JP2002255692A - Silicon carbide epitaxial substrate and manufacturing method thereof - Google Patents

Silicon carbide epitaxial substrate and manufacturing method thereof

Info

Publication number
JP2002255692A
JP2002255692A JP2001058922A JP2001058922A JP2002255692A JP 2002255692 A JP2002255692 A JP 2002255692A JP 2001058922 A JP2001058922 A JP 2001058922A JP 2001058922 A JP2001058922 A JP 2001058922A JP 2002255692 A JP2002255692 A JP 2002255692A
Authority
JP
Japan
Prior art keywords
silicon carbide
epitaxial substrate
plane
sic
carbide epitaxial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001058922A
Other languages
Japanese (ja)
Inventor
Takashi Aigo
崇 藍郷
Noboru Otani
昇 大谷
Hirokatsu Yashiro
弘克 矢代
Tatsuo Fujimoto
辰雄 藤本
Masakazu Katsuno
正和 勝野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001058922A priority Critical patent/JP2002255692A/en
Publication of JP2002255692A publication Critical patent/JP2002255692A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a SiC epitaxial substrate which has a mirror surface, is few in the ruggedness of surface and is excellent in quality and a manufacturing method thereof. SOLUTION: A SiC wafer having face (11-20) which is free of micro pipe defect on the surface is entered into a growth furnace and the growth furnace is evacuated and, thereafter, is made atmospheric pressure. While flowing hydrogen gas, a receptor is heated up to 1580 deg.C by means of induction heating, hydrogen chloride gas is flown for 10 min. at the same temperature, thereafter, the hydrogen chloride gas is stopped, while flowing hydrogen gas as it is, the temperature is lowered up to 800 deg.C, the hydrogen chloride gas in the growth furnace is purged, thereafter, the temperature is elevated to 1500 deg.C again and the epitaxial growth is started. The surface of SiC epitaxial substrate which is subjected to such a pretreating method is made free of the outstanding ruggedness and the Ra value (average value of surface ruggedness) is 40 nm based on the measurement of surface roughness meter.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、炭化珪素(SiC)
単結晶上に成長され、光デバイスあるいは電子デバイス
用として使用される炭化珪素エピタキシャル基板および
その製造方法に関するものである。
TECHNICAL FIELD The present invention relates to a silicon carbide (SiC)
The present invention relates to a silicon carbide epitaxial substrate grown on a single crystal and used for an optical device or an electronic device, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】炭化珪素(SiC)は、耐熱性及び機械的
強度に優れ、物理的、化学的に安定なことから、耐環境
性半導体材料として注目されている。また近年、高周波
高耐圧電子デバイス等の基板ウェハとしてSiC単結晶ウ
ェハの需要が高まっている。
2. Description of the Related Art Silicon carbide (SiC) has attracted attention as an environment-resistant semiconductor material because of its excellent heat resistance and mechanical strength and physical and chemical stability. In recent years, demand for SiC single crystal wafers as substrate wafers for high-frequency high-voltage electronic devices and the like has been increasing.

【0003】SiC単結晶ウェハを用いて電力デバイス、
高周波デバイスなどを作製する場合には、通常ウェハ上
にSiC薄膜をエピタキシャル成長する必要があり、熱C
VD法(熱化学蒸着法)と呼ばれる方法を用いてSiCウ
ェハ上に堆積させるのが一般的である。この際、高品質
なエピタキシャル薄膜を得るには、薄膜を成長させるSi
Cウェハの結晶性が重要なパラメータとなっている。SiC
ウェハの面方位としては、通常(0001)面あるいは(000-
1)面が用いられるが、これらの面にはマイクロパイプと
呼ばれる貫通転位が50〜100個/cm2程度存在し、エピ
タキシャル成長においてもそのまま引き継がれる。マイ
クロパイプの上に作成されたデバイスは特性が劣化する
ことが知られており(例えば、T. Kimoto et al., IEEE
Tran. Electron. Devices 46(3) pp.471-477, 199
9)、マイクロパイプの低減が急務となっている。一
方、Takahashiらは、<1-100>方向あるいは<11-20>方向
に成長したSiC単結晶にはマイクロパイプが存在しない
ことを示しており(J. Takahashi et al., J. Cryst. Gr
owth 135, 1994)、さらにYanoらは、(11-20)面を持つウ
ェハに成長したエピタキシャル薄膜を用いてMOSデバイ
スを試作し、4H−SiCの場合従来の(0001)面を用いた場
合に比べ電子移動度が約20倍になることを示す(H. Yan
o et. al, Mater. Sci. Forum 338-342, 2000)など、
(11-20)面を持つウェハ上に成長したエピタキシャル薄
膜に対する注目が高まっている。
Power devices using SiC single crystal wafers,
When fabricating a high-frequency device, it is usually necessary to epitaxially grow a SiC thin film on a wafer.
It is common to deposit on a SiC wafer using a method called VD method (thermal chemical vapor deposition method). At this time, to obtain a high quality epitaxial thin film, the Si
The crystallinity of the C wafer is an important parameter. SiC
Normally, the (0001) plane or (000-
1) Although planes are used, threading dislocations called micropipes are present on these planes at about 50 to 100 / cm 2 , and are inherited as they are during epitaxial growth. Devices fabricated on micropipes are known to have poor performance (eg, T. Kimoto et al., IEEE
Tran. Electron. Devices 46 (3) pp.471-477, 199
9) There is an urgent need to reduce micropipes. On the other hand, Takahashi et al. Have shown that micropipes do not exist in SiC single crystals grown in <1-100> or <11-20> directions (J. Takahashi et al., J. Cryst. Gr.
owth 135, 1994), and Yano et al. prototyped a MOS device using an epitaxial thin film grown on a wafer having a (11-20) plane, and in the case of 4H-SiC, a conventional (0001) plane was used. Shows that the electron mobility is about 20 times higher (H. Yan
o et. al, Mater. Sci. Forum 338-342, 2000)
Attention has been paid to epitaxial thin films grown on wafers having a (11-20) plane.

