JP2007284298A - Epitaxial silicon carbide single crystal substrate and method for producing the same - Google Patents

Epitaxial silicon carbide single crystal substrate and method for producing the same Download PDF

Info

Publication number
JP2007284298A
JP2007284298A JP2006114197A JP2006114197A JP2007284298A JP 2007284298 A JP2007284298 A JP 2007284298A JP 2006114197 A JP2006114197 A JP 2006114197A JP 2006114197 A JP2006114197 A JP 2006114197A JP 2007284298 A JP2007284298 A JP 2007284298A
Authority
JP
Japan
Prior art keywords
silicon carbide
single crystal
carbide single
crystal substrate
epitaxial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006114197A
Other languages
Japanese (ja)
Other versions
JP4954593B2 (en
Inventor
Takashi Aigo
崇 藍郷
Mitsuru Sawamura
充 澤村
Noboru Otani
昇 大谷
Taizo Hoshino
泰三 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006114197A priority Critical patent/JP4954593B2/en
Publication of JP2007284298A publication Critical patent/JP2007284298A/en
Application granted granted Critical
Publication of JP4954593B2 publication Critical patent/JP4954593B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an epitaxial silicon carbide single crystal substrate having a high quality silicon carbide single crystal thin film with few defects on a silicon carbide single crystal substrate, and to provide a method for producing the same. <P>SOLUTION: The epitaxial silicon carbide single crystal substrate is produced by growing a silicon carbide single crystal thin film 2 for suppressing development of epitaxial defects on a silicon carbide single crystal substrate 1, followed by growing a silicon carbide single crystal thin film 3 which is a layer in which a device is formed on the silicon carbide single crystal thin film 2. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、エピタキシャル炭化珪素(SiC)単結晶基板及びその製造方法に関するものである。   The present invention relates to an epitaxial silicon carbide (SiC) single crystal substrate and a method for manufacturing the same.

炭化珪素(SiC)は、耐熱性及び機械的強度に優れ、物理的、化学的に安定なことから、耐環境性半導体材料として注目されている。また、近年、高周波高耐圧電子デバイス等の基板としてSiC単結晶基板の需要が高まっている。   Silicon carbide (SiC) has attracted attention as an environmentally resistant semiconductor material because it is excellent in heat resistance and mechanical strength and is physically and chemically stable. In recent years, the demand for SiC single crystal substrates has increased as a substrate for high-frequency, high-voltage electronic devices.

SiC単結晶基板を用いて、電力デバイス、高周波デバイス等を作製する場合には、通常、基板上に熱CVD法(熱化学蒸着法)と呼ばれる方法を用いてSiC薄膜をエピタキシャル成長させたり、イオン注入法により直接ドーパントを打ち込んだりするのが一般的であるが、後者の場合には、注入後に高温でのアニ−ルが必要となるため、エピタキシャル成長による薄膜形成が多用されている。   When manufacturing a power device, a high-frequency device, etc. using a SiC single crystal substrate, a SiC thin film is epitaxially grown on the substrate by a method called thermal CVD (thermochemical vapor deposition) or ion implantation is usually performed. In general, the dopant is directly implanted by the method, but in the latter case, annealing at a high temperature is required after the implantation, so that thin film formation by epitaxial growth is frequently used.

SiC単結晶基板上にエピタキシャル成長を行った場合に観察される典型的な欠陥(エピタキシャル欠陥)の顕微鏡写真を図1(a)〜(c)に示す。SiC単結晶基板は、(0001)面(Si面)である。図1(a)は、基板に存在するマイクロパイプ欠陥を引き継いだもので、近年の研究進展により、マイクロパイプが10個/cm2以下の基板が比較的容易に得られるようになっていることから、マイクロパイプに起因するエピタキシャル欠陥は大きな問題ではなくなりつつある。図1(b)、(c)に示す欠陥は、エピタキシャル層上にのみ見られる欠陥であり、特に、図1(b)はキャロット欠陥、図1(c)はコメット欠陥と呼ばれることが多く、これらがデバイスの電極下に存在すると、耐圧が低下する等の特性劣化を引き起こすことが知られている(非特許文献1)。これらの欠陥の密度は通常50〜100個/cm2程度であるが、近年のデバイスの高出力化に伴い、デバイス電極面積も1〜2mm角以上と大きくなっている。したがって、電極の下には、1個ないしそれ以上の欠陥が存在することになり、デバイスの特性を劣化させ、歩留りを低下させている。 Micrographs of typical defects (epitaxial defects) observed when epitaxial growth is performed on a SiC single crystal substrate are shown in FIGS. 1 (a) to (c). The SiC single crystal substrate has a (0001) plane (Si plane). Fig. 1 (a) shows the succession of micropipe defects existing in the substrate. Recent research progress has made it relatively easy to obtain a substrate with 10 micropipes / cm 2 or less. Therefore, epitaxial defects caused by micropipes are not becoming a big problem. The defects shown in FIGS. 1 (b) and (c) are defects found only on the epitaxial layer, and in particular, FIG. 1 (b) is often called a carrot defect, and FIG. 1 (c) is often called a comet defect. When these exist under the electrodes of the device, it is known to cause characteristic deterioration such as a decrease in breakdown voltage (Non-patent Document 1). The density of these defects is usually about 50 to 100 pieces / cm 2 , but the device electrode area is increased to 1 to 2 mm square or more with the recent increase in output of devices. Therefore, one or more defects are present under the electrodes, degrading the device characteristics and reducing the yield.

