107975 A JP 2000107975A JP 2000107975 A JP2000107975 A JP 2000107975A JP 2000351670 A JP2000351670 A JP 2000351670A
Authority
JP
Japan
Prior art keywords
graphite material
coefficient
thermal expansion
thermal
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000107975A
Other languages
Japanese (ja)
Inventor
Soichiro Yamamoto
惣一郎 山本
Soukan Miki
相煥 三木
Yoshinori Yonemoto
善則 米本
Yoshiharu Okawa
由治 大河
Kiyohide Sasaki
清秀 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tanso Co Ltd
Original Assignee
Toyo Tanso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tanso Co Ltd filed Critical Toyo Tanso Co Ltd
Priority to JP2000107975A priority Critical patent/JP2000351670A/en
Publication of JP2000351670A publication Critical patent/JP2000351670A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
    • C04B41/5057Carbides
    • C04B41/5059Silicon carbide

Abstract

PROBLEM TO BE SOLVED: To obtain a graphite material which can prevent cracks generated by a difference between the thermal expansion of the graphite material and that of SiC, can stand a rapid rise of temperature and has improved thermal characteristics, by controlling the thermal expansion coefficient, heat conductivity or/and thermal shock resistance coefficient, and a thermal expansion coefficient anisotropy ratio at specific values, respectively. SOLUTION: This graphite material is formed by mixing a filler (aggregate) such as petroleum coke with a binder such as pitch, molding the mixture into a prescribed shape, and then thermally treating the molded product to carbonize and cake the binder. The aggregate is suitably selected to give the graphite material having a thermal expansion coefficient of 3.0 to 4.0×10-6/k at 293 to 673 k, a heat conductivity of >=120 W/(m.k) at 293 k or/and a thermal shock resistance coefficient of >=80 kW/m, and a thermal expansion coefficient anisotropy ratio of <=1.1. The graphite material preferably further has a bulk density of >=1.70 Mg/m3, a tensile strength of >=20 MPa, an elastic coefficient of <=11 GPa, and an ash content of <=20 ppm by an ashing method.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、熱的特性に優れた
黒鉛材料、SiC膜形成黒鉛材料及びそれを用いたシリ
コン単結晶引上装置用部品に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a graphite material having excellent thermal characteristics, a graphite material having a SiC film, and a component for a silicon single crystal pulling apparatus using the same.

【0002】[0002]

【従来の技術】シリコン(以下、Siという。)の単結
晶を引き上げる際に、例えば特開昭61−256993
号、特公平6−2637号等に例示されるような、チョ
コラルスキー法によるSi単結晶引上装置が用いられ
る。
2. Description of the Related Art When pulling a single crystal of silicon (hereinafter referred to as Si), for example, Japanese Patent Application Laid-Open No. 61-256993 is used.
And an apparatus for pulling a Si single crystal by the Czochralski method as exemplified in JP-B-6-2637.

【0003】このSi単結晶引上装置は、黒鉛ルツボの
中に収納した石英ルツボに多結晶Siを充填し、黒鉛ル
ツボの周囲に設けられた黒鉛ヒーターで、不活性ガス雰
囲気中1800Kに加熱して多結晶Siを溶融させ、先
端に単結晶Siを取り付けたシードチャックを融液面に
接触させ、回転させながら、引上を行うことができる構
造になっている。
In this Si single crystal pulling apparatus, a quartz crucible housed in a graphite crucible is filled with polycrystalline Si, and heated to 1800 K in an inert gas atmosphere by a graphite heater provided around the graphite crucible. Thus, a polycrystalline Si is melted, and a seed chuck having a single crystal Si attached to the tip thereof is brought into contact with the melt surface, and the structure can be pulled up while rotating.

【0004】通常、Si単結晶引上装置の炉を構成する
内部部品として、前述したルツボ、ヒーターの他にも、
インナーシールド、Si蒸気等の漏れ防止リング、ロア
ーリング、アッパーリング、スピルトレー、シードチャ
ック等があり、これらも黒鉛材料で構成されている。
[0004] Usually, in addition to the above-mentioned crucible and heater, the internal parts constituting the furnace of the Si single crystal pulling apparatus include:
There are an inner shield, a leak prevention ring for Si vapor and the like, a lower ring, an upper ring, a spill tray, a seed chuck, and the like, which are also made of a graphite material.

【0005】ところが、黒鉛材料をSi単結晶引上装置
の炉部品に用いた場合、以下の(1)〜(4)の問題が
ある。
However, when a graphite material is used for a furnace part of a Si single crystal pulling apparatus, there are the following problems (1) to (4).

【0006】(1)黒鉛材料は、上記Si単結晶を引上
る際に生じる一酸化ケイ素ガス(以下、SiOガスとい
う。)、石英ルツボ等と反応し、表層部分が炭化珪素
(以下、SiCという。)に転化する。表層がSiCに
転化すると、体積が膨張して黒鉛部品中に内部応力が発
生し、破壊の原因となる。
(1) The graphite material reacts with a silicon monoxide gas (hereinafter, referred to as SiO gas), a quartz crucible or the like generated when pulling up the Si single crystal, and a surface layer portion thereof is formed of silicon carbide (hereinafter, referred to as SiC). )). When the surface layer is converted to SiC, the volume expands and internal stress is generated in the graphite component, which causes breakage.

【0007】(2)黒鉛とSiCとは熱膨張係数が異な
るため熱応力を生じ、この熱応力は黒鉛部品を破壊する
原因となる。
(2) Since graphite and SiC have different coefficients of thermal expansion, thermal stress is generated, and this thermal stress causes breakage of graphite parts.