【0004】しかしながら、上述のYanoらの結果は、c
軸方向に成長したSiC単結晶をc軸と平行、いわゆる縦
切りして得た(11-20)面のウェハを用いた結果である。
この場合ウェハの大口径化を考えると、その口径と同じ
長さ以上c軸方向へSiCを成長させ、かつ太くする必要
があり、技術的に困難である。そこで、(11-20)面が出
ているウェハを種結晶として、<11-20>方向へ口径拡大
成長をして単結晶を育成し、これからウェハを作成する
方が現実的であり、したがって、エピタキシャル成長も
そのようなウェハ上で行うことが必要である。しかし、
この面にエピタキシャル成長を行う場合、従来の(0001)
面あるいは(000-1)面とは面方位が異なるため、これま
で既に得られている最適成長条件が適用できず、また成
長実績そのものも少ないため、ウェハ全面に渡って鏡面
を得ることは困難で、表面の凸凹も多かった。そのた
め、マイクロパイプは存在せず、良好なMOS特性も得ら
れる(11-20)面上のエピタキシャル成長膜であるが、表
面のモホロジーが劣っていることが問題であった。
However, the result of Yano et al.
This is a result obtained by using a wafer of (11-20) plane obtained by so-called vertical cutting of a SiC single crystal grown in the axial direction in parallel with the c-axis.
In this case, in consideration of increasing the diameter of the wafer, it is necessary to grow SiC in the c-axis direction at least as long as the diameter and increase the thickness, which is technically difficult. Therefore, it is more realistic to grow a single crystal by growing the diameter in the <11-20> direction as a seed crystal using a wafer having a (11-20) plane as a seed crystal, and to create a wafer from this, It is also necessary that epitaxial growth be performed on such a wafer. But,
When epitaxial growth is performed on this surface, the conventional (0001)
Since the plane orientation is different from the plane or (000-1) plane, it is difficult to obtain the mirror surface over the entire wafer because the optimal growth conditions already obtained cannot be applied and the growth performance itself is small. There were many irregularities on the surface. For this reason, there is no micropipe and an epitaxially grown film on the (11-20) plane where good MOS characteristics can be obtained, but the morphology of the surface is inferior.

【0005】[0005]

【発明が解決しようとする課題】上記したように、(11-
20)面を持つSiC単結晶ウェハ上にエピタキシャル薄膜を
成長させたエピタキシャル基板では、鏡面で表面の凸凹
が少ない良質な基板を得ることは困難であった。
As described above, (11-
It has been difficult to obtain a high quality substrate with a mirror surface and few irregularities on the epitaxial substrate on which an epitaxial thin film is grown on a SiC single crystal wafer having a 20) plane.

【0006】そこで、本発明は、上記問題点を解決した
SiCエピタキシャル基板およびその製造方法を提供する
ことを目的とする。
Therefore, the present invention has solved the above problems.
An object is to provide a SiC epitaxial substrate and a method for manufacturing the same.

【0007】[0007]

【課題を解決するための手段】本発明は、エピタキシャ
ル成長前のSiCウェハの前処理条件を変更することによ
り、上記課題を解決できることを見い出し、完成したも
のである。
The present invention has been completed by finding that the above-mentioned problems can be solved by changing the pretreatment conditions of the SiC wafer before epitaxial growth.