図1(b)、(c)に示すような欠陥は、SiC単結晶基板上に存在する研磨キズ、微小な凹凸等の欠陥により、通常のエピタキシャル成長が妨げられたために生じるものであり、その発生頻度は成長方法に依存することが多い。一般的に、エピタキシャル成長には、横形のCVD装置が用いられることが多い。CVD法は、装置構成が簡単であり、ガスのon/offで成長を制御できるため、エピタキシャル膜の制御性、再現性に優れた成長方法である。図2に、成長を行う際の典型的な成長シーケンスを、ガスの導入タイミングと併せて示す。まず、成長炉に基板をセットし、成長炉内を真空排気した後、水素ガスを導入して圧力を1×104〜3×104 Paに調整する。その後、圧力を一定に保ちながら成長炉の温度を上げ、1400℃程度で10〜30分間、水素中あるいは塩化水素を導入して塩化水素中での基板のエッチングを行う。これは、研磨等に伴う基板表面の変質層を取り除き、清浄な表面を出すためのものである。その後、温度を成長温度である1500〜1600℃に上げ、原料ガスであるSiH4とC3H8を導入して成長を開始する。SiH4流量は毎分4〜5cm3、C3H8流量は毎分1〜3cm3であり、成長速度は毎時5〜6μmである。この成長速度は、通常利用されるエピタキシャル層の膜厚が10μm程度であるため、生産性を考慮して決定されたものである。一定時間成長し、所望の膜厚が得られた時点でSiH4とC3H8の導入を止め、水素ガスのみ流した状態で温度を下げる。温度が常温まで下がった後、水素ガスの導入を止め、成長室内を真空排気し、不活性ガスを成長室に導入して、成長室を大気圧に戻してから、基板を取り出す。 The defects shown in Fig. 1 (b) and (c) occur because normal epitaxial growth is hindered by defects such as polishing scratches and minute irregularities present on the SiC single crystal substrate. The frequency often depends on the growth method. In general, a lateral CVD apparatus is often used for epitaxial growth. The CVD method has a simple apparatus configuration and can control growth by gas on / off, and is therefore a growth method with excellent controllability and reproducibility of the epitaxial film. FIG. 2 shows a typical growth sequence for the growth, together with the gas introduction timing. First, a substrate is set in a growth furnace, the inside of the growth furnace is evacuated, and hydrogen gas is introduced to adjust the pressure to 1 × 10 4 to 3 × 10 4 Pa. Thereafter, the temperature of the growth furnace is raised while keeping the pressure constant, and the substrate is etched in hydrogen chloride by introducing hydrogen or hydrogen chloride at about 1400 ° C. for 10 to 30 minutes. This is for removing the altered layer on the surface of the substrate due to polishing or the like, and providing a clean surface. Thereafter, the temperature is raised to a growth temperature of 1500 to 1600 ° C., and SiH 4 and C 3 H 8 that are raw material gases are introduced to start growth. The SiH 4 flow rate is 4-5 cm 3 per minute, the C 3 H 8 flow rate is 1-3 cm 3 per minute, and the growth rate is 5-6 μm per hour. This growth rate is determined in consideration of productivity because the film thickness of the normally used epitaxial layer is about 10 μm. When the film is grown for a certain period of time and a desired film thickness is obtained, the introduction of SiH 4 and C 3 H 8 is stopped, and the temperature is lowered with only hydrogen gas flowing. After the temperature has dropped to room temperature, the introduction of hydrogen gas is stopped, the growth chamber is evacuated, an inert gas is introduced into the growth chamber, the growth chamber is returned to atmospheric pressure, and the substrate is taken out.

しかしながら、上記のような方法でエピタキシャル成長を行った場合、水素あるいは塩化水素中での基板エッチングの後には、依然として基板上に微小な凹凸や荒れが存在するため、原料ガスが導入された時に、その微小な凹凸や荒れを核として成長が開始される。その結果、正常なエピタキシャル成長が行われなくなり、図1(b)、(c)に示したようなエピタキシャル欠陥が発生し、このようなエピタキシャル膜を用いたデバイスは、その特性や歩留りが低下することになる。   However, when epitaxial growth is performed by the above method, after the substrate etching in hydrogen or hydrogen chloride, there are still minute irregularities and roughness on the substrate, so when the source gas is introduced, Growth starts with minute irregularities and roughness. As a result, normal epitaxial growth is not performed, epitaxial defects such as those shown in FIGS. 1 (b) and 1 (c) occur, and the characteristics and yield of devices using such epitaxial films are reduced. become.

したがって、今後デバイスへの応用が期待されるSiCエピタキシャル成長基板であるが、現状技術では、デバイスの特性や歩留りを劣化させない程度にまでエピタキシャル欠陥の数を減少させることは困難である。一方、SiCには、(0001)面(Si面)に対しc軸方向に反転位置関係にある(000-1)面(C面)が存在し、C面を用いると、上記のようなエピタキシャル欠陥の少ない良好な表面モホロジーが得られることが知られている。しかし、C面を用いた場合には、Si面に比べて、エピタキシャル成長層内の残留不純物密度を下げることが難しく、そのため、このようなエピタキシャル成長基板を用いた場合には、デバイスのリーク電流が大きくなる等の別の問題が発生し、実用化の弊害となる。
また、特許文献1には、エピタキシャル欠陥の数を減少させる方法が記載されているが、これはSiCのオフ角度が1°未満である、所謂on-axis基板に対するものである。この場合、エピタキシャル欠陥の発生原因は、on-axis基板であるが故の表面ステップ数の少なさによる、表面テラス上での核形成であり(非特許文献2)、成長速度を下げ、表面に吸着した原子あるいは分子をステップに到達し易くすることで、連続したステップフロー成長を行わせ、エピタキシャル欠陥の数を減少させようとしたものである。
しかし、特許文献1の手法は、通常のオフ角度を持つ基板上の、微小な凹凸や荒れを原因としたエピタキシャル欠陥には、on-axis基板上の欠陥とはその生成メカニズムが異なるため、適用困難である。
特開2006-28016号公報 K. Kimoto, et al., IEEE Transactions on Electron Devices, Vol.46, No.3, (1999) pp.471-477 K. Kimoto, et al., phys. stat. sol. (b), Vol.202, (1997) pp.247-262
Therefore, it is a SiC epitaxial growth substrate that is expected to be applied to devices in the future. However, with the current technology, it is difficult to reduce the number of epitaxial defects to such an extent that the device characteristics and yield are not deteriorated. On the other hand, in SiC, there is a (000-1) plane (C plane) that is in the reversed position in the c-axis direction with respect to the (0001) plane (Si plane). It is known that good surface morphology with few defects can be obtained. However, when the C plane is used, it is difficult to reduce the residual impurity density in the epitaxial growth layer compared to the Si plane. Therefore, when such an epitaxial growth substrate is used, the device leakage current is large. Another problem occurs, which becomes an adverse effect of practical use.
Patent Document 1 describes a method for reducing the number of epitaxial defects, but this is for a so-called on-axis substrate in which the off-angle of SiC is less than 1 °. In this case, the cause of the occurrence of epitaxial defects is nucleation on the surface terrace due to the small number of surface steps due to the on-axis substrate (Non-Patent Document 2). By making the adsorbed atoms or molecules easily reach the step, continuous step flow growth is performed to reduce the number of epitaxial defects.
However, the method of Patent Document 1 is applied to epitaxial defects on a substrate with a normal off angle due to minute irregularities and roughness, because the generation mechanism is different from the defect on the on-axis substrate. Have difficulty.
JP 2006-28016 A K. Kimoto, et al., IEEE Transactions on Electron Devices, Vol.46, No.3, (1999) pp.471-477 K. Kimoto, et al., Phys.stat.sol. (B), Vol.202, (1997) pp.247-262

本発明は、上記エピタキシャル成長において、エピタキシャル欠陥の少ない高品質エピタキシャル膜を有するエピタキシャルSiC単結晶基板、及びその製造方法を提供するものである。   The present invention provides an epitaxial SiC single crystal substrate having a high-quality epitaxial film with few epitaxial defects in the epitaxial growth, and a method for manufacturing the same.