【0008】(3)黒鉛ルツボについていえば、通常、
2または3に分割されたものが使用されており、石英ル
ツボとの熱膨張係数が大きく異なるため(石英ルツボの
熱膨張係数0.5×10-6/K)冷却によって外側に開
き、黒鉛ルツボに大きな応力が発生する等の問題があ
る。
(3) Speaking of the graphite crucible, usually,
Since it is divided into two or three, the coefficient of thermal expansion is significantly different from that of quartz crucibles (the coefficient of thermal expansion of quartz crucibles: 0.5 × 10 −6 / K), it is opened outward by cooling and becomes a graphite crucible. There is a problem that a large stress is generated in the device.

【0009】(4)黒鉛ルツボは、昇温中或いは引上時
にSiOガスや石英ルツボと反応して消耗し、強度的に
弱くなる。このような場合に何らかの要因で応力を受け
ると破壊することがある。
(4) The graphite crucible is consumed by reacting with the SiO gas or the quartz crucible at the time of raising the temperature or at the time of pulling up, and the strength becomes weak. In such a case, it may be broken if it receives stress for some reason.

【0010】近年では、直径が8インチ以上のSiイン
ゴットの引上が主流になってきており、これに伴いSi
単結晶引上装置自体も大型化してきているので熱のロス
が大きく省エネルギー対策の面、操業時間の短縮化の観
点から、所定の温度まで急速に昇温してもこれに耐えう
る黒鉛材料が求められている。
[0010] In recent years, pulling of Si ingots having a diameter of 8 inches or more has become mainstream.
Since the single crystal pulling device itself has also become larger, heat loss is large, and in terms of energy saving measures and from the viewpoint of shortening operation time, graphite materials that can withstand this even if the temperature is rapidly raised to a predetermined temperature are used. It has been demanded.

【0011】[0011]

【発明が解決しようとする課題】本発明は上記問題点、
即ちSiCとの熱膨張差によって生じる割れやクラック
を防止でき、しかも急速な昇温にも耐えることができる
よう熱的特性が改良された黒鉛材料、SiC膜形成黒鉛
材料及び単結晶引上装置用部品を提供することを目的と
する。
SUMMARY OF THE INVENTION The present invention has the above problems,
That is, for a graphite material, a SiC film-forming graphite material, and a single crystal pulling device, which can prevent cracks and cracks caused by a difference in thermal expansion from SiC and have improved thermal characteristics so that they can withstand rapid temperature rise. The purpose is to provide parts.

【0012】[0012]

【課題を解決するための手段】そこで、本発明者らは鋭
意検討を重ねた結果、黒鉛とSiCの熱膨張差を小さく
するだけでなく、耐熱衝撃性の向上という点にも着目
し、熱膨張係数や耐熱衝撃係数を制御した黒鉛材料を開
発し、これを使用することによって、上記課題を解決す
ることができ、本発明を完成するに至ったものである。
The inventors of the present invention have conducted intensive studies and as a result, have focused not only on reducing the thermal expansion difference between graphite and SiC but also on improving the thermal shock resistance. By developing and using a graphite material having a controlled expansion coefficient and thermal shock coefficient, the above problems can be solved and the present invention has been completed.

【0013】即ち、本発明の黒鉛材料は、下記(イ)〜
(ハ)の条件を満たすことを特徴とする耐熱衝撃性に優
れた黒鉛材料 (イ)293K〜673Kの熱膨張係数が3.0〜4.
0×10-6/Kの範囲にあること。 (ロ)293Kでの熱伝導率が120W/(m・K)以
上であること、又は/及び、耐熱衝撃係数≧80kW/
mであること。 (ハ)熱膨張係数の異方比≦1.1であること。を要旨
とする。
That is, the graphite material of the present invention comprises:
A graphite material excellent in thermal shock resistance characterized by satisfying the condition (c). (A) The thermal expansion coefficient of 293K to 673K is 3.0 to 4.0.
Be within the range of 0 × 10 −6 / K. (B) The thermal conductivity at 293K is 120 W / (m · K) or more, and / or the thermal shock coefficient ≧ 80 kW /
m. (C) Anisotropic ratio of thermal expansion coefficient ≦ 1.1. Is the gist.

【0014】本発明をさらに詳細に説明すると次のよう
になる。まず、本発明で使用する黒鉛材料は、293K
〜673Kでの熱膨張係数が3.0〜4.0×10-6
Kの範囲である。熱膨張係数が3.0×10-6/Kより
も小さい黒鉛材料や4.0×10-6/Kを越える黒鉛材
料を使用すると、SiCとの熱膨張差に起因する応力が
発生し、割れやクラックが生じる。好ましくは、熱膨張
係数の範囲は、3.5〜4.0×10-6/Kである。そ
の理由は、SiCの293K〜673Kでの熱膨張係数
は、3.5〜4.0×10-6/Kであるため、熱膨張係
数差を殆ど無くすことができるからである。
The present invention will be described in more detail as follows. First, the graphite material used in the present invention is 293K
The coefficient of thermal expansion at -673K is 3.0-4.0 x 10-6 /
K range. When a graphite material having a coefficient of thermal expansion of less than 3.0 × 10 −6 / K or a graphite material exceeding 4.0 × 10 −6 / K is used, a stress is generated due to a difference in thermal expansion from SiC, Cracks and cracks occur. Preferably, the range of the coefficient of thermal expansion is 3.5-4.0 × 10 −6 / K. The reason is that since the thermal expansion coefficient of SiC at 293K to 673K is 3.5 to 4.0 × 10 −6 / K, the difference in thermal expansion coefficient can be almost eliminated.

