JP4786223B2 - Epitaxial silicon carbide single crystal substrate and manufacturing method thereof - Google Patents

Epitaxial silicon carbide single crystal substrate and manufacturing method thereof Download PDF

Info

Publication number
JP4786223B2
JP4786223B2 JP2005151514A JP2005151514A JP4786223B2 JP 4786223 B2 JP4786223 B2 JP 4786223B2 JP 2005151514 A JP2005151514 A JP 2005151514A JP 2005151514 A JP2005151514 A JP 2005151514A JP 4786223 B2 JP4786223 B2 JP 4786223B2
Authority
JP
Japan
Prior art keywords
single crystal
silicon carbide
carbide single
epitaxial
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005151514A
Other languages
Japanese (ja)
Other versions
JP2006328455A (en
Inventor
崇 藍郷
辰雄 藤本
正和 勝野
充 澤村
弘志 柘植
正史 中林
弘克 矢代
昇 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2005151514A priority Critical patent/JP4786223B2/en
Publication of JP2006328455A publication Critical patent/JP2006328455A/en
Application granted granted Critical
Publication of JP4786223B2 publication Critical patent/JP4786223B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は、エピタキシャル炭化珪素(SiC)単結晶基板及びその製造方法に関するものである。   The present invention relates to an epitaxial silicon carbide (SiC) single crystal substrate and a method for manufacturing the same.

炭化珪素(SiC)は、耐熱性及び機械的強度に優れ、物理的、化学的に安定なことから、耐環境性半導体材料として注目されている。また、近年、高周波高耐圧電子デバイス等の基板としてSiC単結晶基板の需要が高まっている。   Silicon carbide (SiC) has attracted attention as an environmentally resistant semiconductor material because it is excellent in heat resistance and mechanical strength and is physically and chemically stable. In recent years, the demand for SiC single crystal substrates as substrates for high-frequency, high-voltage electronic devices has increased.

SiC単結晶基板を用いて、電力デバイス、高周波デバイス等を作製する場合には、通常、基板上に熱CVD法(熱化学蒸着法)と呼ばれる方法を用いてSiC薄膜をエピタキシャル成長させたり、イオン注入法により直接ドーパントを打ち込んだりするのが一般的であるが、後者の場合には、注入後に高温でのアニールが必要となるため、エピタキシャル成長による薄膜形成が多用されている。   When manufacturing a power device, a high-frequency device, etc. using a SiC single crystal substrate, a SiC thin film is epitaxially grown on the substrate by a method called thermal CVD (thermochemical vapor deposition) or ion implantation is usually performed. In general, a dopant is directly implanted by a method, but in the latter case, annealing at a high temperature is required after implantation, and therefore thin film formation by epitaxial growth is frequently used.

SiCには、c軸方向に反転位置関係にある(0001)面(Si面)と(000−1)面(C面)が存在し、結晶学的には極性面と呼ばれる。エピタキシャル成長を行う場合、通常はSi面が用いられているが、これはsite−competition技術と言われる、原料ガスにおけるCとSiの原子数の比(C/Si比)を上げることによって、エピタキシャル膜中のn型残留不純物密度を下げることがC面に比べて容易にでき、また、MOS界面におけるキャリア移動度もSi面の方が大きいためである。しかし、近年、減圧下で成長することによりC面でもsite−competition技術が適用でき、ある程度Si面に匹敵するレベルにまで膜中のn型残留不純物密度を低減できる可能性のあることが明らかになってきており、さらに、アニール方法の改善でMOS界面の品質も向上することが報告されている(非特許文献1)。   SiC has a (0001) plane (Si plane) and a (000-1) plane (C plane) that are in a reverse positional relationship in the c-axis direction, and is called a polar plane crystallographically. When epitaxial growth is performed, the Si surface is usually used. This is called a site-compression technique, and the epitaxial film is formed by increasing the ratio of the number of C and Si atoms in the source gas (C / Si ratio). This is because the n-type residual impurity density can be easily reduced as compared with the C-plane, and the carrier mobility at the MOS interface is larger on the Si-plane. However, in recent years, it is clear that the site-compression technology can be applied to the C plane by growing under reduced pressure, and the n-type residual impurity density in the film may be reduced to a level comparable to the Si plane to some extent. Furthermore, it has been reported that the quality of the MOS interface is improved by improving the annealing method (Non-Patent Document 1).

さらに、C面は、酸化速度がSi面に比べ約1桁大きいため、MOS構造の作製においては有利であり、加えて、エピタキシャル成長面の平坦性にも優れていることから、上記近年の特性改善と相まってC面上のエピタキシャル成長層のデバイス応用への関心が高まっている。   Furthermore, since the oxidation rate of the C plane is about an order of magnitude higher than that of the Si plane, it is advantageous in the fabrication of a MOS structure, and in addition, the flatness of the epitaxial growth plane is excellent, so that the above-mentioned characteristics have been improved recently In conjunction with this, there is a growing interest in device applications of epitaxially grown layers on the C-plane.