本発明は、エピタキシャル成長を開始する際の成長速度あるいは成長温度とエピタキシャル欠陥との関係に注目することにより、上記課題を解決できることを見出し、完成したものである。即ち、本発明は、
(1) 炭化珪素単結晶基板上に形成され、欠陥の発生を抑止する炭化珪素単結晶薄膜の少なくとも1つの抑止層と、前記抑止層の上に形成された炭化珪素単結晶薄膜の活性層とを有することを特徴とするエピタキシャル炭化珪素単結晶基板、
(2) 前記炭化珪素単結晶基板のオフ角度が1°よりも大きい(1)記載のエピタキシャル炭化珪素単結晶基板、
(3) 前記炭化珪素薄膜の抑止層の厚さが1μm以下である(1)記載のエピタキシャル炭化珪素単結晶基板、
(4) 前記炭化珪素薄膜の活性層の厚さが50μm以下である(1)記載のエピタキシャル炭化珪素単結晶基板、
(5) 炭化珪素単結晶基板上に、欠陥の発生を抑止する炭化珪素単結晶薄膜の少なくとも1つの抑止層をエピタキシャル成長させた後、前記抑止層上の炭化珪素単結晶薄膜の活性層をエピタキシャル成長させることを特徴とするエピタキシャル炭化珪素単結晶基板の製造方法、
(6) 前記抑止層及び活性層のエピタキシャル成長は、熱化学蒸着法(CVD法)を用いて行なう(5)記載のエピタキシャル炭化珪素単結晶基板の製造方法、
(7) 前記炭化珪素単結晶基板のオフ角度が1°よりも大きい(5)又は(6)に記載のエピタキシャル炭化珪素単結晶基板の製造方法、
(8) 前記抑止層をエピタキシャル成長する際の成長温度が1500℃未満である(5)又は(6)に記載のエピタキシャル炭化珪素単結晶基板の製造方法、
(9) 前記抑止層をエピタキシャル成長する際の成長速度が毎時1μm以下である(5)又は(6)に記載のエピタキシャル炭化珪素単結晶基板の製造方法、
(10) 前記活性層をエピタキシャル成長する際の成長温度が1500℃以上である(4)又は(5)に記載のエピタキシャル炭化珪素単結晶基板の製造方法、
(11) 前記活性層をエピタキシャル成長する際の成長速度が毎時3μm以上である(4)又は(5)に記載のエピタキシャル炭化珪素単結晶基板の製造方法、
(12) (1)〜(4)のいずれかに記載のエピタキシャル炭化珪素単結晶基板を用いてなるデバイス、
である。
The present invention has been completed by finding that the above-described problems can be solved by paying attention to the relationship between the growth rate or growth temperature at the time of starting epitaxial growth and the epitaxial defect. That is, the present invention
(1) At least one suppression layer of a silicon carbide single crystal thin film formed on a silicon carbide single crystal substrate and suppressing generation of defects, and an active layer of a silicon carbide single crystal thin film formed on the suppression layer; An epitaxial silicon carbide single crystal substrate characterized by comprising:
(2) The epitaxial silicon carbide single crystal substrate according to (1), wherein an off angle of the silicon carbide single crystal substrate is larger than 1 °,
(3) The epitaxial silicon carbide single crystal substrate according to (1), wherein the thickness of the suppression layer of the silicon carbide thin film is 1 μm or less,
(4) The epitaxial silicon carbide single crystal substrate according to (1), wherein the thickness of the active layer of the silicon carbide thin film is 50 μm or less,
(5) After epitaxially growing at least one suppression layer of a silicon carbide single crystal thin film that suppresses the occurrence of defects on the silicon carbide single crystal substrate, the active layer of the silicon carbide single crystal thin film on the suppression layer is epitaxially grown A method for producing an epitaxial silicon carbide single crystal substrate, characterized in that
(6) The method for producing an epitaxial silicon carbide single crystal substrate according to (5), wherein the epitaxial growth of the suppression layer and the active layer is performed using a thermal chemical vapor deposition method (CVD method),
(7) The method for producing an epitaxial silicon carbide single crystal substrate according to (5) or (6), wherein an off angle of the silicon carbide single crystal substrate is larger than 1 °,
(8) The method for producing an epitaxial silicon carbide single crystal substrate according to (5) or (6), wherein the growth temperature when epitaxially growing the suppression layer is less than 1500 ° C.
(9) The method for producing an epitaxial silicon carbide single crystal substrate according to (5) or (6), wherein the growth rate when epitaxially growing the suppression layer is 1 μm or less per hour,
(10) The method for producing an epitaxial silicon carbide single crystal substrate according to (4) or (5), wherein the growth temperature when epitaxially growing the active layer is 1500 ° C. or higher,
(11) The method for producing an epitaxial silicon carbide single crystal substrate according to (4) or (5), wherein the growth rate when epitaxially growing the active layer is 3 μm or more per hour,
(12) A device using the epitaxial silicon carbide single crystal substrate according to any one of (1) to (4),
It is.

本発明によれば、Si面上へのエピタキシャル成長をしたSiC単結晶基板であっても、エピタキシャル欠陥の少ない高品質なエピタキシャル膜(抑止層及び活性層)を有するエピタキシャルSiC単結晶基板を提供することが可能である。   According to the present invention, there is provided an epitaxial SiC single crystal substrate having a high-quality epitaxial film (a deterring layer and an active layer) with few epitaxial defects even if the SiC single crystal substrate is epitaxially grown on a Si surface. Is possible.

また、本発明の製造方法は、CVD法であるため、装置構成が容易で制御性にも優れ、均一性、再現性の高いエピタキシャル膜(抑止層及び活性層)が得られる。   In addition, since the manufacturing method of the present invention is a CVD method, an epitaxial film (a deterrence layer and an active layer) having an easy apparatus configuration, excellent controllability, and high uniformity and reproducibility can be obtained.

さらに、本発明のエピタキシャルSiC単結晶基板を用いたデバイスは、エピタキシャル欠陥の少ない高品質エピタキシャル膜上に形成されるため、その特性及び歩留りが向上する。   Furthermore, since the device using the epitaxial SiC single crystal substrate of the present invention is formed on a high quality epitaxial film with few epitaxial defects, its characteristics and yield are improved.

本発明の具体的な内容について述べる。
まず、SiC基板上へのエピタキシャル成長について述べる。本発明で好適にエピタキシャル成長に用いる装置は、横形のCVD装置である。CVD法は、装置構成が簡単であり、ガスのon/offで成長を制御できるため、エピタキシャル膜の制御性、再現性に優れた成長方法である。成長シーケンスとしては、SiC基板をセットし、水素あるいは塩化水素中でのエッチングまでは、図2と同様である。
The specific contents of the present invention will be described.
First, epitaxial growth on a SiC substrate is described. The apparatus preferably used for epitaxial growth in the present invention is a horizontal CVD apparatus. The CVD method has a simple apparatus configuration and can control growth by gas on / off, and is therefore a growth method with excellent controllability and reproducibility of the epitaxial film. The growth sequence is the same as in FIG. 2 until the SiC substrate is set and etching in hydrogen or hydrogen chloride is performed.