【0015】次に、本発明では、293Kでの熱伝導率
が120W/(m・K)以上であるか、又は/及び、耐
熱衝撃係数が80kW/m以上である。好ましくは90
kW/m以上である。黒鉛材料の熱伝導率を向上させる
ことは、次に述べる耐熱衝撃係数(R)を向上させるに
だけにとどまらず、Si単結晶装置の立ち上げ、即ち、
Siの引上までに要する時間を短縮できるので、熱効率
を向上させることができる。また、好ましくは熱伝導率
を130W/(m・K)以上にする。
Next, in the present invention, the thermal conductivity at 293 K is 120 W / (m · K) or more and / or the thermal shock coefficient is 80 kW / m or more. Preferably 90
kW / m or more. Improving the thermal conductivity of the graphite material is not limited to improving the thermal shock coefficient (R) described below, but also starting up the Si single crystal apparatus, that is,
Since the time required for pulling up Si can be reduced, the thermal efficiency can be improved. Preferably, the thermal conductivity is 130 W / (m · K) or more.

【0016】耐熱衝撃係数(R)は、黒鉛材料では重要
な特性の一つであり、引っ張り強度(σ):単位は(M
Pa)、熱伝導率(κ):単位は(W/(m・K))、
熱膨張係数(α):単位は(×10-6/K)、弾性係数
(ヤング率と同じ内容を意味するものとする。)
(E):単位は(GPa)、とすると、R=(σκ/α
E)で示される。耐熱衝撃係数(R)の単位は(kW/
m)である。
The thermal shock coefficient (R) is one of the important characteristics in graphite materials, and the tensile strength (σ) is expressed in units of (M
Pa), thermal conductivity (κ): unit is (W / (m · K)),
Thermal expansion coefficient (α): Unit is (× 10 −6 / K), elastic coefficient (meaning the same content as Young's modulus)
(E): Assuming that the unit is (GPa), R = (σκ / α)
E). The unit of the thermal shock coefficient (R) is (kW /
m).

【0017】耐熱衝撃係数(R)は、上記熱伝導率、引
っ張り強度、熱膨張係数、弾性係数の4つの構成因子か
らなる。黒鉛材料の熱伝導率と引っ張り強度を大きくす
れば、耐熱衝撃係数(R)を大きくでき、このような構
成にすることによって、急速な加熱に適した黒鉛材料を
提供するという課題を解決できるのである。
The thermal shock coefficient (R) is composed of the four constituent factors of the above-mentioned thermal conductivity, tensile strength, thermal expansion coefficient, and elastic coefficient. If the thermal conductivity and the tensile strength of the graphite material are increased, the thermal shock coefficient (R) can be increased, and this configuration can solve the problem of providing a graphite material suitable for rapid heating. is there.

【0018】また、本発明では、従来の黒鉛材料の熱膨
張係数(4.0〜5.0×10-6/K)よりも熱膨張係
数を小さくして、SiCと近似させるようにしたので
(上記式の分母を小さくすることになる。)、耐熱衝撃
係数(R)を相対的に大きくしたことになり、熱衝撃に
非常に強い上に、SiCとの熱膨張差による応力発生が
なく、割れ、クラックが発生しない。
In the present invention, the coefficient of thermal expansion of the conventional graphite material (4.0 to 5.0 × 10 −6 / K) is made smaller to approximate SiC. (The denominator of the above equation is reduced.) This means that the thermal shock coefficient (R) is relatively increased, and is very resistant to thermal shock and free from stress due to a difference in thermal expansion from SiC. No cracks or cracks occur.

【0019】つぎに、本発明では熱膨張係数の異方比が
1.1以下の黒鉛材料が好ましい。さらには、熱膨張係
数の異方比が1.05以下の黒鉛材料が好ましい。例え
ば黒鉛ルツボについてみると、石英ルツボを均一に加熱
できるのでSi融液の加熱ムラがない。したがって、S
i単結晶の品質の向上に寄与できる。本発明では、等方
的に加圧成形を行った等方性黒鉛材料を使用することが
強度面から見てもさらに好ましい。異方比は、293K
〜673KまでのX軸、Y軸、Z軸方向の熱膨張係数を
測定し、最も大きい値と最も小さな値の比をいうものと
する。
Next, in the present invention, a graphite material having an anisotropic ratio of thermal expansion coefficient of 1.1 or less is preferable. Further, a graphite material having an anisotropic ratio of thermal expansion coefficient of 1.05 or less is preferable. For example, regarding a graphite crucible, since a quartz crucible can be heated uniformly, there is no uneven heating of the Si melt. Therefore, S
This can contribute to the improvement of the quality of the i single crystal. In the present invention, it is more preferable from the viewpoint of strength to use an isotropic graphite material which is isotropically pressed. Anisotropic ratio is 293K
The thermal expansion coefficients in the X-axis, Y-axis, and Z-axis directions up to 673 K are measured, and the ratio between the largest value and the smallest value is referred to.

【0020】また、黒鉛材料のかさ密度は、1.70M
g/m3 以上とすることが好ましい。SiCへの転化速
度はかさ密度と相関関係があり、気孔が大きい程、転化
速度が速くなる。かさ密度を1.70Mg/m3 以上に
すると、SiCの転化速度が抑えられる。
The bulk density of the graphite material is 1.70 M
g / m 3 or more. The conversion rate to SiC has a correlation with the bulk density, and the larger the pores, the higher the conversion rate. When the bulk density is 1.70 Mg / m 3 or more, the conversion rate of SiC is suppressed.

【0021】また、黒鉛材料の引っ張り強度は、20M
Pa以上、更に25MPa以上とすることが好ましい。
引っ張り強度を大きくすることは、耐熱衝撃係数(R)
を向上させる上で重要な因子であるが、それだけにとど
まらず、Si単結晶引上装置の運転開始時あるいは運転
中に発生するSiOガスや、石英ルツボと黒鉛材料との
反応によって発生する熱応力に対するワレ防止に効果が
ある。
The graphite material has a tensile strength of 20M.
It is preferably at least Pa, more preferably at least 25 MPa.
Increasing the tensile strength requires the thermal shock coefficient (R)
It is an important factor in improving the quality of the Si single crystal pulling device, but is not limited thereto. Effective for preventing cracking.