Kojimaらは、4H−SiCのC面上で減圧下におけるエピタキシャル成長の条件を変化させた場合の成長膜の表面モホロジーについて報告している(非特許文献2、3)。それによると、欠陥のない平坦な表面を得るためには、成長温度が1600℃、原料ガス(SiHとC)におけるC/Si比は1.5以下であることが必要としているが、膜中のn型残留不純物密度は、C/Si比が1.5以下の時、2×1015cm−3以上の値を示しており、デバイス応用に必要な1×1015cm−3以下が達成されていない。また、C/Si比が3.0の時には0.7〜1×1015 cm−3となっているが、この場合にはhillock(ヒロック)と呼ばれるエピタキシャル欠陥が多数発生し、平坦な表面が得られていない。即ち、現状技術では、C面上のエピタキシャル成長において、site−competition効果を利用してC/Si比を上げ、低いn型残留不純物密度を得ようとすると、表面モホロジーが悪化し、逆に、表面モホロジーを改善するためには、C/Si比を下げなければならないため、膜中のn型残留不純物密度が増加するという、相反する状況が発生し、良好な表面モホロジーと低いn型残留不純物密度を両立させることが困難である。一方、膜中のn型残留不純物密度を下げるための他の方法として、site−competition効果を利用する以外に、成長温度を下げて、成長炉からの不純物がエピタキシャル膜中に取り込まれないようにすることも有効である。即ち、成長温度を下げることができれば、良好な表面モホロジーが得られるとされるC/Si比が1.5程度でも、1×1015cm−3以下のn型残留不純物密度が得られると考えられ、両立が期待できる。しかし、成長温度の低下は、エピタキシャル成長のために必要なエネルギーを低減することになるため、正常な成長が阻害され高品質のエピタキシャル膜を得ることは困難である。 Kojima et al. Have reported the surface morphology of the growth film when changing the conditions of epitaxial growth under reduced pressure on the C-plane of 4H-SiC (Non-Patent Documents 2 and 3). According to this, in order to obtain a flat surface without defects, it is necessary that the growth temperature is 1600 ° C. and the C / Si ratio in the source gas (SiH 4 and C 3 H 8 ) is 1.5 or less. However, the n-type residual impurity density in the film shows a value of 2 × 10 15 cm −3 or more when the C / Si ratio is 1.5 or less, and is 1 × 10 15 cm necessary for device application. Less than 3 has not been achieved. In addition, when the C / Si ratio is 3.0, it is 0.7 to 1 × 10 15 cm −3 , but in this case, many epitaxial defects called hillocks occur and a flat surface is formed. Not obtained. That is, in the current state of technology, in the epitaxial growth on the C-plane, when the C / Si ratio is increased by using the site-competition effect to obtain a low n-type residual impurity density, the surface morphology deteriorates. In order to improve the morphology, the C / Si ratio must be lowered, resulting in a conflicting situation in which the n-type residual impurity density in the film increases, resulting in a good surface morphology and a low n-type residual impurity density. It is difficult to achieve both. On the other hand, as another method for reducing the n-type residual impurity density in the film, besides using the site-competition effect, the growth temperature is lowered so that impurities from the growth furnace are not taken into the epitaxial film. It is also effective to do. In other words, if the growth temperature can be lowered, an n-type residual impurity density of 1 × 10 15 cm −3 or less can be obtained even if the C / Si ratio is about 1.5, at which good surface morphology is obtained. Can be expected. However, lowering the growth temperature reduces the energy required for epitaxial growth, so that normal growth is hindered and it is difficult to obtain a high-quality epitaxial film.

したがって、今後デバイスへの応用が期待されるC面上へのエピタキシャル成長であるが、現状技術では、欠陥のない平坦な成長面と低いn型残留不純物密度を同時に得ることは困難である。これらを両立させるためには、成長温度を下げることが有効であるが、エピタキシャル成長そのものが阻害されるため、デバイス作成に必要な高品質エピタキシャル膜を得ることは難しかった。
K. Fukuda他 Materials Science Forum, Vols.433−436 (2003) pp.567−570 K. Kojima他 Materials Science Forum, Vols.457−460 (2004) pp.209−212 K. Kojima他 Japanese Journal of Applied Physics, Vol.42 (2003) pp.L637−L639
Therefore, although epitaxial growth on the C-plane, which is expected to be applied to devices in the future, it is difficult to obtain a flat growth surface without defects and a low n-type residual impurity density at the same time with the current technology. In order to achieve both of these, it is effective to lower the growth temperature. However, since epitaxial growth itself is hindered, it has been difficult to obtain a high-quality epitaxial film necessary for device fabrication.
K. Fukuda et al. Materials Science Forum, Vols. 433-436 (2003) pp. 567-570 K. Kojima et al. Materials Science Forum, Vols. 457-460 (2004) pp. 209-212 K. Kojima et al. Japan Journal of Applied Physics, Vol. 42 (2003) p. L637-L639

本発明は、上記C面上へのエピタキシャル成長において、欠陥のない平坦な成長面を持ち、かつ、残留不純物が低減された高品質エピタキシャル膜を有するSiC単結晶基板、及びその製造方法を提供するものである。   The present invention provides a SiC single crystal substrate having a high-quality epitaxial film having a flat growth surface free from defects and having reduced residual impurities in the epitaxial growth on the C-plane, and a method for manufacturing the same. It is.