その後、1500〜1600℃の成長温度に上げ、原料ガスであるSiH4とC3H8を流すが、その時のSiH4及びC3H8の流量を小さくし、成長速度を下げて、成長を開始する。前記基板の微小な凹凸や荒れ等の欠陥が存在する部分は、導入したガスの分子あるいは原子のトラップとなり易く、そこが核となってさらにトラップが進むことにより、正常なエピタキシャル成長が妨げられ、図1のようなエピタキシャル欠陥が発生すると考えられる。そこで、上記のように、通常よりも成長速度を下げ、ガスの導入速度を落とすことによって、例え、導入したガスの分子あるいは原子がトラップされたとしても、次の物質が来るまでに、トラップされた分子や原子は再び基板上の他の場所に動くことができるため、核にはなり難く、したがって、エピタキシャル欠陥が減ると期待される。 After that, the growth temperature is increased to 1500 to 1600 ° C., and the raw material gases SiH 4 and C 3 H 8 are flown. At that time, the flow rate of SiH 4 and C 3 H 8 is reduced, the growth rate is lowered, Start. The portion where defects such as minute irregularities and roughness of the substrate are present easily becomes traps of the introduced gas molecules or atoms, and the trap further proceeds as a nucleus, thereby preventing normal epitaxial growth. Epitaxial defects such as 1 are considered to occur. Therefore, as described above, by lowering the growth rate than usual and reducing the gas introduction rate, even if the introduced gas molecules or atoms are trapped, they are trapped before the next substance comes. Since molecules and atoms can move again to other locations on the substrate, they are less likely to be nuclei and are therefore expected to reduce epitaxial defects.

さらに、導入された原料ガスが完全に分解しない状態で基板上に到達し、それが上記欠陥にトラップされて大きな核となる場合も考えられるが、ガスの導入速度を落とすことで、完全に分解される割合が増え、核形成が抑制される効果も考えられる。ここまでの説明より、成長速度を下げる効果は、上記基板欠陥における原料ガス分子あるいは原子の凝集を避けることにある。前述の特許文献1における成長速度低下は、on-axis基板を用いた場合の連続したステップフロー成長のためのものであり、本発明における、より一般的な8°あるいは4°のオフ角度を持つoff-axis基板を用いた場合とはその効果が異なることが理解できる。また、本発明の効果により、トラップとならなかった上記欠陥は、その上に通常のエピタキシャル成長が行われるため、次第にその凹凸や荒れが小さくなり、最終的にはトラップとしての作用は失われると考えられる。   Furthermore, the introduced source gas may reach the substrate in a state where it is not completely decomposed, and it may be trapped by the above defects and become a large nucleus, but it can be completely decomposed by reducing the gas introduction rate. The rate of nucleation is increased, and the effect of suppressing nucleation is also considered. From the description so far, the effect of reducing the growth rate is to avoid aggregation of source gas molecules or atoms in the substrate defect. The aforementioned growth rate decrease in Patent Document 1 is for continuous step flow growth when using an on-axis substrate, and has a more general off angle of 8 ° or 4 ° in the present invention. It can be understood that the effect is different from the case of using an off-axis substrate. In addition, due to the effect of the present invention, the above-mentioned defects that have not become traps are subjected to normal epitaxial growth thereon, so that the unevenness and roughness gradually become smaller, and the action as a trap is eventually lost. It is done.

このような考察の基、成長速度を制御している因子である、SiH4とC3H8の流量に関し、成長開始時(抑止層形成開始時)のSiH4流量を毎分0.5〜1cm3、C3H8流量を毎分0.3〜0.5 cm3にし、成長速度を毎時0.5〜1μmと、通常の1/5〜1/10の値にして成長を開始したところ、エピタキシャル欠陥を低減させることができた。なお、初期成長速度は、基板に付着した物質の再蒸発の方が支配的になる程度にまで小さくすると、エピタキシャル成長が行われ難くなるため、毎時0.5〜1μmが好ましい。 Based on these considerations, regarding the flow rate of SiH 4 and C 3 H 8 , which is a factor controlling the growth rate, the flow rate of SiH 4 at the start of growth (at the start of inhibition layer formation) is 0.5-1 cm 3 / min. The growth of the C 3 H 8 flow rate is 0.3-0.5 cm 3 per minute, the growth rate is 0.5-1 μm / hour, the normal value of 1 / 5-1 / 10, and the epitaxial defects are reduced. I was able to. Note that the initial growth rate is preferably 0.5 to 1 μm per hour because it is difficult to perform epitaxial growth when the re-evaporation of the substance adhering to the substrate is made small.

次に、成長温度とエピタキシャル欠陥との関係を、水素あるいは塩化水素中でのエッチングまでは図2と同様で、その後、原料ガスの流量は従来通りのまま、成長温度を通常の1500〜1600℃から下げて成長を開始した場合について述べる。温度を下げると、SiC基板上に存在する前記欠陥にトラップされた原料ガス分子あるいは原子が、再配列するだけのエネルギーを得ることができず、そのままトラップされた状態になったり、原料ガス自体も完全に分解され難くなるため、より大きな核となったりすることが予想される。しかし、一方で、基板表面を動くことが少なくなれば、トラップそのものに出会う確率も下がるため、トラップされていた原料ガス分子あるいは原子が、核にまで成長することなく時間の経過と共に分解され、エピタキシャル欠陥とはならないことも考えられる。
このような考察から、発明者らは、成長初期温度の最適化によってエピタキシャル欠陥が低減できると考え、実験を行った。その結果、成長初期の温度(抑止層を成長させる際の成長温度)を1500℃未満、さらには1400℃以上1500℃未満で成長するのが、エピタキシャル欠陥を低減するのに最適であることを見出した。
Next, the relationship between the growth temperature and the epitaxial defects is the same as in FIG. 2 until the etching in hydrogen or hydrogen chloride, and then the growth temperature is kept at the normal 1500 to 1600 ° C. with the raw material gas flow rate kept as before. We will describe the case where growth is started from the beginning. When the temperature is lowered, the source gas molecules or atoms trapped in the defects present on the SiC substrate cannot obtain energy for rearrangement, and the trapped gas source itself or the source gas itself is also lost. It is expected to become a larger nucleus because it is difficult to be completely decomposed. However, on the other hand, if the movement of the substrate surface is reduced, the probability of encountering the trap itself decreases, so that the trapped source gas molecules or atoms are decomposed over time without growing to the nucleus, and epitaxial It is also possible that this is not a defect.
From such consideration, the inventors considered that the epitaxial defects can be reduced by optimizing the initial growth temperature, and conducted experiments. As a result, it has been found that growing at an initial growth temperature (growth temperature when the deterrence layer is grown) is less than 1500 ° C, and more than 1400 ° C and less than 1500 ° C is optimal for reducing epitaxial defects. It was.

本発明により、成長初期の成長速度あるいは成長温度を下げて、エピタキシャル欠陥の発生を従来よりも低減させることが可能になったが、そのために成長初期に形成する層(抑止層)の厚さは、1μm以下で十分であり、さらには0.5μm〜1μmの間が好ましい。抑止層の膜厚が1μmを超えると、成長速度が低い場合には、抑止層が厚過ぎることで生産性が下がり、また、成長温度が低い場合には、抑止層の厚さを増加させることで雰囲気からの不純物の取り込みが多くなり、残留不純物が増加して膜の品質に影響を与えるためである。また、基板のトラップの影響を受けなくするために、抑止層は0.5μm以上の膜厚とすることが望ましい。   According to the present invention, it has become possible to lower the growth rate or growth temperature at the initial stage of growth and reduce the occurrence of epitaxial defects than before, but the thickness of the layer (inhibition layer) formed at the initial stage of growth is therefore 1 μm or less is sufficient, and more preferably between 0.5 μm and 1 μm. If the thickness of the suppression layer exceeds 1 μm, if the growth rate is low, the suppression layer is too thick and the productivity is lowered, and if the growth temperature is low, the thickness of the suppression layer is increased. This is because the incorporation of impurities from the atmosphere increases and residual impurities increase, which affects the film quality. Further, it is desirable that the suppression layer has a thickness of 0.5 μm or more so as not to be affected by the trap of the substrate.