【0022】黒鉛材料の弾性係数は、11GPa以下、
更に10GPa以下とすることが好ましい。弾性係数を
小さくすることは、耐熱衝撃係数(R)を向上させる上
で重要な因子であるが、それだけにとどまらず、弾性係
数が11GPaよりも大きくなると、黒鉛材料自体が脆
弱となるので好ましくない。
The elastic modulus of the graphite material is 11 GPa or less,
Further, the pressure is preferably 10 GPa or less. Decreasing the elastic modulus is an important factor for improving the thermal shock coefficient (R), but is not limited thereto. If the elastic modulus is higher than 11 GPa, the graphite material itself is not preferable because it becomes brittle.

【0023】前記黒鉛材料は、高純度化工程を経て不純
物が少なくなったものが好ましい。具体的は、灰化法に
よる全灰分量が20ppm以下が好ましく、更に5pp
m以下が好ましい。
It is preferable that the graphite material has reduced impurities through a purification process. Specifically, the total ash content by the incineration method is preferably 20 ppm or less, and more preferably 5 pp.
m or less is preferable.

【0024】上述した黒鉛材料は、Si単結晶引上装置
の炉を構成する内部部品として最適である。図1におい
て、黒鉛ルツボ8、黒鉛ヒーター7の他にも、インナー
シールド11、Si蒸気等の漏れ防止用の上部シールド
16、ロアーリング9、アッパーリング12、スピルト
レー15、シードチャック1等があり、これらも前記黒
鉛材料で構成することが好ましい。
The above-described graphite material is most suitable as an internal component constituting a furnace of a Si single crystal pulling apparatus. In FIG. 1, in addition to the graphite crucible 8 and the graphite heater 7, there are an inner shield 11, an upper shield 16 for preventing leakage of Si vapor and the like, a lower ring 9, an upper ring 12, a spill tray 15, a seed chuck 1, and the like. These are also preferably made of the above graphite material.

【0025】上述した黒鉛材料は、連続鋳造用ダイスや
ホットプレス用部品にも好適に使用できる。また、熱膨
張係数がSiCと同じなので、エピタキシャル成長用の
SiC被覆されたパンケーキバレルサセプター等の基材
にも最適という事はいうまでもない事である。また、S
iを扱うCVD炉やCVR炉の炉壁に用いられる黒鉛材
料製の壁材も表面の一部又は全部にSiC膜が形成され
るため、SiCの耐剥離性に優れた本発明に係る黒鉛材
料が基材として適している。さらに、耐SiC性向上の
ために、予め黒鉛材料の表面の一部又は全部にSiC膜
を含浸又は/及び被覆により形成してなるSiC膜形成
黒鉛材料としても有効である。
The above-mentioned graphite material can be suitably used for dies for continuous casting and parts for hot pressing. Further, since the thermal expansion coefficient is the same as that of SiC, it is needless to say that it is optimal for a substrate such as a pancake barrel susceptor coated with SiC for epitaxial growth. Also, S
The graphite material according to the present invention, which is excellent in SiC exfoliation resistance, since a SiC film is formed on a part or the entire surface of a wall material made of a graphite material used for a furnace wall of a CVD furnace or a CVR furnace handling i. Is suitable as a substrate. Furthermore, in order to improve the SiC resistance, it is also effective as a graphite material for forming a SiC film in which a part or all of the surface of the graphite material is previously impregnated or / and coated with a SiC film.

【0026】[0026]

【発明の実施の形態】本発明で引っ張り強度、熱伝導
率、弾性係数、熱膨張係数をコントロールして耐熱衝撃
係数を制御した黒鉛材料をルツボ又はヒーターとしてS
i単結晶引き上げ装置などに使用した。
BEST MODE FOR CARRYING OUT THE INVENTION A graphite material having a controlled thermal shock coefficient by controlling tensile strength, thermal conductivity, elastic modulus and thermal expansion coefficient in the present invention is used as a crucible or a heater.
It was used for an i single crystal pulling apparatus.

【0027】黒鉛材料は、石油コークス等のフィラー
(骨材)と、ピッチ等のバインダー(結合材)とを混合
し、これを所定の形状に成形したのち、熱処理によって
バインダーを炭素化固結させて形成される。この黒鉛材
料の熱膨張係数は、骨材自体を低い熱膨張係数のものに
選定することにより調整できる。また、引っ張り強度、
熱伝導率、弾性係数、熱膨張係数の各々も、骨材の熱的
性質及び物理的性質について適切なものを選定すること
により所定範囲に収めることができる。
The graphite material is obtained by mixing a filler (aggregate) such as petroleum coke and a binder (binder) such as pitch, forming the mixture into a predetermined shape, and heat-treating the binder into carbon. Formed. The thermal expansion coefficient of this graphite material can be adjusted by selecting the aggregate itself to have a low thermal expansion coefficient. Also, tensile strength,
Each of the thermal conductivity, the elastic coefficient, and the thermal expansion coefficient can be within a predetermined range by selecting an appropriate one for the thermal property and the physical property of the aggregate.

【0028】なお、本発明でいう引っ張り強度、熱伝導
率、弾性係数、熱膨張係数の測定方法及び条件は以下に
記載する。
The methods and conditions for measuring the tensile strength, thermal conductivity, elastic coefficient and thermal expansion coefficient according to the present invention are described below.