本発明は、エピタキシャル成長前の基板表面の平坦度と成長条件との関係に注目することにより、上記課題を解決できることを見出し、完成したものである。即ち、本発明は、
(1) 表面粗さ(Ra)が1.0nm以下である炭化珪素単結晶基板の(000−1)面上に、三角形状欠陥とピット状欠陥の合計の表面欠陥密度が50個/cm以下の炭化珪素単結晶薄膜を有することを特徴とするエピタキシャル炭化珪素単結晶基板、
(2) 前記炭化珪素単結晶薄膜のn型残留不純物濃度が1×1015cm−3以下である(1)記載のエピタキシャル炭化珪素単結晶基板、
(3) 前記炭化珪素単結晶薄膜の表面粗さ(Ra)が0.5nm以下である(1)記載のエピタキシャル炭化珪素単結晶基板、
(4) 前記炭化珪素単結晶薄膜の膜厚が50μm以下である(1)記載のエピタキシャル炭化珪素単結晶基板、
(5) 表面粗さ(Ra)が1.0nm以下である炭化珪素単結晶基板の(000−1)面に炭化珪素単結晶薄膜をエピタキシャル成長することを特徴とするエピタキシャル炭化珪素単結晶基板の製造方法、
(6) 前記エピタキシャル成長が、熱化学蒸着法(CVD法)を用いる(5)記載のエピタキシャル炭化珪素単結晶基板の製造方法、
(7) 前記エピタキシャル成長の成長温度が1500℃以下である(5)又は(6)に記載のエピタキシャル炭化珪素単結晶基板の製造方法、
(8) (1)〜(4)のいずれか一つに記載のエピタキシャル炭化珪素単結晶基板を用いてなるデバイス、
である。
The present invention has been completed by finding that the above-mentioned problems can be solved by paying attention to the relationship between the flatness of the substrate surface before the epitaxial growth and the growth conditions. That is, the present invention
(1) On the (000-1) plane of a silicon carbide single crystal substrate having a surface roughness (Ra) of 1.0 nm or less, the total surface defect density of triangular defects and pit defects is 50 / cm 2. An epitaxial silicon carbide single crystal substrate comprising the following silicon carbide single crystal thin film,
(2) The epitaxial silicon carbide single crystal substrate according to (1), wherein the silicon carbide single crystal thin film has an n-type residual impurity concentration of 1 × 10 15 cm −3 or less,
(3) The epitaxial silicon carbide single crystal substrate according to (1), wherein the silicon carbide single crystal thin film has a surface roughness (Ra) of 0.5 nm or less,
(4) The epitaxial silicon carbide single crystal substrate according to (1), wherein the silicon carbide single crystal thin film has a thickness of 50 μm or less,
(5) Production of an epitaxial silicon carbide single crystal substrate, wherein a silicon carbide single crystal thin film is epitaxially grown on a (000-1) plane of a silicon carbide single crystal substrate having a surface roughness (Ra) of 1.0 nm or less. Method,
(6) The method for producing an epitaxial silicon carbide single crystal substrate according to (5), wherein the epitaxial growth uses a thermal chemical vapor deposition method (CVD method),
(7) The method for producing an epitaxial silicon carbide single crystal substrate according to (5) or (6), wherein a growth temperature of the epitaxial growth is 1500 ° C. or less,
(8) A device using the epitaxial silicon carbide single crystal substrate according to any one of (1) to (4),
It is.

本発明によれば、C面上へのエピタキシャル成長をしたSiC単結晶基板であっても、欠陥のない平坦な成長面を持ち、n型残留不純物が低減された高品質エピタキシャル膜を有するSiC単結晶基板を提供することが可能である。   According to the present invention, even if the SiC single crystal substrate is epitaxially grown on the C plane, the SiC single crystal has a high quality epitaxial film having a flat growth surface without defects and reduced n-type residual impurities. It is possible to provide a substrate.

また、本発明の製造方法は、1500℃以下の成長温度でCVDを行うものであるが、エピタキシャル成長としては比較的低い温度で成長を行うため、装置に与える熱ダメージが低減され、装置自体の信頼性が向上する。加えて、CVD法であるため、装置構成が容易で制御性にも優れ、均一性、再現性の高いエピタキシャル膜が得られる。   Further, although the manufacturing method of the present invention performs CVD at a growth temperature of 1500 ° C. or less, since epitaxial growth is performed at a relatively low temperature, thermal damage given to the device is reduced, and the reliability of the device itself is reduced. Improves. In addition, since the CVD method is used, an epitaxial film with an easy apparatus configuration, excellent controllability, and high uniformity and reproducibility can be obtained.

さらに、本発明のエピタキシャルSiC単結晶基板を用いたデバイスは、欠陥のない平坦な成長面を持ち、n型残留不純物が低減された高品質エピタキシャル膜上に形成されるため、その特性及び歩留りが向上する。   Furthermore, since the device using the epitaxial SiC single crystal substrate of the present invention is formed on a high-quality epitaxial film having a flat growth surface without defects and reduced n-type residual impurities, its characteristics and yield are improves.