この抑止層を成長させた後、成長温度を1500℃以上、好ましくは1500〜1600℃、また成長速度は、SiH4流量を毎分2〜3cm3、C3H8流量を毎分0.5〜1.5cm3に設定することで毎時3μm以上、好ましくはSiH4流量を毎分4〜5cm3、C3H8流量を毎分1〜3cm3に設定することで毎時5〜6μmにして、デバイスが形成される層(活性層)の成長を行う。成長したエピタキシャル基板の模式図を図3に示す。図3の1がSiC単結晶基板、2が抑止層、3が活性層である。この活性層の上にデバイスが形成されるが、活性層の厚さは、デバイスの耐圧、エピタキシャル膜の生産性等を考慮した場合、10μm 以上50μm以下が望ましい。また、基板のオフ角については、1°以下であると基板表面に存在するステップ数が少ないため、正常なエピタキシャル成長が行われ難く、また、10°を越えるとインゴットから基板を作製する際に、より斜めに切り出す必要があるため収率が下がる。したがって、1°より大きく10°以下が望ましいが、より好ましくは4°〜8°の間である。 After growing this deterring layer, the growth temperature is 1500 ° C. or higher, preferably 1500-1600 ° C., and the growth rate is SiH 4 flow rate 2-3 cm 3 / min, C 3 H 8 flow rate 0.5-1.5 min / min. cm 3 sets per hour 3μm or more by the, preferably in the hour 5~6μm by setting the SiH 4 min flow rate 4~5cm 3, C 3 H 8 flow rate per minute 1 to 3 cm 3, device The layer to be formed (active layer) is grown. A schematic diagram of the grown epitaxial substrate is shown in FIG. In FIG. 3, 1 is a SiC single crystal substrate, 2 is a suppression layer, and 3 is an active layer. A device is formed on the active layer. The thickness of the active layer is preferably 10 μm or more and 50 μm or less in consideration of the breakdown voltage of the device, the productivity of the epitaxial film, and the like. In addition, when the substrate off-angle is 1 ° or less, the number of steps existing on the substrate surface is small, so normal epitaxial growth is difficult to be performed, and when it exceeds 10 °, when producing a substrate from an ingot, The yield is reduced because it is necessary to cut more diagonally. Therefore, it is desirable to be greater than 1 ° and not more than 10 °, but more preferably between 4 ° and 8 °.

(実施例1)
2インチ(50mm)ウェハ用SiC単結晶インゴットから、約400μmの厚さでスライスし、粗削りとダイヤモンド砥粒による通常研磨を実施した、4H型のポリタイプを有するSiC単結晶基板のSi面に、エピタキシャル成長を実施した。基板のオフ角は8°である。成長の手順としては、成長炉に基板をセットし、成長炉内を真空排気した後、水素ガスを毎分16L導入しながら圧力を1.6×104 Paに調整した。その後、圧力を一定に保ちながら成長炉の温度を上げ、1400℃に到達した後、塩化水素を毎分10cm3流し、10分間基板のエッチングを行った。エッチング後、温度を1550℃まで上げ、SiH4流量を毎分1cm3、C3H8流量を毎分0.5cm3にして、抑止層を約0.5μm成長した。この時の成長速度は毎時1μmであった。抑止層を成長後、温度は変えず、SiH4流量を毎分4cm3、C3H8流量を毎分2cm3にして(成長速度は毎時5μm)、活性層を約10μm成長した。
(Example 1)
From a SiC single crystal ingot for 2 inch (50 mm) wafers, sliced at a thickness of about 400 μm, and then subjected to rough grinding and normal polishing with diamond abrasive grains, on the Si surface of the SiC single crystal substrate with 4H type polytype, Epitaxial growth was performed. The off angle of the substrate is 8 °. As a growth procedure, a substrate was set in a growth furnace, the inside of the growth furnace was evacuated, and then the pressure was adjusted to 1.6 × 10 4 Pa while introducing 16 L of hydrogen gas per minute. Thereafter, the temperature of the growth furnace was raised while keeping the pressure constant, and after reaching 1400 ° C., 10 cm 3 of hydrogen chloride was flowed per minute and the substrate was etched for 10 minutes. After etching, the temperature was raised to 1550 ° C., the SiH 4 flow rate was 1 cm 3 / min, the C 3 H 8 flow rate was 0.5 cm 3 / min, and a deterrent layer was grown about 0.5 μm. The growth rate at this time was 1 μm per hour. After growing the suppression layer, the temperature was not changed, the SiH 4 flow rate was 4 cm 3 / min, the C 3 H 8 flow rate was 2 cm 3 / min (growth rate was 5 μm / h), and the active layer was grown by about 10 μm.

エピタキシャル成長後の活性層表面の光学顕微鏡写真を図4に示す。成長面は鏡面であり、欠陥密度としては、三角形状あるいはキャロット、コメット欠陥の密度が20個/cm2以下と通常の1/3〜1/5程度になっていた。図5には、成長後の表面のAFM像を示す。図5からRa値は0.19nmであり、平坦性の高い良好な表面となっていることが分かる。 An optical micrograph of the active layer surface after epitaxial growth is shown in FIG. The growth surface is a mirror surface, and the defect density is about 1/3 to 1/5, which is a triangle or carrot / comet defect density of 20 pieces / cm 2 or less. FIG. 5 shows an AFM image of the surface after growth. FIG. 5 shows that the Ra value is 0.19 nm, which is a good surface with high flatness.

(実施例2)
実施例1と同様にスライス、粗削り、通常研磨を行った、4H型のポリタイプを有する2インチ(50mm)のSiC単結晶基板のSi面に、エピタキシャル成長を実施した。基板のオフ角は8°である。成長手順は、塩化水素のエッチングまでは、実施例1と同様である。エッチング後、温度を1450℃まで上げ、SiH4流量を毎分4cm3、C3H8流量を毎分2cm3にして、抑止層を約0.5μm成長した。このときの抑止層の成長速度は毎時3μmであった。抑止層を成長後、SiH4とC3H8の流量は変えず、温度を1550℃にして、活性層を10μm成長した。このときの活性層の成長速度は毎時5μmであった。成長面は鏡面で、エピタキシャル欠陥の密度は30個/cm2以下であり、表面のRaは0.25nmであった。
(Example 2)
Epitaxial growth was performed on the Si surface of a 2 inch (50 mm) SiC single crystal substrate having a 4H-type polytype, which was sliced, roughly ground, and normally polished in the same manner as in Example 1. The off angle of the substrate is 8 °. The growth procedure is the same as in Example 1 until the etching of hydrogen chloride. After etching, the temperature was raised to 1450 ° C., the SiH 4 flow rate was 4 cm 3 / min, the C 3 H 8 flow rate was 2 cm 3 / min, and a deterrent layer was grown about 0.5 μm. The growth rate of the suppression layer at this time was 3 μm per hour. After growing the suppression layer, the flow rate of SiH 4 and C 3 H 8 was not changed, the temperature was set to 1550 ° C., and the active layer was grown to 10 μm. The growth rate of the active layer at this time was 5 μm per hour. The growth surface was a mirror surface, the density of epitaxial defects was 30 / cm 2 or less, and the surface Ra was 0.25 nm.