【0008】即ち、本発明は、(1) 表面にマイクロ
パイプ欠陥が存在しない炭化珪素単結晶ウェハ上に炭化
珪素薄膜をエピタキシャル成長してなる炭化珪素エピタ
キシャル基板であって、該炭化珪素エピタキシャル基板
の表面粗さRa値が50nm以下であることを特徴とする炭
化珪素エピタキシャル基板、(2) 前記炭化珪素単結
晶ウェハの面方位が(11-20)面または(1-100)面である
(1)記載の炭化珪素エピタキシャル基板、(3) 炭
化珪素単結晶ウェハを1550℃以上の温度で前処理をした
後に、該ウェハ上に炭化珪素薄膜をエピタキシャル成長
することを特徴とする炭化珪素エピタキシャル基板の製
造方法、(4) 前記前処理を水素ガス流通雰囲気中で
行う(3)記載の炭化珪素エピタキシャル基板の製造方
法、(5) 前記前処理を塩化水素ガス流通雰囲気中で
行う(3)記載の炭化珪素エピタキシャル基板の製造方
法、(6) 前記前処理を水素と塩化水素の混合ガス流
通雰囲気中で行う(3)記載の炭化珪素エピタキシャル
基板の製造方法、である。
That is, the present invention provides (1) a silicon carbide epitaxial substrate obtained by epitaxially growing a silicon carbide thin film on a silicon carbide single crystal wafer having no micropipe defects on its surface, wherein the surface of the silicon carbide epitaxial substrate is A silicon carbide epitaxial substrate having a roughness Ra value of 50 nm or less, (2) a plane orientation of the silicon carbide single crystal wafer is a (11-20) plane or a (1-100) plane (1) (3) A method for manufacturing a silicon carbide epitaxial substrate, comprising: performing a pretreatment on a silicon carbide single crystal wafer at a temperature of 1550 ° C. or higher, and then epitaxially growing a silicon carbide thin film on the wafer. (4) The method for producing a silicon carbide epitaxial substrate according to (3), wherein the pretreatment is performed in a hydrogen gas flowing atmosphere. (5) Hydrogen chloride is used for the pretreatment. (6) The method for producing a silicon carbide epitaxial substrate according to (3), wherein the pretreatment is performed in a mixed gas flow of hydrogen and hydrogen chloride. ,.

【0009】[0009]

【発明の実施の形態】本発明では、表面にマイクロパイ
プ欠陥が存在しないSiC単結晶ウェハ上にエピタキシャ
ル薄膜を成長する際に前処理として行う熱処理におい
て、その温度を1550℃以上にする。温度上限としてはSi
Cが昇華しない温度、例えば2000℃とする。また、その
熱処理時に、水素ガス、塩化水素ガス、あるいはそれら
の混合ガスを流す。これらのガスを流す理由は、SiCと
の反応で水素化合物あるいは塩素化合物を形成して、Si
C表面変性層を除去することで、エピタキシャル成長前
に原子スケールで清浄な表面を得るためである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, the temperature is set to 1550 ° C. or higher in a heat treatment performed as a pretreatment when an epitaxial thin film is grown on a SiC single crystal wafer having no micropipe defects on the surface. Si as the upper temperature limit
The temperature at which C does not sublime, for example, 2000 ° C. During the heat treatment, a hydrogen gas, a hydrogen chloride gas, or a mixed gas thereof is supplied. The reason for flowing these gases is that they react with SiC to form hydrogen compounds or chlorine compounds,
By removing the C surface modified layer, a clean surface can be obtained on an atomic scale before epitaxial growth.

【0010】表面にマイクロパイプ欠陥が存在しないSi
C単結晶ウェハとしては、(11-20)面または(1-100)面を
持つSiC単結晶ウェハが好適に用いることができる。
[0010] Si with no micropipe defects on the surface
As the C single crystal wafer, a SiC single crystal wafer having a (11-20) plane or a (1-100) plane can be suitably used.

【0011】エピタキシャル成長としては、このように
前処理をした後、1500℃程度の成長温度で、例えば、シ
ランガス(SiH4)とプロパンガス(C38)を水素
ガスとともに流して、SiC薄膜のエピタキシャル成長を
行う。成長膜厚としては2〜5μm程度が一般的である。
In the epitaxial growth, after the pre-treatment as described above, for example, a silane gas (SiH 4 ) and a propane gas (C 3 H 8 ) are flowed together with a hydrogen gas at a growth temperature of about 1500 ° C. to form an SiC thin film. Perform epitaxial growth. The growth film thickness is generally about 2 to 5 μm.