本発明は、C面上へのエピタキシャル成長に関するものである。従来、C面上のエピタキシャル膜は、Si面上の膜に比べて、膜中のn型残留不純物密度を下げることが難しく、また、MOS界面におけるキャリア移動度もSi面上の膜に比べて劣っていた。しかし、近年の研究により、C面でもsite−competition技術が適用できて、ある程度Si面に匹敵するレベルにまで膜中のn型残留不純物密度を低減できる可能性のあることが明らかになってきており、さらに、アニ−ル方法の改善でMOS界面の品質も向上することが報告されるようになった。また、C面は、酸化速度がSi面に比べ約1桁大きいため、MOS構造の作製においては有利であり、加えて、エピタキシャル成長面の平坦性にも優れていることから、上記近年の特性改善と相まってC面上のエピタキシャル成長層のデバイス応用への関心が高まっている。そこで、本発明では、C面上へのエピタキシャル成長において、成長前の基板表面の平坦度と成長条件との関係に注目し、基板表面の平坦度を上げることで、成長温度を下げても欠陥が少なく、かつ、n型残留不純物密度が低減された高品質エピタキシャル膜(炭化珪素単結晶薄膜)が得られることを示したものである。   The present invention relates to epitaxial growth on a C-plane. Conventionally, it is difficult for the epitaxial film on the C plane to lower the n-type residual impurity density in the film compared to the film on the Si plane, and the carrier mobility at the MOS interface is also lower than that on the Si plane. It was inferior. However, recent research has revealed that the site-completion technique can be applied to the C plane, and the n-type residual impurity density in the film may be reduced to a level comparable to the Si plane to some extent. Furthermore, it has been reported that improvement of the annealing method improves the quality of the MOS interface. In addition, since the oxidation rate of the C plane is about an order of magnitude higher than that of the Si plane, it is advantageous in the fabrication of the MOS structure. In addition, since the flatness of the epitaxial growth plane is also excellent, the above-described recent characteristics improvement In conjunction with this, there is a growing interest in device applications of epitaxially grown layers on the C-plane. Therefore, in the present invention, in epitaxial growth on the C-plane, attention is paid to the relationship between the flatness of the substrate surface before growth and the growth conditions, and defects are not detected even when the growth temperature is lowered by increasing the flatness of the substrate surface. This shows that a high quality epitaxial film (silicon carbide single crystal thin film) with a small n-type residual impurity density is obtained.

本発明の具体的な内容について述べる。まず、SiC基板の作成方法については、SiC単結晶のインゴットを作製した後、それをスライスしてウェハ状の基板に切り出し、所定の厚さまで粗削りを行い、その後、研磨工程に入り、基板の両面を平坦かつ鏡面に仕上げて基板とする。通常は、この研磨工程において、使用するダイヤモンド砥粒の粒径を徐々に小さくし、最終的には平均粒径が1μmのダイヤモンド砥粒を使用するが、本発明においては、平均粒径が0.5μmあるいは0.25μmの砥粒を最終研磨に使用し、研磨面のキズ等を減らし、平坦度を上げてからエピタキシャル成長を行うことを試みた。これは、特に成長温度を下げた場合、成長前の基板表面のキズや細かい凹凸がエピタキシャル成長を阻害し、その部分が核となって欠陥が形成され、成長後の表面状態を劣化させると考えたためである。   The specific contents of the present invention will be described. First, about the production method of a SiC substrate, after producing a SiC single crystal ingot, it is sliced and cut into a wafer-like substrate, roughed to a predetermined thickness, and then enters a polishing step. Is finished to a flat mirror surface. Usually, in this polishing step, the grain size of the diamond abrasive grains to be used is gradually reduced, and finally, diamond abrasive grains having an average grain diameter of 1 μm are used. An attempt was made to use epitaxial grains of 0.5 μm or 0.25 μm for final polishing, reduce scratches on the polished surface, etc., and increase the flatness before epitaxial growth. This is because, especially when the growth temperature is lowered, scratches and fine irregularities on the substrate surface before growth inhibits epitaxial growth, and that part forms nuclei and defects are formed, deteriorating the surface state after growth. It is.