(比較例)
比較例として、実施例1と同様にスライス、粗削り、通常研磨を行った、4H型のポリタイプを有する2インチ(50mm)のSiC単結晶基板のSi面に、エピタキシャル成長を実施した。基板のオフ角は8°である。成長手順は、塩化水素のエッチングまでは、実施例1と同様である。エッチング後、温度を1550℃まで上げ、SiH4流量を毎分4cm3、C3H8流量を毎分2cm3にして、抑止層を成長させずに、活性層を約10μm成長した。成長後の表面には、図1(b)、(c)で示したようなエピタキシャル欠陥が発生し、その密度は約100個/cm2であり、抑止層がないとエピタキシャル欠陥の発生を抑えられないことが分かる。表面のRaはエピタキシャル欠陥が存在しない部分で0.37nmであり、欠陥が存在する部分では表面の凹凸が大き過ぎるため測定不能であった。
(Comparative example)
As a comparative example, epitaxial growth was performed on the Si surface of a 2 inch (50 mm) SiC single crystal substrate having a 4H type polytype, which was sliced, roughly ground, and normally polished as in Example 1. The off angle of the substrate is 8 °. The growth procedure is the same as in Example 1 until the etching of hydrogen chloride. After etching, the temperature was raised to 1550 ° C., the SiH 4 flow rate was 4 cm 3 / min, the C 3 H 8 flow rate was 2 cm 3 / min, and the active layer was grown about 10 μm without growing the deterring layer. Epitaxial defects as shown in Fig. 1 (b) and (c) occur on the surface after growth, and the density is about 100 / cm 2. I can't understand. The surface Ra was 0.37 nm at the portion where no epitaxial defect was present, and the surface roughness was too large at the portion where the defect was present, so measurement was impossible.

この発明によれば、SiC基板上へのエピタキシャル成長において、欠陥の少ない高品質エピタキシャル膜を有するSiC単結晶基板を作成することが可能である。そのため、このような基板上に電子デバイスを形成すればデバイスの特性及び歩留まりが向上することが期待できる。例えば、ショットキーバリアダイオードにおいては、表面の欠陥によって生じる凸凹が電解集中を誘起し、デバイスの耐圧を劣化させるが、表面の平坦度が上がることで、このような不良はなくなると考えられる。本実施例においては、材料ガスとしてSiH4及びC3H8を用いているが、Si源としてトリクロルシラン、C源としてC2H4等を用いた場合についても同様である。 According to the present invention, it is possible to produce a SiC single crystal substrate having a high-quality epitaxial film with few defects in epitaxial growth on a SiC substrate. Therefore, if an electronic device is formed on such a substrate, it can be expected that the characteristics and yield of the device are improved. For example, in a Schottky barrier diode, unevenness caused by surface defects induces electrolytic concentration and degrades the breakdown voltage of the device, but it is considered that such defects are eliminated by increasing the flatness of the surface. In this embodiment, SiH 4 and C 3 H 8 are used as the material gas, but the same applies to the case where trichlorosilane is used as the Si source, C 2 H 4 is used as the C source, and the like.

従来技術によって成長されたSiCエピタキシャル膜上に存在する欠陥の状態を示す光学顕微鏡像。The optical microscope image which shows the state of the defect which exists on the SiC epitaxial film grown by the prior art. 従来技術によるSiCエピタキシャル膜の成長シーケンスを示す図。The figure which shows the growth sequence of the SiC epitaxial film by a prior art. 本発明の一例によって成長されたエピタキシャルSiC基板の断面模式図。The cross-sectional schematic diagram of the epitaxial SiC substrate grown by the example of this invention. 本発明の一例によって成長されたSiCエピタキシャル膜の表面状態を示す光学顕微鏡像。The optical microscope image which shows the surface state of the SiC epitaxial film grown by the example of this invention. 本発明の一例によって成長されたSiCエピタキシャル膜の表面状態を示すAFM像。The AFM image which shows the surface state of the SiC epitaxial film grown by the example of this invention.

符号の説明Explanation of symbols

1 SiC単結晶基板
2 抑止層
3 活性層
1 SiC single crystal substrate
2 Deterrence layer
3 Active layer

Claims (12)