【0012】従来のマイクロパイプ欠陥が存在する(000
1)面あるいは(000-1)面上への成長においては、この前
処理温度が1400〜1500℃である。そして、(11-20)面に
ついて、従来の温度で前処理をした後エピタキシャル成
長を行うと、表面モホロジーが悪く、特に小さな丸い粒
状の突起が多数存在していた。発明者らは、この突起形
状が3C−SiCに良く似ていることに着目して、検討を加
えた結果、基板表面の傷、ひずみ、汚れ等によってエピ
タキシャル成長が妨げられる際に3C−SiCが発生しやす
いことから、(11-20)面においては、前処理温度が1400
〜1500℃ではSiC表面変性層の除去が不十分で、表面が
十分清浄になっていないと判断した。
Conventional micropipe defects exist (000
For the growth on the 1) plane or the (000-1) plane, the pretreatment temperature is 1400 to 1500 ° C. When the (11-20) plane was subjected to pre-treatment at a conventional temperature and then subjected to epitaxial growth, the surface morphology was poor, and especially, a large number of small round projections were present. The inventors focused on the fact that the shape of the protrusions was very similar to 3C-SiC, and as a result of study, found that 3C-SiC was generated when epitaxial growth was hindered by scratches, strain, dirt, etc. on the substrate surface. (11-20), the pretreatment temperature is 1400
At ℃ 1500 ° C., the removal of the SiC surface-modified layer was insufficient and it was judged that the surface was not sufficiently clean.

【0013】そして、前述のような1550℃以上の前処理
温度を適用したところ、表面粗さRaが50nm以下の表面
モホロジーが良好な炭化珪素エピタキシャル基板を得る
ことができた。表面モホロジーの改善度は触針型粗さ計
を用い、表面粗さRaの値で評価した。一方、Raの平
均が50nm超のエピタキシャル膜では、その上にデバイス
を形成した際、表面の凹凸のため電界集中が生じやすく
素子の耐圧が低下した。
When a pretreatment temperature of 1550 ° C. or more was applied as described above, a silicon carbide epitaxial substrate having a surface roughness Ra of 50 nm or less and a good surface morphology was obtained. The degree of improvement of the surface morphology was evaluated by the value of the surface roughness Ra using a stylus type roughness meter. On the other hand, in an epitaxial film having an average Ra of more than 50 nm, when a device was formed thereon, electric field concentration was likely to occur due to surface irregularities, and the withstand voltage of the element was lowered.

【0014】[0014]

【実施例】(実施例1)水素ガスと塩化水素ガスの混合
ガスで前処理を行い、その後エピタキシャル成長を行う
際の成長手順を説明する。まず、グラファイトサセプタ
に乗せた表面にマイクロパイプ欠陥が存在しない(11-2
0)面を持つSiCウェハを成長炉内に入れ、真空排気を行
う。その後、排気を止めて水素ガスを導入し、大気圧に
する。水素ガスを流したまま、誘導加熱によりサセプタ
を加熱していくが、その温度プロファイルとガス導入タ
イミングを図1に示す。図1において、横軸は時間、縦
軸は温度である。本実施例においては、水素ガス中で15
80℃に達した後、その温度で塩化水素ガスを10分間流し
ている。また、水素ガスおよび塩化水素ガスの流量の例
としては、それぞれ3L/min、10mL/minである。10分経過
後、塩化水素ガスを止め、水素ガスは流したままで、80
0℃まで降温し、成長炉内の塩化水素ガスをパージした
後、再び1500℃に昇温して、エピタキシャル成長を開始
する。エピタキシャル成長には、例えばシランガス(S
iH4)とプロパンガス(C38)を水素ガスとともに
流す。このような前処理方法を行って、SiC単結晶ウェ
ハ上に2μm成長した(11-20)面を持つエピタキシャル薄
膜のノマルスキー光学顕微鏡による表面写真を図2に示
す。表面に目立った凹凸はなく、平坦で良好な表面モホ
ロジーであることが分かる。表面粗さ計で測定したとこ
ろ、Ra値(表面凸凹の平均値)が40nmであった。本実
施例においては、(11-20)面を持つSiC単結晶ウェハ上の
エピタキシャル薄膜について述べたが、(1-100)面につ
いても同様の効果があることを確認した。
EXAMPLES (Example 1) A growth procedure for performing a pretreatment with a mixed gas of hydrogen gas and hydrogen chloride gas and thereafter performing epitaxial growth will be described. First, there is no micropipe defect on the surface on the graphite susceptor (11-2
The SiC wafer having the 0) surface is placed in a growth furnace and evacuated. Thereafter, the exhaust is stopped and hydrogen gas is introduced to bring the pressure to atmospheric pressure. The susceptor is heated by induction heating with the hydrogen gas flowing, and the temperature profile and gas introduction timing are shown in FIG. In FIG. 1, the horizontal axis is time, and the vertical axis is temperature. In this embodiment, 15
After reaching 80 ° C., hydrogen chloride gas is flowed at that temperature for 10 minutes. Examples of the flow rates of the hydrogen gas and the hydrogen chloride gas are 3 L / min and 10 mL / min, respectively. After 10 minutes, turn off the hydrogen chloride gas.
After the temperature is lowered to 0 ° C. and the hydrogen chloride gas in the growth furnace is purged, the temperature is raised to 1500 ° C. again to start epitaxial growth. For epitaxial growth, for example, silane gas (S
iH 4 ) and propane gas (C 3 H 8 ) are flowed together with hydrogen gas. FIG. 2 shows a photograph of the surface of an epitaxial thin film having a (11-20) plane grown on a SiC single crystal wafer by a Nomarski optical microscope by performing such a pretreatment method. It can be seen that there is no noticeable unevenness on the surface, and the surface is flat and has good surface morphology. When measured with a surface roughness meter, the Ra value (average value of the surface irregularities) was 40 nm. In this example, the epitaxial thin film on the SiC single crystal wafer having the (11-20) plane was described, but it was confirmed that the (1-100) plane had the same effect.