実際にエピタキシャル成長に用いた装置は、横形のCVD装置である。CVD法は装置構成が簡単であり、ガスのon/offで成長を制御できるため、エピタキシャル膜の制御性、再現性に優れた成長方法である。成長条件としては、原料ガスであるSiHとCについて、SiH流量は毎分2〜3cm、C流量は毎分0.5〜3cmである。これらの流量は、良好な表面状態を保ちつつ、適当な成長速度(毎時3〜4μm)が得られると言う観点から決められた。成長温度は、従来技術との関連から、デバイス応用に必要なn型残留不純物密度を得るためには1500℃以下が必要と判断したが、成長温度を下げ過ぎるとエピタキシャル成長が行われなくなることから、下限は1400℃とすることが好ましい。また、成長時の圧力は1×10〜3×10Pa、さらに、原料ガスと共に流す水素のキャリアガスの流量は、毎分10〜20Lである。このような条件の下、最終研磨に使用するダイヤモンド砥粒の平均粒径を0.5μmあるいは0.25μmと従来よりも小さくして平坦度を上げたC面を用いて、エピタキシャル成長を行ったところ、1500℃という、従来よりも低い成長温度でも、高品質なエピタキシャル膜を得ることができた。エピタキシャル膜の品質を評価する指標としては、欠陥密度、n型残留不純物密度、及び表面粗さ等がある。C面上のエピタキシャル欠陥としては、通常hillock(ヒロック)と呼ばれる三角形状の欠陥、あるいはピット状の窪みが観察されるが、デバイス応用からはその密度は0個/cm以下である。また、n型残留不純物密度は、通常デバイス応用で用いられるドーピング密度の下限が5×1015cm−3程度であることから、その値以下、例えば1×1015cm−3以下が望ましい。エピタキシャル膜の表面粗さは、デバイスを微細化した際に、パターン欠陥を起こさないために重要であるが、通常10μm×10μmの領域内で表面粗さRaが1nm以下、好ましくは0.5nm以下であることが求められている。エピタキシャル膜のRaは、成長前の基板表面のRaに比べ、同等あるいは小さくなることが一般的であるが、それを考慮すると成長前の基板表面のRaは1nm以下に抑えておくことが必要であり、1500℃と言う比較的低い成長温度でエピタキシャル成長が行われるためにも、Raが1nm以下の平坦度の高い基板を用いることは必須と判断した。また、エピタキシャル膜の膜厚は、デバイスの耐圧等を考慮した場合、50μm以下が望ましい。 The apparatus actually used for epitaxial growth is a horizontal CVD apparatus. Since the CVD method has a simple apparatus configuration and can control growth by turning gas on / off, it is a growth method with excellent controllability and reproducibility of the epitaxial film. As growth conditions, the SiH 4 flow rate is 2 to 3 cm 3 per minute and the C 3 H 8 flow rate is 0.5 to 3 cm 3 per minute for SiH 4 and C 3 H 8 which are source gases. These flow rates were determined from the viewpoint that an appropriate growth rate (3 to 4 μm / hour) can be obtained while maintaining a good surface state. The growth temperature is determined to be 1500 ° C. or lower in order to obtain the n-type residual impurity density necessary for device application in relation to the conventional technology, but if the growth temperature is too low, epitaxial growth cannot be performed. The lower limit is preferably 1400 ° C. The growth pressure is 1 × 10 4 to 3 × 10 4 Pa, and the flow rate of the hydrogen carrier gas that flows along with the raw material gas is 10 to 20 L / min. Under such conditions, the epitaxial growth was carried out using the C-plane with the average particle size of the diamond abrasive grains used for the final polishing being 0.5 μm or 0.25 μm, which was smaller than the conventional one to increase the flatness. A high quality epitaxial film could be obtained even at a growth temperature of 1500 ° C., which is lower than the conventional growth temperature. As indices for evaluating the quality of the epitaxial film, there are a defect density, an n-type residual impurity density, a surface roughness, and the like. The epitaxial defects on the C-plane, triangular defects commonly referred to as hillock (hillocks), or is a pit-like recess is observed, from device applications that density is 5 0 / cm 2 or less. Moreover, since the lower limit of the doping density normally used for device application is about 5 × 10 15 cm −3 , the n-type residual impurity density is preferably less than that value, for example, 1 × 10 15 cm −3 or less. The surface roughness of the epitaxial film is important in order to prevent pattern defects when the device is miniaturized, but the surface roughness Ra is usually 1 nm or less, preferably 0.5 nm or less in a region of 10 μm × 10 μm. It is required to be. The Ra of the epitaxial film is generally equal to or smaller than the Ra on the substrate surface before the growth, but considering this, it is necessary to keep the Ra on the substrate surface before the growth to 1 nm or less. In order to perform epitaxial growth at a relatively low growth temperature of 1500 ° C., it was determined that it was essential to use a substrate having a high flatness with an Ra of 1 nm or less. Further, the film thickness of the epitaxial film is desirably 50 μm or less in consideration of the breakdown voltage of the device.

(実施例1)
2インチ(50mm)ウェハ用SiC単結晶インゴットから、約400μmの厚さでスライスし、粗削りを行った後、平均粒径が1μmのダイヤモンド砥粒による通常研磨を実施した、4H型のポリタイプを有するC面に、平均粒径が0.25μmのダイヤモンド砥粒を用いて最終研磨を行った。表面AFM像の観察から、研磨後の基板表面のRa値は0.35nmであった。その後、表面の研磨ダメージ層を除去するためにリアクティブイオンエッチングを行った後、エピタキシャル成長を実施した。具体的なエピタキシャル成長条件の例としては、原料ガスであるSiHとCについて、SiH流量:毎分2cm、C流量:毎分1cmであり、C/Si比は1.5である。また、成長温度:1500℃、成長時の圧力:1.6×10Pa、さらに、水素キャリアガスの流量:毎分16Lである。得られたエピタキシャル膜の膜厚は約3.5μmであった。
Example 1
A 4H-type polytype was obtained by slicing a rough single chip from a SiC single crystal ingot for a 2 inch (50 mm) wafer with a thickness of about 400 μm and then performing normal polishing with diamond grains having an average particle diameter of 1 μm. Final polishing was performed on the C surface having diamond abrasive grains having an average particle diameter of 0.25 μm. From the observation of the surface AFM image, the Ra value of the polished substrate surface was 0.35 nm. Thereafter, reactive ion etching was performed to remove the polishing damage layer on the surface, and then epitaxial growth was performed. As an example of specific epitaxial growth conditions, for SiH 4 and C 3 H 8 which are source gases, SiH 4 flow rate: 2 cm 3 / min, C 3 H 8 flow rate: 1 cm 3 / min, and C / Si ratio is 1.5. The growth temperature is 1500 ° C., the growth pressure is 1.6 × 10 4 Pa, and the flow rate of the hydrogen carrier gas is 16 L / min. The film thickness of the obtained epitaxial film was about 3.5 μm.