炭化珪素単結晶基板上に形成され、欠陥の発生を抑止する炭化珪素単結晶薄膜の少なくとも1つの抑止層と、前記抑止層の上に形成された炭化珪素単結晶薄膜の活性層とを有することを特徴とするエピタキシャル炭化珪素単結晶基板。   A silicon carbide single-crystal thin film formed on the silicon carbide single-crystal substrate for suppressing generation of defects; and an active layer of the silicon carbide single-crystal thin film formed on the suppression layer. An epitaxial silicon carbide single crystal substrate characterized by the above. 前記炭化珪素単結晶基板のオフ角度が1°よりも大きい請求項1記載のエピタキシャル炭化珪素単結晶基板。   2. The epitaxial silicon carbide single crystal substrate according to claim 1, wherein an off angle of the silicon carbide single crystal substrate is larger than 1 °. 前記炭化珪素薄膜の抑止層の厚さが1μm以下である請求項1記載のエピタキシャル炭化珪素単結晶基板。   2. The epitaxial silicon carbide single crystal substrate according to claim 1, wherein the thickness of the suppression layer of the silicon carbide thin film is 1 μm or less. 前記炭化珪素薄膜の活性層の厚さが50μm以下である請求項1記載のエピタキシャル炭化珪素単結晶基板。   2. The epitaxial silicon carbide single crystal substrate according to claim 1, wherein the thickness of the active layer of the silicon carbide thin film is 50 μm or less. 炭化珪素単結晶基板上に、欠陥の発生を抑止する炭化珪素単結晶薄膜の少なくとも1つの抑止層をエピタキシャル成長させた後、前記抑止層上の炭化珪素単結晶薄膜の活性層をエピタキシャル成長させることを特徴とするエピタキシャル炭化珪素単結晶基板の製造方法。   The silicon carbide single crystal thin film for suppressing the generation of defects is epitaxially grown on the silicon carbide single crystal substrate, and then the active layer of the silicon carbide single crystal thin film on the suppression layer is epitaxially grown. A method for producing an epitaxial silicon carbide single crystal substrate. 前記抑止層及び活性層のエピタキシャル成長は、熱化学蒸着法(CVD法)を用いて行なう請求項5記載のエピタキシャル炭化珪素単結晶基板の製造方法。   6. The method for producing an epitaxial silicon carbide single crystal substrate according to claim 5, wherein the epitaxial growth of the suppression layer and the active layer is performed using a thermal chemical vapor deposition method (CVD method). 前記炭化珪素単結晶基板のオフ角度が1°よりも大きい請求項5又は6に記載のエピタキシャル炭化珪素単結晶基板の製造方法。   7. The method for producing an epitaxial silicon carbide single crystal substrate according to claim 5, wherein an off angle of the silicon carbide single crystal substrate is larger than 1 °. 前記抑止層をエピタキシャル成長する際の成長温度が1500℃未満である請求項5又は6に記載のエピタキシャル炭化珪素単結晶基板の製造方法。   7. The method for producing an epitaxial silicon carbide single crystal substrate according to claim 5, wherein a growth temperature when epitaxially growing the suppression layer is less than 1500 ° C. 前記抑止層をエピタキシャル成長する際の成長速度が毎時1μm以下である請求項5又は6に記載のエピタキシャル炭化珪素単結晶基板の製造方法。   7. The method for producing an epitaxial silicon carbide single crystal substrate according to claim 5, wherein a growth rate when epitaxially growing the inhibition layer is 1 μm or less per hour. 前記活性層をエピタキシャル成長する際の成長温度が1500℃以上である請求項5又は6に記載のエピタキシャル炭化珪素単結晶基板の製造方法。   7. The method for producing an epitaxial silicon carbide single crystal substrate according to claim 5, wherein a growth temperature at the time of epitaxially growing the active layer is 1500 ° C. or higher. 前記活性層をエピタキシャル成長する際の成長速度が毎時3μm以上である請求項5又は6に記載のエピタキシャル炭化珪素単結晶基板の製造方法。   7. The method for producing an epitaxial silicon carbide single crystal substrate according to claim 5, wherein a growth rate when epitaxially growing the active layer is 3 μm or more per hour. 請求項1〜4のいずれかに記載のエピタキシャル炭化珪素単結晶基板を用いてなるデバイス。   A device comprising the epitaxial silicon carbide single crystal substrate according to claim 1.
JP2006114197A 2006-04-18 2006-04-18 Epitaxial silicon carbide single crystal substrate manufacturing method, and device using the obtained epitaxial silicon carbide single crystal substrate Active JP4954593B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006114197A JP4954593B2 (en) 2006-04-18 2006-04-18 Epitaxial silicon carbide single crystal substrate manufacturing method, and device using the obtained epitaxial silicon carbide single crystal substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006114197A JP4954593B2 (en) 2006-04-18 2006-04-18 Epitaxial silicon carbide single crystal substrate manufacturing method, and device using the obtained epitaxial silicon carbide single crystal substrate

Publications (2)

Publication Number Publication Date
JP2007284298A true JP2007284298A (en) 2007-11-01
JP4954593B2 JP4954593B2 (en) 2012-06-20

Family

ID=38756423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006114197A Active JP4954593B2 (en) 2006-04-18 2006-04-18 Epitaxial silicon carbide single crystal substrate manufacturing method, and device using the obtained epitaxial silicon carbide single crystal substrate

Country Status (1)

Country Link
JP (1) JP4954593B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009013914A1 (en) * 2007-07-26 2009-01-29 Ecotron Co., Ltd. Sic epitaxial substrate and process for producing the same
WO2011122368A1 (en) 2010-03-29 2011-10-06 エア・ウォーター株式会社 Method for producing single crystal 3c-sic substrate and resulting single-crystal 3c-sic substrate
DE112011101625T5 (en) 2010-05-10 2013-02-28 Mitsubishi Electric Corporation Epitaxial silicon carbide wafers and manufacturing processes therefor, silicon carbide bulk substrate for epitaxial growth and manufacturing method thereof, and heat treatment apparatus
WO2013031154A1 (en) 2011-08-26 2013-03-07 学校法人関西学院 Semiconductor wafer manufacturing method, and semiconductor wafer
US20130320357A1 (en) * 2011-04-21 2013-12-05 Nippon Steel & Sumitomo Metal Corporation Epitaxial silicon carbide single crystal substrate and method for producing same
KR20140070014A (en) * 2012-11-30 2014-06-10 엘지이노텍 주식회사 Epitaxial wafer and method for fabricating the same
KR20140070013A (en) * 2012-11-30 2014-06-10 엘지이노텍 주식회사 Epitaxial wafer and method for fabricating the same
KR20140100121A (en) * 2013-02-05 2014-08-14 엘지이노텍 주식회사 Epitaxial wafer and method for fabricating the same
WO2014125550A1 (en) * 2013-02-13 2014-08-21 三菱電機株式会社 Sic epitaxial wafer production method
JP2017100911A (en) * 2015-12-01 2017-06-08 新日鐵住金株式会社 Method for manufacturing epitaxial silicon carbide single crystal wafer
JP2018006384A (en) * 2016-06-27 2018-01-11 昭和電工株式会社 Method for manufacturing silicon carbide epitaxial wafer
US11107677B2 (en) 2018-05-23 2021-08-31 Mitsubishi Electric Corporation Method for manufacturing SiC epitaxial substrate
EP3892762A1 (en) 2016-04-28 2021-10-13 Kwansei Gakuin Educational Foundation Vapour-phase epitaxial growth method, and method for producing substrate equipped with epitaxial layer
US11309389B2 (en) 2012-11-30 2022-04-19 Lx Semicon Co., Ltd. Epitaxial wafer and switch element and light-emitting element using same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000053498A (en) * 1998-07-31 2000-02-22 Denso Corp Production of silicon carbide single crystal
JP2000319099A (en) * 1999-05-07 2000-11-21 Hiroyuki Matsunami SiC WAFER, SiC SEMICONDUCTOR DEVICE AND PRODUCTION OF SiC WAFER
WO2001018872A1 (en) * 1999-09-07 2001-03-15 Sixon Inc. SiC WAFER, SiC SEMICONDUCTOR DEVICE, AND PRODUCTION METHOD OF SiC WAFER
JP2002261295A (en) * 2001-03-05 2002-09-13 Shikusuon:Kk Schottky, p-n junction diode, and pin junction diode and their manufacturing method
JP2005294611A (en) * 2004-04-01 2005-10-20 Toyota Motor Corp Silicon carbide semiconductor substrate and its manufacturing method
JP2006028016A (en) * 2004-07-19 2006-02-02 Norstel Ab Homoepitaxial growth of sic on low off-axis sic wafer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000053498A (en) * 1998-07-31 2000-02-22 Denso Corp Production of silicon carbide single crystal
JP2000319099A (en) * 1999-05-07 2000-11-21 Hiroyuki Matsunami SiC WAFER, SiC SEMICONDUCTOR DEVICE AND PRODUCTION OF SiC WAFER
WO2001018872A1 (en) * 1999-09-07 2001-03-15 Sixon Inc. SiC WAFER, SiC SEMICONDUCTOR DEVICE, AND PRODUCTION METHOD OF SiC WAFER
JP2002261295A (en) * 2001-03-05 2002-09-13 Shikusuon:Kk Schottky, p-n junction diode, and pin junction diode and their manufacturing method
JP2005294611A (en) * 2004-04-01 2005-10-20 Toyota Motor Corp Silicon carbide semiconductor substrate and its manufacturing method
JP2006028016A (en) * 2004-07-19 2006-02-02 Norstel Ab Homoepitaxial growth of sic on low off-axis sic wafer