【0015】(実施例2)水素ガスのみで前処理を行
い、その後エピタキシャル成長を行う際の成長手順を説
明する。温度プロファイルは図1と同じであるが、1580
℃に達した後、塩化水素ガスは流さず、水素ガスのみで
熱処理を行う。熱処理後の手順は実施例1と同様であ
る。成長後のRa値は45nmであった。本実施例において
は、(11-20)面を持つSiC単結晶ウェハ上のエピタキシャ
ル薄膜について述べたが、(1-100)面についても同様の
効果があることを確認した。
Embodiment 2 A description will be given of a growth procedure when pre-processing is performed only with hydrogen gas and thereafter epitaxial growth is performed. The temperature profile is the same as in FIG.
After the temperature reaches ° C, heat treatment is performed only with hydrogen gas without flowing hydrogen chloride gas. The procedure after the heat treatment is the same as in the first embodiment. The Ra value after growth was 45 nm. In the present example, the epitaxial thin film on the SiC single crystal wafer having the (11-20) plane was described, but it was confirmed that the same effect was obtained also on the (1-100) plane.

【0016】(実施例3)塩化水素ガスのみで前処理を
行い、その後エピタキシャル成長を行う際の成長手順を
説明する。温度プロファイルは図1と同じであるが、15
80℃に達した後、水素ガスの導入を止め、塩化水素ガス
のみを流す。10分の熱処理後、塩化水素ガスを止め、再
び水素ガスを導入する。その後の手順は実施例1と同様
である。成長後のRa値は40nmであった。本実施例にお
いては、(11-20)面を持つSiC単結晶ウェハ上のエピタキ
シャル薄膜についてであるが、(1-100)面についても同
様の効果があることを確認した。
(Embodiment 3) A description will be given of a growth procedure in which pretreatment is performed only with hydrogen chloride gas and thereafter epitaxial growth is performed. The temperature profile is the same as in FIG.
After the temperature reaches 80 ° C, the introduction of hydrogen gas is stopped, and only hydrogen chloride gas is supplied. After the heat treatment for 10 minutes, the hydrogen chloride gas is stopped, and hydrogen gas is introduced again. The subsequent procedure is the same as in the first embodiment. The Ra value after growth was 40 nm. In this example, the epitaxial thin film on the SiC single crystal wafer having the (11-20) plane was used. However, it was confirmed that the same effect was obtained for the (1-100) plane.

【0017】(比較例)比較例として、従来の温度プロ
ファイルとガス導入タイミングを図3に示す。手順やガ
ス流量は実施例1と同じであるが、熱処理時の温度が15
00℃になっている。この前処理方法を施した(11-20)面
を持つSiC単結晶基板上のエピタキシャル薄膜のノマル
スキー光学顕微鏡による表面写真を図4に示す。<1-100
>方向への筋状のモホロジーや、点状あるいは小さな丸
い粒状の凹凸が多く見られ、表面モホロジーが劣化して
いることが分かり、Ra値は100nmであった。
Comparative Example FIG. 3 shows a conventional temperature profile and gas introduction timing as a comparative example. The procedure and gas flow rate were the same as in Example 1, except that the temperature during heat treatment was 15
It is 00 ° C. FIG. 4 shows a photograph of the surface of the epitaxial thin film on the SiC single crystal substrate having the (11-20) plane, which has been subjected to this pretreatment method, by a Nomarski optical microscope. <1-100
A large number of line-shaped morphologies in the direction and irregularities in the form of dots or small round particles were observed, indicating that the surface morphology was deteriorated. The Ra value was 100 nm.