エピタキシャル成長後の表面の光学顕微鏡写真を図1に示す。成長面は鏡面であり、欠陥等も見られず、良好な成長面が得られていることが分かる。欠陥密度としては、三角形あるいはピット状の欠陥密度が30個/cm以下であった。図2には、成長後の表面のAFM像を示す。図2からRa値は0.21nmであり、平坦性の高い表面となっている。また、このエピタキシャル膜表面に、Ni電極を形成して、C−V測定により残留不純物密度を求めたところ、n型残留不純物密度の平均値は9.5×1014cm−3であり、デバイス応用に必要な値が得られていることが確かめられた。これらの結果より、エピタキシャル成長前の基板表面の平坦度を上げることで、成長温度を下げても欠陥密度の小さい成長面が得られ、かつ低いn型残留不純物密度も達成されていることが明らかになった。 An optical micrograph of the surface after epitaxial growth is shown in FIG. It can be seen that the growth surface is a mirror surface, no defects or the like are observed, and a good growth surface is obtained. As the defect density, the triangular or pit-shaped defect density was 30 pieces / cm 2 or less. FIG. 2 shows an AFM image of the surface after growth. From FIG. 2, the Ra value is 0.21 nm, which is a highly flat surface. Further, when an Ni electrode was formed on the surface of the epitaxial film and the residual impurity density was determined by CV measurement, the average value of the n-type residual impurity density was 9.5 × 10 14 cm −3 , and the device It was confirmed that the values required for application were obtained. From these results, it is clear that by increasing the flatness of the substrate surface before epitaxial growth, a growth surface with a low defect density can be obtained even when the growth temperature is lowered, and a low n-type residual impurity density is also achieved. became.

(実施例2)
実施例1と同様にスライス、粗削り、通常研磨を行った、4H型のポリタイプを有する2インチ(50mm)のC面ウェハに、粒径が0.5μmのダイヤモンド研磨剤を用いて最終研磨を行い、エピタキシャル成長を実施した。研磨後の基板表面のRa値は0.47nmであり、リアクティブイオンエッチングやエピタキシャル成長の条件は実施例1と同様である。エピタキシャル膜の膜厚は約3.5μmであり、成長面は鏡面で、三角形あるいはピット状の欠陥密度は50個/cm以下であった。実施例1に比べ欠陥密度が増加しているのは、粒径の大きいダイヤモンド研磨剤を使ったため、研磨後の表面粗さが大きいことによるものであるが、この値でも通常市販されているSi面上エピタキシャル基板と同等ないしそれ以下のレベルである。また、n型残留不純物密度の平均値は9.5×1014cm−3であり、エピタキシャル膜のRaは0.30nmであった。
(Example 2)
The final polishing was performed on a 2 inch (50 mm) C-plane wafer having a 4H-type polytype using a diamond abrasive having a particle size of 0.5 μm, as in Example 1. And epitaxial growth was performed. The Ra value of the substrate surface after polishing is 0.47 nm, and the conditions for reactive ion etching and epitaxial growth are the same as in Example 1. The film thickness of the epitaxial film was about 3.5 μm, the growth surface was a mirror surface, and the defect density of triangles or pits was 50 / cm 2 or less. The reason why the defect density is increased compared to Example 1 is that a diamond abrasive having a large particle size is used, and thus the surface roughness after polishing is large. The level is equivalent to or lower than that of the epitaxial substrate on the surface. The average value of the n-type residual impurity density was 9.5 × 10 14 cm −3 , and the Ra of the epitaxial film was 0.30 nm.

(比較例)
比較例として、実施例1と同様のスライス、粗削り、平均粒径が1μmのダイヤモンド砥粒を使用する通常研磨のみを行った、4H型のポリタイプを有する2インチ(50mm)のC面ウェハに、エピタキシャル成長を実施した。研磨後の基板表面のRa値は1.5nmであり、リアクティブイオンエッチングやエピタキシャル成長の条件は実施例1と同様である。エピタキシャル膜の膜厚は約3.5μmである。成長後の表面の光学顕微鏡写真を図3に示す。図3より三角形あるいはピット状の欠陥の密度が5×10個/cm以上発生しており、成長前の基板表面の平坦度が、成長後の状態に大きく影響していることが分かる。このエピタキシャル膜表面に、Ni電極を形成して、C−V測定により残留不純物密度を求めようとしたところ、欠陥によるリーク電流のため、評価は行えなかった。また、欠陥による凸凹が大き過ぎるため、AFM測定も行えず、エピタキシャル膜のRaを求めることはできなかった。
(Comparative example)
As a comparative example, a 2 inch (50 mm) C-plane wafer having a 4H-type polytype was obtained by performing only normal polishing using the same slice, rough cutting, and diamond abrasive grains having an average particle diameter of 1 μm as in Example 1. Epitaxial growth was performed. The Ra value of the substrate surface after polishing is 1.5 nm, and the conditions for reactive ion etching and epitaxial growth are the same as in Example 1. The film thickness of the epitaxial film is about 3.5 μm. An optical micrograph of the surface after growth is shown in FIG. FIG. 3 shows that the density of triangular or pit-like defects is 5 × 10 3 pieces / cm 2 or more, and the flatness of the substrate surface before growth greatly affects the state after growth. When an Ni electrode was formed on the surface of the epitaxial film and the residual impurity density was determined by CV measurement, evaluation could not be performed due to a leakage current due to defects. Moreover, since the unevenness due to the defect is too large, AFM measurement cannot be performed, and Ra of the epitaxial film cannot be obtained.

この発明によれば、C面上へのエピタキシャル成長において、欠陥のない平坦な成長面を持ち、かつ残留不純物が低減された高品質エピタキシャル膜を有するSiC単結晶基板を作成することが可能である。そのため、このような基板上に電子デバイスを形成すればデバイスの特性が向上することが期待できる。本実施例においては最終研磨にダイヤモンド研磨剤を用いた研磨面を使用しているが、コロイダルシリカ等を用いるメカノケミカル研磨による研磨面についても同様である。   According to the present invention, it is possible to produce a SiC single crystal substrate having a high-quality epitaxial film having a flat growth surface without defects and having reduced residual impurities in epitaxial growth on the C-plane. Therefore, if an electronic device is formed on such a substrate, it can be expected that the characteristics of the device are improved. In this embodiment, a polished surface using a diamond abrasive is used for final polishing, but the same applies to a polished surface by mechanochemical polishing using colloidal silica or the like.