【0029】引っ張り強度と、弾性係数(ヤング率)に
ついては、各々日本工業規格(以下、JISという。)
のR7222−1997、R7202−1979に準じ
て求めた。
The tensile strength and the elastic modulus (Young's modulus) are each Japanese Industrial Standard (hereinafter referred to as JIS).
R722-1997 and R7202-1979.

【0030】熱伝導率については、JIS R1611
−1991に準じて求めた。
Regarding the thermal conductivity, JIS R1611
−1991.

【0031】熱膨張係数については、理学電機株式会社
製の熱機械分析装置(TMA8310)で293K〜6
73Kまでの熱膨張係数を求めた。
The coefficient of thermal expansion was measured using a thermomechanical analyzer (TMA8310) manufactured by Rigaku Corporation.
The coefficient of thermal expansion up to 73K was determined.

【0032】[0032]

【実施例】以下に本発明を実施例に基づき具体的に説明
するが、本発明はこれらの実施例に何ら限定されるもの
ではない。
EXAMPLES The present invention will be specifically described below based on examples, but the present invention is not limited to these examples.

【0033】〔実施例1〕引っ張り強度が25.5MP
a、293Kでの熱伝導率が120W/(m・K)、2
93K〜673Kの熱膨張係数が3.9×10-6/K、
弾性係数が9.8GPa、耐熱衝撃係数が80kW/
m、熱膨張係数の異方比が1.05の等方性黒鉛を作製
した。この黒鉛材料を黒鉛ルツボに加工した後、230
0Kでジクロロジフルオロメタンを主成分とするハロゲ
ン含有ガスを5時間流して高純度化処理を行い、総灰分
が0.5ppmの超高純度黒鉛ルツボを得た。この黒鉛
ルツボをCZ装置に据え付けて直径が8インチのSi単
結晶の引上を行った。
[Example 1] The tensile strength was 25.5MP.
a, the thermal conductivity at 293K is 120 W / (m · K), 2
A thermal expansion coefficient of 3.9 × 10 −6 / K of 93K to 673K;
The elastic coefficient is 9.8 GPa, the thermal shock coefficient is 80 kW /
m and isotropic graphite having an anisotropic ratio of thermal expansion coefficient of 1.05 were produced. After processing this graphite material into a graphite crucible, 230
At 0 K, a halogen-containing gas containing dichlorodifluoromethane as a main component was flowed for 5 hours to perform a high-purification treatment, thereby obtaining an ultra-high-purity graphite crucible having a total ash content of 0.5 ppm. The graphite crucible was installed on a CZ apparatus to pull up an Si single crystal having a diameter of 8 inches.

【0034】〔実施例2〕引っ張り強度が28.5MP
a、293Kでの熱伝導率が130W/(m・K)、2
93K〜673Kの熱膨張係数が4.0×10-6/K、
弾性係数が10.3GPa、耐熱衝撃係数が90kW/
m、熱膨張係数の異方比が1.02の等方性黒鉛を使用
したこと以外は実施例1と同様の条件で直径が8インチ
のSi単結晶の引上を行った。
[Example 2] The tensile strength was 28.5MP.
a, the thermal conductivity at 293K is 130 W / (m · K), 2
A coefficient of thermal expansion of 93 × 673K is 4.0 × 10 −6 / K,
The elastic coefficient is 10.3 GPa and the thermal shock coefficient is 90 kW /
An Si single crystal having a diameter of 8 inches was pulled under the same conditions as in Example 1 except that isotropic graphite having a m and an anisotropic ratio of thermal expansion coefficient of 1.02 was used.

【0035】〔実施例3〕引っ張り強度が26.4MP
a、293Kでの熱伝導率が136W/(m・K)、2
93K〜673Kの熱膨張係数が3.3×10-6/K、
弾性係数が9.9GPa、耐熱衝撃係数が110kW/
m、熱膨張係数の異方比が1.00の等方性黒鉛を使用
したこと以外は実施例1と同様の条件で直径が8インチ
のSi単結晶の引上を行った。
[Example 3] The tensile strength was 26.4MP.
a, thermal conductivity at 293K is 136 W / (m · K), 2
The coefficient of thermal expansion of 93K to 673K is 3.3 × 10 −6 / K,
Elasticity coefficient is 9.9 GPa, thermal shock coefficient is 110 kW /
An Si single crystal having a diameter of 8 inches was pulled under the same conditions as in Example 1 except that isotropic graphite having an anisotropic ratio of m and a coefficient of thermal expansion of 1.00 was used.

【0036】〔比較例1〕引っ張り強度が27.4MP
a、293Kでの熱伝導率が104W/(m・K)、2
93K〜673Kの熱膨張係数が4.7×10-6/K、
弾性係数が10.3GPa、耐熱衝撃係数が59kW/
m、熱膨張係数の異方比が1.05の等方性黒鉛を使用
したこと以外は実施例1と同様の条件で直径が8インチ
のSi単結晶の引上を行った。
[Comparative Example 1] Tensile strength 27.4MP
a, thermal conductivity at 293K is 104 W / (m · K), 2
The coefficient of thermal expansion of 93K to 673K is 4.7 × 10 −6 / K,
The elastic coefficient is 10.3 GPa and the thermal shock coefficient is 59 kW /
An Si single crystal having a diameter of 8 inches was pulled under the same conditions as in Example 1 except that isotropic graphite having a m and an anisotropic ratio of thermal expansion coefficient of 1.05 was used.