【0018】[0018]

【発明の効果】以上説明したように、この発明によれ
ば、表面にマイクロパイプ欠陥が存在しないSiC単結晶
ウェハ上に表面モホロジーの優れたエピタキシャル薄膜
を成長することが可能である。特に、(11-20)面および
(1-100)面を持つSiC単結晶ウェハを用いれば、容易に表
面モホロジーの優れたエピタキシャル薄膜が得られる。
このような高品質な炭化珪素エピタキシャル基板を用い
れば、電気的特性の優れた電子デバイス等を歩留り良く
作製することができる。
As described above, according to the present invention, it is possible to grow an epitaxial thin film having excellent surface morphology on a SiC single crystal wafer having no micropipe defects on the surface. In particular, the (11-20) plane and
When a SiC single crystal wafer having a (1-100) plane is used, an epitaxial thin film having excellent surface morphology can be easily obtained.
By using such a high-quality silicon carbide epitaxial substrate, an electronic device or the like having excellent electric characteristics can be manufactured with a high yield.

【0019】さらに、<1-100>方向に成長した結晶の(1-
100)面や<11-20>方向に成長した結晶の(11-20)面を基板
として用いるため、c軸方向に成長した結晶を縦切りし
て得た面を基板として用いた場合に比べ、大口径化がし
やすく、コスト的にも有利である。
Furthermore, the crystal grown in the <1-100> direction has a (1--100)
Since the (11-20) plane of the crystal grown in the <11-20> direction or the (100) plane is used as the substrate, the plane obtained by vertically cutting the crystal grown in the c-axis direction is used as the substrate. It is easy to increase the diameter and is advantageous in cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明での成長前熱処理の温度プロファイル
とガス導入タイミングを示す図
FIG. 1 is a diagram showing a temperature profile and a gas introduction timing of a pre-growth heat treatment in the present invention.

【図2】 本発明による前処理方法を施した(11-20)面
を持つSiC単結晶ウェハ上のエピタキシャル薄膜のノマ
ルスキー光学顕微鏡による表面写真
FIG. 2 is a Nomarski optical microscope surface photograph of an epitaxial thin film on a (11-20) plane SiC single crystal wafer subjected to a pretreatment method according to the present invention.

【図3】 従来方法による成長前熱処理の温度プロファ
イルとガス導入タイミングを示す図
FIG. 3 is a diagram showing a temperature profile and a gas introduction timing of a pre-growth heat treatment according to a conventional method.

【図4】 従来方法による前処理方法を施した(11-20)
面を持つSiC単結晶ウェハ上のエピタキシャル薄膜のノ
マルスキー光学顕微鏡による表面写真
FIG. 4 shows a pretreatment method performed by a conventional method (11-20)
Surface photo of epitaxial thin film on SiC single crystal wafer with surface by Nomarski optical microscope

───────────────────────────────────────────────────── フロントページの続き (72)発明者 矢代 弘克 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 (72)発明者 藤本 辰雄 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 (72)発明者 勝野 正和 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 Fターム(参考) 4G077 AA03 BD01 BE08 ED04 ED05 ED06 EE02 5F045 AA03 AB06 AC01 AC07 AD18 AF02 BB12 HA03  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hirokatsu Yashiro 20-1 Shintomi, Futtsu-shi, Chiba Nippon Steel Corporation Technology Development Division (72) Inventor Tatsuo Fujimoto 20-1 Shintomi, Futtsu-shi, Chiba New Japan (72) Inventor Masakazu Katsuno 20-1 Shintomi, Futtsu City, Chiba Prefecture Nippon Steel Corporation Technology Development Division F-term (reference) AC07 AD18 AF02 BB12 HA03