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8585821B2 (en) 2007-07-26 2013-11-19 Ecotron Co., Ltd. SiC epitaxial substrate and method for producing the same
WO2009013914A1 (en) * 2007-07-26 2009-01-29 Ecotron Co., Ltd. Sic epitaxial substrate and process for producing the same
WO2011122368A1 (en) 2010-03-29 2011-10-06 エア・ウォーター株式会社 Method for producing single crystal 3c-sic substrate and resulting single-crystal 3c-sic substrate
KR20130040178A (en) 2010-03-29 2013-04-23 에어 워터 가부시키가이샤 Method for producing single crystal 3c-sic substrate and resulting single-crystal 3c-sic substrate
DE112011101625T5 (en) 2010-05-10 2013-02-28 Mitsubishi Electric Corporation Epitaxial silicon carbide wafers and manufacturing processes therefor, silicon carbide bulk substrate for epitaxial growth and manufacturing method thereof, and heat treatment apparatus
US8679952B2 (en) 2010-05-10 2014-03-25 Mitsubishi Electric Corporation Method of manufacturing silicon carbide epitaxial wafer
US20130320357A1 (en) * 2011-04-21 2013-12-05 Nippon Steel & Sumitomo Metal Corporation Epitaxial silicon carbide single crystal substrate and method for producing same
US9029219B2 (en) 2011-08-26 2015-05-12 Kwansei Gakuin Educational Foundation Semiconductor wafer manufacturing method, and semiconductor wafer
WO2013031154A1 (en) 2011-08-26 2013-03-07 学校法人関西学院 Semiconductor wafer manufacturing method, and semiconductor wafer
KR102053077B1 (en) * 2012-11-30 2020-01-08 엘지이노텍 주식회사 Epitaxial wafer and method for fabricating the same
US11309389B2 (en) 2012-11-30 2022-04-19 Lx Semicon Co., Ltd. Epitaxial wafer and switch element and light-emitting element using same
KR20140070013A (en) * 2012-11-30 2014-06-10 엘지이노텍 주식회사 Epitaxial wafer and method for fabricating the same
KR102119755B1 (en) * 2012-11-30 2020-06-08 엘지이노텍 주식회사 Epitaxial wafer and method for fabricating the same
KR20140070014A (en) * 2012-11-30 2014-06-10 엘지이노텍 주식회사 Epitaxial wafer and method for fabricating the same
KR20140100121A (en) * 2013-02-05 2014-08-14 엘지이노텍 주식회사 Epitaxial wafer and method for fabricating the same
KR102098209B1 (en) 2013-02-05 2020-04-08 엘지이노텍 주식회사 Epitaxial wafer and method for fabricating the same
CN104995718B (en) * 2013-02-13 2018-06-15 三菱电机株式会社 The manufacturing method of SiC epitaxial wafer
CN104995718A (en) * 2013-02-13 2015-10-21 三菱电机株式会社 SiC epitaxial wafer production method
DE112013006661B4 (en) 2013-02-13 2023-01-19 Mitsubishi Electric Corporation Method of making a SIC epitaxial wafer
US9988738B2 (en) 2013-02-13 2018-06-05 Mitsubishi Electric Corporation Method for manufacturing SiC epitaxial wafer
JPWO2014125550A1 (en) * 2013-02-13 2017-02-02 三菱電機株式会社 Method for manufacturing SiC epitaxial wafer
JP6012841B2 (en) * 2013-02-13 2016-10-25 三菱電機株式会社 Method for manufacturing SiC epitaxial wafer
US20150354090A1 (en) * 2013-02-13 2015-12-10 Mitsubishi Electric Corporation Sic epitaxial wafer production method
WO2014125550A1 (en) * 2013-02-13 2014-08-21 三菱電機株式会社 Sic epitaxial wafer production method
JP2017100911A (en) * 2015-12-01 2017-06-08 新日鐵住金株式会社 Method for manufacturing epitaxial silicon carbide single crystal wafer
EP3892762A1 (en) 2016-04-28 2021-10-13 Kwansei Gakuin Educational Foundation Vapour-phase epitaxial growth method, and method for producing substrate equipped with epitaxial layer
EP3892761A1 (en) 2016-04-28 2021-10-13 Kwansei Gakuin Educational Foundation Vapour-phase epitaxial growth method, and method for producing substrate equipped with epitaxial layer
US11359307B2 (en) 2016-04-28 2022-06-14 Kwansei Gakuin Educational Foundation Vapour-phase epitaxial growth method, and method for producing substrate equipped with epitaxial layer
JP2018006384A (en) * 2016-06-27 2018-01-11 昭和電工株式会社 Method for manufacturing silicon carbide epitaxial wafer
US11107677B2 (en) 2018-05-23 2021-08-31 Mitsubishi Electric Corporation Method for manufacturing SiC epitaxial substrate

Also Published As

Publication number Publication date
JP4954593B2 (en) 2012-06-20

Similar Documents

Publication Publication Date Title
JP4954593B2 (en) Epitaxial silicon carbide single crystal substrate manufacturing method, and device using the obtained epitaxial silicon carbide single crystal substrate
JP4954654B2 (en) Epitaxial silicon carbide single crystal substrate and manufacturing method thereof
JP4987792B2 (en) Epitaxial silicon carbide single crystal substrate manufacturing method
KR101333337B1 (en) Epitaxial silicon carbide single crystal substrate and method for producing same
JP4937685B2 (en) Epitaxial silicon carbide single crystal substrate and manufacturing method thereof
JP4850960B2 (en) Epitaxial silicon carbide single crystal substrate manufacturing method
JP6237848B2 (en) Method for manufacturing silicon carbide single crystal substrate for epitaxial silicon carbide wafer and silicon carbide single crystal substrate for epitaxial silicon carbide wafer
JP4842094B2 (en) Epitaxial silicon carbide single crystal substrate manufacturing method
JP4964672B2 (en) Low resistivity silicon carbide single crystal substrate
JP5130468B2 (en) Method for manufacturing SiC epitaxial substrate
JP4786223B2 (en) Epitaxial silicon carbide single crystal substrate and manufacturing method thereof
WO2017018533A1 (en) Method for producing epitaxial silicon carbide single-crystal wafer
JP2005324994A (en) METHOD FOR GROWING SiC SINGLE CRYSTAL AND SiC SINGLE CRYSTAL GROWN BY THE SAME
JP2007119273A (en) Method for growing silicon carbide single crystal
JP2019189522A (en) Method for manufacturing epitaxial silicon carbide single crystal wafer and epitaxial silicon carbide single crystal wafer
JP5786759B2 (en) Method for manufacturing epitaxial silicon carbide wafer
JP5664534B2 (en) Method for manufacturing epitaxial silicon carbide wafer
JP6052465B2 (en) Method for manufacturing epitaxial silicon carbide wafer
JP2008254941A (en) Sapphire single crystal substrate and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120314

R151 Written notification of patent or utility model registration

Ref document number: 4954593

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350