JP2017122047A - SINGLE CRYSTAL 4H-SiC SUBSTRATE AND PRODUCTION METHOD THEREOF - Google Patents

SINGLE CRYSTAL 4H-SiC SUBSTRATE AND PRODUCTION METHOD THEREOF Download PDF

Info

Publication number
JP2017122047A
JP2017122047A JP2017064949A JP2017064949A JP2017122047A JP 2017122047 A JP2017122047 A JP 2017122047A JP 2017064949 A JP2017064949 A JP 2017064949A JP 2017064949 A JP2017064949 A JP 2017064949A JP 2017122047 A JP2017122047 A JP 2017122047A
Authority
JP
Japan
Prior art keywords
single crystal
sic
crystal
recess
sic layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017064949A
Other languages
Japanese (ja)
Inventor
彰仁 大野
Akihito Ono
彰仁 大野
善平 川津
Yoshihei Kawatsu
善平 川津
信之 冨田
Nobuyuki Tomita
信之 冨田
貴規 田中
Takanori Tanaka
貴規 田中
陽一郎 三谷
Yoichiro Mitani
陽一郎 三谷
健一 浜野
Kenichi Hamano
健一 浜野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2017064949A priority Critical patent/JP2017122047A/en
Publication of JP2017122047A publication Critical patent/JP2017122047A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a single crystal 4H-SiC substrate capable of reducing crystal defects, and to provide a production method thereof.SOLUTION: A 4H-SiC bulk single crystal 1 having surface smoothness, and having an off-angle of 2 degrees or more and 10 degrees or less is prepared. A first single crystal 4H-SiC layer 3 having a recess 2 is epitaxially grown on the 4H-SiC bulk single crystal 1. When expressing a film thickness of the first single crystal 4H-SiC layer 3 as X[μm], a diameter Y[μm] of the recess 2 is 0.2×X or more and 2×X or less, and a depth Z[μm] of the recess 2 is (0.95×X+0.5)×0.001 or more and 0.01×X or less.SELECTED DRAWING: Figure 2

Description

本発明は、結晶欠陥を低減することができる単結晶4H−SiC基板及びその製造方法に関する。   The present invention relates to a single crystal 4H—SiC substrate capable of reducing crystal defects and a method for manufacturing the same.

近年、バンドギャップ、絶縁破壊電界強度、飽和ドリフト速度、熱伝導度がシリコンに比べて相対的に大きい炭化珪素(以下SiCと記す)が、主に電力制御用パワーデバイス材料として注目されている。このSiCを用いたパワーデバイスは、電力損失の大幅な低減、小型化などが可能であり、電源電力変換時の省エネルギ化が実現できるため、電気自動車の高性能化、太陽電池システム等の高機能化等、低炭素社会実現の上でキーデバイスとなる。   In recent years, silicon carbide (hereinafter referred to as SiC), which has a relatively large band gap, dielectric breakdown field strength, saturation drift velocity, and thermal conductivity as compared with silicon, has been attracting attention as a power device material for power control. This power device using SiC can significantly reduce power loss and downsize, and can realize energy saving when converting power supply power. It will be a key device for realizing a low-carbon society such as functionalization.

SiCパワーデバイスの仕様によりドーピング密度及び膜厚がほぼ既定され、通常、バルク単結晶基板より高い精度が求められる。そこで、4H−SiCバルク単結晶基板上に予め半導体デバイスの活性領域が熱CVD法(熱化学気相堆積法)等によりエピタキシャル成長される。ここでいう活性領域とは、結晶中におけるドーピング密度及び膜厚が精密に制御された領域のことである。   The doping density and film thickness are almost predetermined according to the specifications of the SiC power device, and usually higher accuracy than the bulk single crystal substrate is required. Therefore, the active region of the semiconductor device is epitaxially grown in advance on the 4H-SiC bulk single crystal substrate by a thermal CVD method (thermal chemical vapor deposition method) or the like. The active region here is a region in which the doping density and film thickness in the crystal are precisely controlled.

4H−SiCバルク単結晶基板には、c軸方向に伝播するらせん転位、刃状転位、c軸と垂直方向に伝播する転位(基底面転位)が内在している。これらの転位は、基板上に成長させたエピタキシャル膜に伝播する。更にエピタキシャル成長時に新たな転位ループや積層欠陥が導入される。これらの結晶欠陥は、このSiC基板を用いたデバイスの耐電圧特性、信頼性、歩留りを低下させ、実用化の弊害となる場合がある。   In the 4H—SiC bulk single crystal substrate, screw dislocations propagating in the c-axis direction, edge dislocations, and dislocations propagating in the direction perpendicular to the c-axis (basal plane dislocations) are inherent. These dislocations propagate to the epitaxial film grown on the substrate. Furthermore, new dislocation loops and stacking faults are introduced during epitaxial growth. These crystal defects may deteriorate the withstand voltage characteristics, reliability, and yield of a device using this SiC substrate, and may be a practical problem.

なお、単結晶3C−SiC基板の製造方法として、平坦面に表面ピットが点在する表面状態となるように単結晶3C−SiC層を形成することで、結晶欠陥を低減する方法が提案されている(例えば、特許文献1参照)。   As a method for manufacturing a single crystal 3C-SiC substrate, there has been proposed a method for reducing crystal defects by forming a single crystal 3C-SiC layer so as to have a surface state in which surface pits are scattered on a flat surface. (For example, refer to Patent Document 1).