本発明の一例によって4H−C面上に成長されたSiCエピタキシャル膜の表面状態を示す光学顕微鏡像である。It is an optical microscope image which shows the surface state of the SiC epitaxial film grown on the 4H-C surface by an example of this invention. 図1で示したSiCエピタキシャル膜の表面状態を示すAFM像である。It is an AFM image which shows the surface state of the SiC epitaxial film shown in FIG. 従来技術によって4H−C面上に成長されたSiCエピタキシャル膜の表面状態を示す光学顕微鏡像である。It is an optical microscope image which shows the surface state of the SiC epitaxial film grown on the 4H-C surface by a prior art.

Claims (8)

表面粗さ(Ra)が1.0nm以下である炭化珪素単結晶基板の(000−1)面上に、三角形状欠陥とピット状欠陥の合計の表面欠陥密度が50個/cm以下の炭化珪素単結晶薄膜を有することを特徴とするエピタキシャル炭化珪素単結晶基板。 Carbonization with a total surface defect density of 50 defects / cm 2 on the (000-1) plane of a silicon carbide single crystal substrate having a surface roughness (Ra) of 1.0 nm or less and a triangular defect and a pit defect. An epitaxial silicon carbide single crystal substrate comprising a silicon single crystal thin film. 前記炭化珪素単結晶薄膜のn型残留不純物密度が1×1015cm−3以下である請求項1記載のエピタキシャル炭化珪素単結晶基板。 The epitaxial silicon carbide single crystal substrate according to claim 1, wherein the silicon carbide single crystal thin film has an n-type residual impurity density of 1 × 10 15 cm −3 or less. 前記炭化珪素単結晶薄膜の表面粗さ(Ra)が0.5nm以下である請求項1記載のエピタキシャル炭化珪素単結晶基板。 The epitaxial silicon carbide single crystal substrate according to claim 1, wherein the silicon carbide single crystal thin film has a surface roughness (Ra) of 0.5 nm or less. 前記炭化珪素単結晶薄膜の膜厚が50μm以下である請求項1記載のエピタキシャル炭化珪素単結晶基板。   The epitaxial silicon carbide single crystal substrate according to claim 1, wherein the silicon carbide single crystal thin film has a thickness of 50 μm or less. 表面粗さ(Ra)が1.0nm以下である炭化珪素単結晶基板の(000−1)面に炭化珪素単結晶薄膜をエピタキシャル成長することを特徴とするエピタキシャル炭化珪素単結晶基板の製造方法。 A method for producing an epitaxial silicon carbide single crystal substrate, comprising epitaxially growing a silicon carbide single crystal thin film on a (000-1) plane of a silicon carbide single crystal substrate having a surface roughness (Ra) of 1.0 nm or less. 前記エピタキシャル成長が、熱化学蒸着法を用いる請求項5記載のエピタキシャル炭化珪素単結晶基板の製造方法。   The method for producing an epitaxial silicon carbide single crystal substrate according to claim 5, wherein the epitaxial growth uses a thermal chemical vapor deposition method. 前記エピタキシャル成長の成長温度が1500℃以下である請求項5又は6に記載のエピタキシャル炭化珪素単結晶基板の製造方法。   The method for manufacturing an epitaxial silicon carbide single crystal substrate according to claim 5 or 6, wherein a growth temperature of the epitaxial growth is 1500 ° C or lower. 請求項1〜4のいずれか一項に記載のエピタキシャル炭化珪素単結晶基板を用いてなるデバイス。   A device comprising the epitaxial silicon carbide single crystal substrate according to any one of claims 1 to 4.
JP2005151514A 2005-05-24 2005-05-24 Epitaxial silicon carbide single crystal substrate and manufacturing method thereof Active JP4786223B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005151514A JP4786223B2 (en) 2005-05-24 2005-05-24 Epitaxial silicon carbide single crystal substrate and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005151514A JP4786223B2 (en) 2005-05-24 2005-05-24 Epitaxial silicon carbide single crystal substrate and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006328455A JP2006328455A (en) 2006-12-07
JP4786223B2 true JP4786223B2 (en) 2011-10-05