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 表面にマイクロパイプ欠陥が存在しない
炭化珪素単結晶ウェハ上に炭化珪素薄膜をエピタキシャ
ル成長してなる炭化珪素エピタキシャル基板であって、
該炭化珪素エピタキシャル基板の表面粗さRa値が50nm
以下であることを特徴とする炭化珪素エピタキシャル基
板。
1. A silicon carbide epitaxial substrate formed by epitaxially growing a silicon carbide thin film on a silicon carbide single crystal wafer having no micropipe defects on its surface,
The silicon carbide epitaxial substrate has a surface roughness Ra value of 50 nm.
A silicon carbide epitaxial substrate characterized by the following.
【請求項2】 前記炭化珪素単結晶ウェハの面方位が(1
1-20)面または(1-100)面である請求項1記載の炭化珪素
エピタキシャル基板。
2. The method according to claim 1, wherein the plane orientation of the silicon carbide single crystal wafer is (1).
The silicon carbide epitaxial substrate according to claim 1, which is a (1-20) plane or a (1-100) plane.
【請求項3】 炭化珪素単結晶ウェハを1550℃以上の温
度で前処理をした後に、該ウェハ上に炭化珪素薄膜をエ
ピタキシャル成長することを特徴とする炭化珪素エピタ
キシャル基板の製造方法。
3. A method for manufacturing a silicon carbide epitaxial substrate, comprising: performing a pretreatment on a silicon carbide single crystal wafer at a temperature of 1550 ° C. or higher, and thereafter epitaxially growing a silicon carbide thin film on the wafer.
【請求項4】 前記前処理を水素ガス流通雰囲気中で行
う請求項3記載の炭化珪素エピタキシャル基板の製造方
法。
4. The method of manufacturing a silicon carbide epitaxial substrate according to claim 3, wherein said pretreatment is performed in a hydrogen gas flowing atmosphere.
【請求項5】 前記前処理を塩化水素ガス流通雰囲気中
で行う請求項3記載の炭化珪素エピタキシャル基板の製
造方法。
5. The method of manufacturing a silicon carbide epitaxial substrate according to claim 3, wherein said pretreatment is performed in a hydrogen chloride gas flowing atmosphere.
【請求項6】 前記前処理を水素と塩化水素の混合ガス
流通雰囲気中で行う請求項3記載の炭化珪素エピタキシ
ャル基板の製造方法。
6. The method of manufacturing a silicon carbide epitaxial substrate according to claim 3, wherein said pretreatment is performed in a mixed gas atmosphere of hydrogen and hydrogen chloride.
JP2001058922A 2001-03-02 2001-03-02 Silicon carbide epitaxial substrate and manufacturing method thereof Pending JP2002255692A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001058922A JP2002255692A (en) 2001-03-02 2001-03-02 Silicon carbide epitaxial substrate and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001058922A JP2002255692A (en) 2001-03-02 2001-03-02 Silicon carbide epitaxial substrate and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2002255692A true JP2002255692A (en) 2002-09-11

Family

ID=18918570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001058922A Pending JP2002255692A (en) 2001-03-02 2001-03-02 Silicon carbide epitaxial substrate and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2002255692A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005093519A (en) * 2003-09-12 2005-04-07 Shikusuon:Kk Silicon carbide substrate and method of manufacturing the same
JP2006351744A (en) * 2005-06-15 2006-12-28 Fuji Electric Holdings Co Ltd Manufacturing method of silicon carbide semiconductor device
WO2011142074A1 (en) * 2010-05-10 2011-11-17 三菱電機株式会社 Silicon carbide epitaxial wafer and process for production thereof, silicon carbide bulk substrate for epitaxial growth purposes and process for production thereof, and heat treatment apparatus
JP2014003256A (en) * 2012-06-21 2014-01-09 Mitsubishi Electric Corp METHOD FOR MANUFACTURING SiC EPITAXIAL SUBSTRATE
CN103715069A (en) * 2013-12-02 2014-04-09 中国电子科技集团公司第五十五研究所 Method for reducing defects in silicon carbide epitaxial film
CN104428872A (en) * 2012-05-30 2015-03-18 Lg伊诺特有限公司 Silicon carbide epiwafer and method for manufacturing same
CN107112201A (en) * 2015-02-09 2017-08-29 住友电气工业株式会社 InP substrate, the method for checking InP substrate and the method for manufacturing InP substrate
DE112011105735B4 (en) * 2011-10-14 2020-11-26 Memc Electronic Materials, Inc. Method for identifying crystal-related defects

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63117425A (en) * 1986-11-05 1988-05-21 Sanyo Electric Co Ltd Manufacture of semiconductor device
JPH06188163A (en) * 1992-12-21 1994-07-08 Toyota Central Res & Dev Lab Inc Sic single-crystal substrate for manufacturing semiconductor device and its manufacture
JPH09221397A (en) * 1996-02-14 1997-08-26 Denso Corp Production of silicon carbide single crystal
JP2000319099A (en) * 1999-05-07 2000-11-21 Hiroyuki Matsunami SiC WAFER, SiC SEMICONDUCTOR DEVICE AND PRODUCTION OF SiC WAFER

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63117425A (en) * 1986-11-05 1988-05-21 Sanyo Electric Co Ltd Manufacture of semiconductor device
JPH06188163A (en) * 1992-12-21 1994-07-08 Toyota Central Res & Dev Lab Inc Sic single-crystal substrate for manufacturing semiconductor device and its manufacture
JPH09221397A (en) * 1996-02-14 1997-08-26 Denso Corp Production of silicon carbide single crystal
JP2000319099A (en) * 1999-05-07 2000-11-21 Hiroyuki Matsunami SiC WAFER, SiC SEMICONDUCTOR DEVICE AND PRODUCTION OF SiC WAFER