【0037】〔比較例2〕引っ張り強度が31.4MP
a、293Kでの熱伝導率が128W/(m・K)、2
93K〜673Kの熱膨張係数が4.6×10-6/K、
弾性係数が11.8GPa、耐熱衝撃係数が74kW/
m、熱膨張係数の異方比が1.03の等方性黒鉛を使用
したこと以外は実施例1と同様の条件で直径が8インチ
のSi単結晶の引上を行った。
[Comparative Example 2] Tensile strength is 31.4MP
a, thermal conductivity at 293K is 128 W / (m · K), 2
The coefficient of thermal expansion between 93K and 673K is 4.6 × 10 −6 / K,
The elastic modulus is 11.8 GPa and the thermal shock coefficient is 74 kW /
An Si single crystal having a diameter of 8 inches was pulled under the same conditions as in Example 1 except that isotropic graphite having a m and an anisotropic ratio of thermal expansion coefficient of 1.03 was used.

【0038】〔比較例3〕引っ張り強度が53.9MP
a、293Kでの熱伝導率が70W/(m・K)、29
3K〜673Kの熱膨張係数が5.6×10-6/K、弾
性係数が13.2GPa、耐熱衝撃係数が51kW/
m、熱膨張係数の異方比が1.00の等方性黒鉛を使用
したこと以外は実施例1と同様の条件で直径が8インチ
のSi単結晶の引上を行った。
Comparative Example 3 A tensile strength of 53.9MP
a, the thermal conductivity at 293K is 70 W / (m · K), 29
Thermal expansion coefficient of 5.6 × 10 −6 / K, elastic modulus of 13.2 GPa, thermal shock coefficient of 51 kW /
An Si single crystal having a diameter of 8 inches was pulled under the same conditions as in Example 1 except that isotropic graphite having an anisotropic ratio of m and a coefficient of thermal expansion of 1.00 was used.

【0039】〔比較例4〕引っ張り強度が15.3MP
a、293Kでの熱伝導率が120W/(m・K)、2
93K〜673Kの熱膨張係数が2.0×10-6/K、
弾性係数が10GPa、耐熱衝撃係数が92kW/m、
熱膨張係数の異方比が1.39の型押し黒鉛材を使用し
たこと以外は実施例1と同様の条件で直径が8インチの
Si単結晶の引上を行った。
[Comparative Example 4] Tensile strength of 15.3MP
a, the thermal conductivity at 293K is 120 W / (m · K), 2
The coefficient of thermal expansion of 93K to 673K is 2.0 × 10 −6 / K,
Elastic modulus is 10 GPa, thermal shock coefficient is 92 kW / m,
An 8-inch-diameter Si single crystal was pulled under the same conditions as in Example 1 except that an embossed graphite material having an anisotropic coefficient of thermal expansion of 1.39 was used.

【0040】上記実施例1〜実施例3、比較例1〜比較
例4で使用した黒鉛ルツボの物理特性、Si単結晶で使
用したときのルツボの使用回数、使用による変化、ワレ
時の反り量等を表1にまとめた。
The physical properties of the graphite crucibles used in Examples 1 to 3 and Comparative Examples 1 to 4, the number of times the crucible was used when using a Si single crystal, the change due to use, and the amount of warpage when cracked Are summarized in Table 1.

【0041】[0041]

【表1】 [Table 1]

【0042】以上のことから、293K〜673Kの熱
膨張係数が3.0〜4.0×10-6/Kの範囲を外れる
と、黒鉛ルツボや黒鉛ヒーターの表層部がSiCに転化
されることによって熱膨張差を生じて割れやクラックを
生じ、少ない使用回数でライフエンドとなることがわか
る。また、熱応力以外に、2分割、3分割ルツボが反る
ことによってすき間が生じ、ヒーターの熱及び光が直接
石英ルツボにあたり、温度ムラの原因となり、単結晶S
iの欠陥が生ずることがある。耐熱衝撃係数が80kW
/mよりも小さいと、急速な昇温によって黒鉛ルツボに
割れが発生する場合もある。また、異方比が1.1より
も大きな黒鉛ルツボを使用すると均熱性に劣る。比較例
4で得られたSi単結晶はその後の分析により結晶欠陥
が発生していた。
From the above, when the coefficient of thermal expansion of 293K to 673K is out of the range of 3.0 to 4.0 × 10 -6 / K, the surface layer of the graphite crucible or graphite heater is converted to SiC. As a result, a thermal expansion difference is caused to cause cracks and cracks, and the life end is achieved with a small number of uses. In addition to the thermal stress, a warp occurs in the two- or three-part crucible and a gap is generated, and the heat and light from the heater directly hit the quartz crucible, causing temperature unevenness.
Defect i may occur. 80kW thermal shock coefficient
If it is less than / m, a rapid rise in temperature may cause the graphite crucible to crack. Further, when a graphite crucible having an anisotropic ratio larger than 1.1 is used, heat uniformity is poor. The Si single crystal obtained in Comparative Example 4 had crystal defects as a result of subsequent analysis.

【0043】[0043]

【発明の効果】上述したように、繰り返しの急激な昇降
温だけでなくSiOガスに常時曝され、表面がSiCに
転化するようなSi単結晶引上装置用部品例えば黒鉛ル
ツボや黒鉛ヒーターとして、或いはSiを含むガスに曝
されるCVD炉やCVR炉の炉壁材として、熱膨張係数
と耐熱衝撃係数又は及び熱伝導率を制御した本発明の黒
鉛材料を使用することによって、熱衝撃やSiC化によ
る割れ、クラックを生じることを抑制することができ
る。また、異方比を制御することによって均熱性に優れ
ている。さらに、熱伝導率も優れているので熱効率の面
でも省エネルギー化、操業時間の短縮化の面で非常に効
果的である。
As described above, as a component for a Si single crystal pulling apparatus, such as a graphite crucible or a graphite heater, which is constantly exposed to SiO gas and whose surface is converted to SiC, as well as repeated rapid rise and fall in temperature, Alternatively, by using the graphite material of the present invention with controlled thermal expansion coefficient and thermal shock coefficient or thermal conductivity as a furnace wall material of a CVD furnace or a CVR furnace exposed to a gas containing Si, thermal shock or SiC It is possible to suppress the occurrence of cracks and cracks due to the formation. Further, by controlling the anisotropic ratio, excellent heat uniformity is obtained. Further, since the thermal conductivity is excellent, it is very effective in terms of thermal efficiency in terms of energy saving and shortening of operation time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、Si単結晶引上装置の模式図である。FIG. 1 is a schematic view of a Si single crystal pulling apparatus.