Family

ID=37550454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005151514A Active JP4786223B2 (en) 2005-05-24 2005-05-24 Epitaxial silicon carbide single crystal substrate and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4786223B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4964672B2 (en) * 2007-05-23 2012-07-04 新日本製鐵株式会社 Low resistivity silicon carbide single crystal substrate
US8221546B2 (en) * 2008-03-26 2012-07-17 Ss Sc Ip, Llc Epitaxial growth on low degree off-axis SiC substrates and semiconductor devices made thereby
JP4719314B2 (en) * 2009-01-30 2011-07-06 新日本製鐵株式会社 Epitaxial silicon carbide single crystal substrate and manufacturing method thereof
JP5453899B2 (en) * 2009-04-24 2014-03-26 新日鐵住金株式会社 Method for manufacturing silicon carbide single crystal substrate and silicon carbide single crystal substrate
JP5501654B2 (en) * 2009-04-24 2014-05-28 新日鐵住金株式会社 Silicon carbide single crystal substrate and manufacturing method thereof
JP2011199132A (en) 2010-03-23 2011-10-06 Sumitomo Electric Ind Ltd Semiconductor device and method of manufacturing the same
JP5304713B2 (en) * 2010-04-07 2013-10-02 新日鐵住金株式会社 Silicon carbide single crystal substrate, silicon carbide epitaxial wafer, and thin film epitaxial wafer
WO2013073216A1 (en) * 2011-11-14 2013-05-23 住友電気工業株式会社 Silicon carbide substrate, semiconductor device and methods for producing same
JP6123408B2 (en) * 2013-03-26 2017-05-10 三菱電機株式会社 Single crystal 4H-SiC substrate and manufacturing method thereof
JP6479347B2 (en) * 2014-06-06 2019-03-06 ローム株式会社 Device for manufacturing SiC epitaxial wafer, and method for manufacturing SiC epitaxial wafer
JP6347188B2 (en) * 2014-09-08 2018-06-27 富士電機株式会社 Silicon carbide semiconductor device manufacturing method and silicon carbide semiconductor device
JP6511848B2 (en) * 2015-02-13 2019-05-15 住友電気工業株式会社 Semiconductor device
JP6481582B2 (en) * 2015-10-13 2019-03-13 住友電気工業株式会社 Silicon carbide epitaxial substrate and method for manufacturing silicon carbide semiconductor device
US10395924B2 (en) 2015-10-13 2019-08-27 Sumitomo Electric Industries, Ltd. Semiconductor stack
JP6778579B2 (en) * 2016-10-18 2020-11-04 古河機械金属株式会社 Method for manufacturing group III nitride semiconductor substrate and group III nitride semiconductor substrate
JP2017122047A (en) * 2017-03-29 2017-07-13 三菱電機株式会社 SINGLE CRYSTAL 4H-SiC SUBSTRATE AND PRODUCTION METHOD THEREOF

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3230650B2 (en) * 1996-03-27 2001-11-19 富士電機株式会社 Silicon carbide semiconductor substrate, method of manufacturing the same, and silicon carbide semiconductor device using the substrate
JPH10261615A (en) * 1997-03-17 1998-09-29 Fuji Electric Co Ltd Surface morphology control method of sic semiconductor and growing method of sic semiconductor thin film
JP3915252B2 (en) * 1998-06-09 2007-05-16 富士電機デバイステクノロジー株式会社 Method for manufacturing silicon carbide semiconductor substrate
JP5285202B2 (en) * 2004-03-26 2013-09-11 一般財団法人電力中央研究所 Bipolar semiconductor device and manufacturing method thereof
JP4539140B2 (en) * 2004-03-29 2010-09-08 住友電気工業株式会社 Silicon carbide substrate and method for manufacturing the same

Also Published As

Publication number Publication date
JP2006328455A (en) 2006-12-07

Similar Documents

Publication Publication Date Title
JP4786223B2 (en) Epitaxial silicon carbide single crystal substrate and manufacturing method thereof
JP4987792B2 (en) Epitaxial silicon carbide single crystal substrate manufacturing method
JP4954654B2 (en) Epitaxial silicon carbide single crystal substrate and manufacturing method thereof
JP4937685B2 (en) Epitaxial silicon carbide single crystal substrate and manufacturing method thereof
JP5304713B2 (en) Silicon carbide single crystal substrate, silicon carbide epitaxial wafer, and thin film epitaxial wafer
JP4719314B2 (en) Epitaxial silicon carbide single crystal substrate and manufacturing method thereof
JP6237848B2 (en) Method for manufacturing silicon carbide single crystal substrate for epitaxial silicon carbide wafer and silicon carbide single crystal substrate for epitaxial silicon carbide wafer
JP4946202B2 (en) A method for manufacturing a silicon carbide semiconductor epitaxial substrate.
JP4954593B2 (en) Epitaxial silicon carbide single crystal substrate manufacturing method, and device using the obtained epitaxial silicon carbide single crystal substrate
JP5693946B2 (en) Method for producing single crystal 3C-SiC substrate
JP4946264B2 (en) Method for manufacturing silicon carbide semiconductor epitaxial substrate
JPWO2009013914A1 (en) SiC epitaxial substrate and manufacturing method thereof
JP2009218575A (en) Method of manufacturing semiconductor substrate
TWI725910B (en) Wafer, epitaxial wafer and manufacturing method of the same
JPWO2017018533A1 (en) Epitaxial silicon carbide single crystal wafer manufacturing method
WO2011096109A1 (en) Method for producing silicon carbide substrate
JP2017065986A (en) Method for manufacturing silicon carbide single crystal substrate having low resistivity
JP5786759B2 (en) Method for manufacturing epitaxial silicon carbide wafer
JP5664534B2 (en) Method for manufacturing epitaxial silicon carbide wafer
KR102071161B1 (en) Method for manufacturing SiC epitaxial wafer
JP2014024701A (en) Method for producing silicon carbide substrate
JP5135545B2 (en) Seed crystal for growing silicon carbide single crystal ingot and method for producing the same
WO2015097852A1 (en) METHOD FOR FORMING SINGLE CRYSTAL SiC EPITAXIAL FILM
TWI776220B (en) Epitaxial wafer, wafer and manufacturing method of the same
CN113322519B (en) Method for manufacturing wafer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110713

R151 Written notification of patent or utility model registration

Ref document number: 4786223

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350