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005093519A (en) * 2003-09-12 2005-04-07 Shikusuon:Kk Silicon carbide substrate and method of manufacturing the same
JP4661039B2 (en) * 2003-09-12 2011-03-30 住友電気工業株式会社 Method for manufacturing silicon carbide substrate
JP2006351744A (en) * 2005-06-15 2006-12-28 Fuji Electric Holdings Co Ltd Manufacturing method of silicon carbide semiconductor device
US8679952B2 (en) 2010-05-10 2014-03-25 Mitsubishi Electric Corporation Method of manufacturing silicon carbide epitaxial wafer
CN102859654A (en) * 2010-05-10 2013-01-02 三菱电机株式会社 Silicon carbide epitaxial wafer and process for production thereof, silicon carbide bulk substrate for epitaxial growth purposes and process for production thereof, and heat treatment apparatus
WO2011142074A1 (en) * 2010-05-10 2011-11-17 三菱電機株式会社 Silicon carbide epitaxial wafer and process for production thereof, silicon carbide bulk substrate for epitaxial growth purposes and process for production thereof, and heat treatment apparatus
JP5598542B2 (en) * 2010-05-10 2014-10-01 三菱電機株式会社 Silicon carbide epitaxial wafer and manufacturing method thereof, silicon carbide bulk substrate for epitaxial growth and manufacturing method thereof
DE112011105735B4 (en) * 2011-10-14 2020-11-26 Memc Electronic Materials, Inc. Method for identifying crystal-related defects
CN104428872A (en) * 2012-05-30 2015-03-18 Lg伊诺特有限公司 Silicon carbide epiwafer and method for manufacturing same
JP2014003256A (en) * 2012-06-21 2014-01-09 Mitsubishi Electric Corp METHOD FOR MANUFACTURING SiC EPITAXIAL SUBSTRATE
CN103715069A (en) * 2013-12-02 2014-04-09 中国电子科技集团公司第五十五研究所 Method for reducing defects in silicon carbide epitaxial film
CN107112201A (en) * 2015-02-09 2017-08-29 住友电气工业株式会社 InP substrate, the method for checking InP substrate and the method for manufacturing InP substrate
CN107112201B (en) * 2015-02-09 2020-07-28 住友电气工业株式会社 Indium phosphide substrate, method for inspecting indium phosphide substrate, and method for manufacturing indium phosphide substrate

Similar Documents

Publication Publication Date Title
US20080020212A1 (en) Seed crystal consisting of silicon carbide carbide single crystal and method for producing ingot using the same
CN102337587A (en) Method of growing SiC single crystal and SiC single crystal grown by same
JP2021070623A (en) Silicon carbide wafer, method of manufacturing silicon carbide ingot, and method of manufacturing silicon carbide wafer
JP2007284298A (en) Epitaxial silicon carbide single crystal substrate and method for producing the same
JP7161784B2 (en) Silicon carbide ingot, wafer and manufacturing method thereof
JP2021138597A (en) Wafer, epitaxial wafer and method for manufacturing the same
JP4664464B2 (en) Silicon carbide single crystal wafer with small mosaic
JP2002255692A (en) Silicon carbide epitaxial substrate and manufacturing method thereof
JPS5838399B2 (en) Method for manufacturing silicon carbide crystal layer
JP5614387B2 (en) Silicon carbide single crystal manufacturing method and silicon carbide single crystal ingot
TW581831B (en) SiC single crystal and growth method thereof
JP3508519B2 (en) Epitaxial growth apparatus and epitaxial growth method
JP4374986B2 (en) Method for manufacturing silicon carbide substrate
JP4160770B2 (en) 4H type silicon carbide single crystal epitaxial substrate
JP4157326B2 (en) 4H type silicon carbide single crystal ingot and wafer
JP2000034199A (en) Production of silicon carbide single crystal
JP4937967B2 (en) Method for manufacturing silicon carbide epitaxial wafer
JP2002293694A (en) Silicon carbide single crystal ingot and method of manufacturing for the same
JP2007261900A (en) Method for manufacturing single crystal silicon carbide substrate
JP4160769B2 (en) Silicon carbide single crystal ingot and wafer
WO2019044841A1 (en) Silicon carbide epitaxial substrate
JPH0443878B2 (en)
JP2011016721A (en) Method for producing small silicon carbide single crystal wafer having mosaic property
JPH0443879B2 (en)
JPS609658B2 (en) Method for manufacturing silicon carbide substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100730

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101207