【符号の説明】[Explanation of symbols]

1 シードチャック 2 Si種結晶 3 Si単結晶 4 石英ルツボ 5 溶融多結晶Si 6 断熱材 7 黒鉛ヒーター 8 黒鉛ルツボ 9 ロアーリング 10 排気口 11 インナーシールド 12 アッパーリング 13 チャンバー 14 のぞき窓 15 スピルトレー 16 上部シールド 17 支持棒 DESCRIPTION OF SYMBOLS 1 Seed chuck 2 Si seed crystal 3 Si single crystal 4 Quartz crucible 5 Fused polycrystalline Si 6 Heat insulating material 7 Graphite heater 8 Graphite crucible 9 Lower ring 10 Exhaust port 11 Inner shield 12 Upper ring 13 Chamber 14 Viewing window 15 Spill tray 16 Upper shield 17 Support rod

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 21/208 H01L 21/208 P (72)発明者 米本 善則 香川県三豊郡大野原町中姫2181−2 東洋 炭素株式会社内 (72)発明者 大河 由治 香川県三豊郡大野原町中姫2181−2 東洋 炭素株式会社内 (72)発明者 佐々木 清秀 香川県三豊郡大野原町中姫2181−2 東洋 炭素株式会社内──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01L 21/208 H01L 21/208 P (72) Inventor Yoshinori Yonemoto 2181- Nakahime, Onohara-cho, Mitoyo-gun, Kagawa Prefecture 2 Inside Toyo Tanso Co., Ltd. (72) Inventor Yuji Okawa 211-2-2 Nakahime, Onohara-cho, Mitoyo-gun, Kagawa Prefecture Inside (72) Inventor Kiyohide Sasaki 211-2-2 Nakahime, Onohara-cho, Mitoyo-gun, Kagawa Toyo Tanshi Inside the corporation

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 293K〜673Kの熱膨張係数が3.
0〜4.0×10-6/K、293Kでの熱伝導率が12
0W/(m・K)以上、熱膨張係数の異方比が1.1以
下である黒鉛材料。
1. The thermal expansion coefficient of 293K to 673K is 3.
0 to 4.0 × 10 −6 / K, thermal conductivity at 293K is 12
A graphite material having a thermal expansion coefficient of 0 W / (m · K) or more and an anisotropic ratio of 1.1 or less.
【請求項2】 293K〜673Kの熱膨張係数が3.
0〜4.0×10-6/K、耐熱衝撃係数が80kW/m
以上、熱膨張係数の異方比が1.1以下である黒鉛材
料。
2. The thermal expansion coefficient of 293K to 673K is 3.
0-4.0 × 10 −6 / K, thermal shock coefficient 80 kW / m
As described above, a graphite material having an anisotropic coefficient of thermal expansion of 1.1 or less.
【請求項3】 請求項1又は2に記載の前記黒鉛材料の
表面の一部又は全部にSiC膜を形成してなるSiC膜
形成黒鉛材料。
3. A graphite material having a SiC film formed by forming a SiC film on a part or all of the surface of the graphite material according to claim 1.
【請求項4】 請求項1〜3のいずれかに記載の前記黒
鉛材料を用いたシリコン単結晶引上装置用部品。
4. A component for a silicon single crystal pulling apparatus using the graphite material according to claim 1.
【請求項5】 前記部品が黒鉛ルツボ又は黒鉛ヒーター
である請求項4記載のシリコン単結晶引上装置用部品。
5. The component for a silicon single crystal pulling apparatus according to claim 4, wherein the component is a graphite crucible or a graphite heater.
JP2000107975A 1999-04-06 2000-04-05 Graphite material, graphite material for forming sic film and part for device for pulling silicon single crystal Pending JP2000351670A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000107975A JP2000351670A (en) 1999-04-06 2000-04-05 Graphite material, graphite material for forming sic film and part for device for pulling silicon single crystal

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9934899 1999-04-06
JP11-99348 1999-04-06
JP2000107975A JP2000351670A (en) 1999-04-06 2000-04-05 Graphite material, graphite material for forming sic film and part for device for pulling silicon single crystal

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006109305A Division JP2006225262A (en) 1999-04-06 2006-04-12 Graphite crucible for pulling up silicon single crystal

Publications (1)

Publication Number Publication Date
JP2000351670A true JP2000351670A (en) 2000-12-19

Family

ID=26440492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000107975A Pending JP2000351670A (en) 1999-04-06 2000-04-05 Graphite material, graphite material for forming sic film and part for device for pulling silicon single crystal

Country Status (1)

Country Link
JP (1) JP2000351670A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002029885A (en) * 2000-07-05 2002-01-29 Ibiden Co Ltd Crucible
JP2004521056A (en) * 2000-12-26 2004-07-15 エムイーエムシー・エレクトロニック・マテリアルズ・インコーポレイテッド Method and apparatus for producing single crystal silicon having a low iron concentration substantially free of aggregated intrinsic point defects
US7387835B2 (en) 2003-10-28 2008-06-17 Toyo Tanso Co., Ltd. Silicon carbide-coated carbonaceous material and carbonaceous material to be coated with silicon carbide
EP2061651A1 (en) * 2006-09-12 2009-05-27 GrafTech International Holdings Inc. Low cte highly isotropic graphite
JP2009200048A (en) * 2009-04-06 2009-09-03 Toyo Tanso Kk Graphite member for ion implanting device
JP2010173893A (en) * 2009-01-29 2010-08-12 Shin Etsu Handotai Co Ltd Seed chuck of single crystal pulling device and method for producing single crystal
JP2011051892A (en) * 2010-11-09 2011-03-17 Ibiden Co Ltd Crucible
KR101135040B1 (en) 2008-08-30 2012-04-13 쟈판 스파 쿼츠 가부시키가이샤 Apparatus for the production of silica crucible
JP2014062004A (en) * 2012-09-20 2014-04-10 Ibiden Co Ltd Graphite heater
US9212431B2 (en) 2006-09-29 2015-12-15 Sumco Techxiv Corporation Silicon single crystal pulling device and graphite member used therein
US11453958B2 (en) 2018-04-26 2022-09-27 Showa Denko K.K. Heat-insulating shield member and single crystal manufacturing apparatus having the same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4736163B2 (en) * 2000-07-05 2011-07-27 イビデン株式会社 Crucible
JP2002029885A (en) * 2000-07-05 2002-01-29 Ibiden Co Ltd Crucible
JP2004521056A (en) * 2000-12-26 2004-07-15 エムイーエムシー・エレクトロニック・マテリアルズ・インコーポレイテッド Method and apparatus for producing single crystal silicon having a low iron concentration substantially free of aggregated intrinsic point defects
US7387835B2 (en) 2003-10-28 2008-06-17 Toyo Tanso Co., Ltd. Silicon carbide-coated carbonaceous material and carbonaceous material to be coated with silicon carbide
EP2061651A1 (en) * 2006-09-12 2009-05-27 GrafTech International Holdings Inc. Low cte highly isotropic graphite
JP2010503605A (en) * 2006-09-12 2010-02-04 グラフテック、インターナショナル、ホールディングス、インコーポレーテッド Low CTE isotropic graphite
JP4734674B2 (en) * 2006-09-12 2011-07-27 グラフテック インターナショナル ホールディングス インコーポレーテッド Low CTE isotropic graphite
EP2061651A4 (en) * 2006-09-12 2012-11-28 Graftech Int Holdings Inc Low cte highly isotropic graphite
US9212431B2 (en) 2006-09-29 2015-12-15 Sumco Techxiv Corporation Silicon single crystal pulling device and graphite member used therein
KR101135040B1 (en) 2008-08-30 2012-04-13 쟈판 스파 쿼츠 가부시키가이샤 Apparatus for the production of silica crucible
JP2010173893A (en) * 2009-01-29 2010-08-12 Shin Etsu Handotai Co Ltd Seed chuck of single crystal pulling device and method for producing single crystal
JP2009200048A (en) * 2009-04-06 2009-09-03 Toyo Tanso Kk Graphite member for ion implanting device
JP2011051892A (en) * 2010-11-09 2011-03-17 Ibiden Co Ltd Crucible
JP2014062004A (en) * 2012-09-20 2014-04-10 Ibiden Co Ltd Graphite heater
US11453958B2 (en) 2018-04-26 2022-09-27 Showa Denko K.K. Heat-insulating shield member and single crystal manufacturing apparatus having the same

Similar Documents

Publication Publication Date Title
JP6423908B2 (en) Improvement of high temperature process using helium under controlled pressure
JP2000351670A (en) Graphite material, graphite material for forming sic film and part for device for pulling silicon single crystal
JPH1012563A (en) Member for heat treatment of high-purity cvd-sic semiconductor and its manufacture
WO2012031417A1 (en) Method for controlling defects in czochralski silicon single crystal rod
JPH0218379A (en) Device for pulling up semiconductor single crystal
US4424193A (en) Constituent members of a semiconductor element-manufacturing apparatus and a reaction furnace for making said constituent members
CN208618006U (en) A kind of silicon carbide monocrystal growth device
JP4781232B2 (en) Silicon melting crucible used in the manufacture of polycrystalline silicon blocks
JPS61256993A (en) Graphite crucible and heater for silicon single crystal pulling device
JPH062637B2 (en) Single crystal pulling device
JP2010208939A (en) Graphite crucible for pulling up silicon single crystal
TW202138635A (en) Manufacturing method for silicon carbide ingot and system for manufacturing silicon carbide ingot
JPH107488A (en) High-purity graphite material for single-crystal pulling apparatus, and its production
JP2000302576A (en) Graphite material coated with silicon carbide
JP2002274983A (en) Member for semiconductor manufacturing apparatus coated with sic film and method of manufacturing the same
JP2006225262A (en) Graphite crucible for pulling up silicon single crystal
JP2002255692A (en) Silicon carbide epitaxial substrate and manufacturing method thereof
JP2001257163A (en) Silicon carbide member, plasma-resistant member, and semiconductor manufacturing device
JP2006096578A (en) Method for producing silicon carbide single crystal and ingot of silicon carbide single crystal
JP3410380B2 (en) Single crystal pulling equipment and high purity graphite material
JP2003137694A (en) Seed crystal for growing silicon carbide single crystal, silicon carbide single crystal ingot and method of producing the same
JPH10291896A (en) Inner shield for apparatus for pulling up single crystal
JPH11292685A (en) Apparatus for extending life of graphite susceptor for growing silicon single crystal by coating with silicon nitride and extending method
JPH0751473B2 (en) Carbon crucible for single crystal production
US20020071803A1 (en) Method of producing silicon carbide power

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041112

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060412

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060530

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20060707

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090202