特開2011−225421号公報JP 2011-225421 A

立方晶である3C−SiCと六方晶である4H−SiCは、結晶構造、即ち原子配列が異なるため、成長条件が大きく異なる。例えば3C−SiCの成長温度は1000〜1100℃であるのに対し、4H−SiCの成長温度は1600〜1800℃と非常に高温になる。従って、単結晶3C−SiC基板の結晶欠陥を低減する方法は単結晶4H−SiC基板には適用できず、単結晶4H−SiC基板において結晶欠陥を低減する方法は知られていなかった。   3C-SiC that is cubic and 4H-SiC that is hexagonal crystal have different crystal structures, that is, atomic arrangements, and therefore have greatly different growth conditions. For example, the growth temperature of 3C—SiC is 1000 to 1100 ° C., whereas the growth temperature of 4H—SiC is as high as 1600 to 1800 ° C. Therefore, a method for reducing crystal defects in a single crystal 3C—SiC substrate cannot be applied to a single crystal 4H—SiC substrate, and a method for reducing crystal defects in a single crystal 4H—SiC substrate has not been known.

本発明は、上述のような課題を解決するためになされたもので、その目的は結晶欠陥を低減することができる単結晶4H−SiC基板及びその製造方法を得るものである。   The present invention has been made to solve the above-described problems, and an object thereof is to obtain a single crystal 4H—SiC substrate capable of reducing crystal defects and a method for manufacturing the same.

本発明に係る単結晶4H−SiC基板の製造方法は、平坦性を有し、オフ角が2度以上10度以下である4H−SiCバルク単結晶基板を準備する工程と、前記4H−SiCバルク単結晶基板上に凹部を有する第1の単結晶4H−SiC層をエピタキシャル成長させる工程とを備え、前記第1の単結晶4H−SiC層の膜厚をX[μm]とすると、前記凹部の直径Y[μm]は0.2×X以上、2×X以下であり、かつ前記凹部の深さZ[μm]は(0.95×X+0.5)×0.001以上、0.01×X以下であることを特徴とする。   The method for manufacturing a single crystal 4H-SiC substrate according to the present invention includes a step of preparing a 4H-SiC bulk single crystal substrate having flatness and an off angle of 2 degrees to 10 degrees, and the 4H-SiC bulk. And a step of epitaxially growing a first single crystal 4H—SiC layer having a recess on a single crystal substrate, and the thickness of the first single crystal 4H—SiC layer is X [μm], the diameter of the recess Y [μm] is 0.2 × X or more and 2 × X or less, and the depth Z [μm] of the recess is (0.95 × X + 0.5) × 0.001 or more, 0.01 × X It is characterized by the following.

本発明により、結晶欠陥を低減することができる。   According to the present invention, crystal defects can be reduced.

本発明の実施の形態1に係る単結晶4H−SiC基板の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the single crystal 4H-SiC substrate which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る単結晶4H−SiC基板の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the single crystal 4H-SiC substrate which concerns on Embodiment 1 of this invention. 単結晶4H−SiC層の成長表面に形成された凹部を光学顕微鏡で観察した顕微鏡写真像である。It is the microscope picture image which observed the recessed part formed in the growth surface of a single-crystal 4H-SiC layer with the optical microscope. 凹部の直径とエピタキシャル膜の膜厚の関係を示す図である。It is a figure which shows the relationship between the diameter of a recessed part, and the film thickness of an epitaxial film. 凹部の深さとエピタキシャル膜の膜厚の関係を示す図である。It is a figure which shows the relationship between the depth of a recessed part, and the film thickness of an epitaxial film. 単結晶4H−SiC層の表面の凹部の密度と欠陥密度の関係を示す図である。It is a figure which shows the relationship between the density of the recessed part of the surface of a single crystal 4H-SiC layer, and a defect density. 本発明の実施の形態2に係る単結晶4H−SiC基板の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the single crystal 4H-SiC substrate which concerns on Embodiment 2 of this invention.

本発明の実施の形態に係る単結晶4H−SiC基板及びその製造方法について図面を参照して説明する。同じ又は対応する構成要素には同じ符号を付し、説明の繰り返しを省略する場合がある。   A single crystal 4H—SiC substrate and a manufacturing method thereof according to an embodiment of the present invention will be described with reference to the drawings. The same or corresponding components are denoted by the same reference numerals, and repeated description may be omitted.

実施の形態1.
以下、本発明の実施の形態1に係る単結晶4H−SiC基板の製造方法について説明する。図1及び図2は、本発明の実施の形態1に係る単結晶4H−SiC基板の製造方法を示す断面図である。
Embodiment 1 FIG.
Hereinafter, a method for manufacturing a single crystal 4H—SiC substrate according to Embodiment 1 of the present invention will be described. 1 and 2 are cross-sectional views showing a method for manufacturing a single crystal 4H-SiC substrate according to Embodiment 1 of the present invention.

まず、図1に示すように、主面となる(0001)面(C面)に対して<11−20>方向へ4度のオフ角を有する4H−SiCバルク単結晶基板1を準備する。ここで、オフ角は4度に限ったものではなく、2度〜10度の範囲内であればよい。   First, as shown in FIG. 1, a 4H—SiC bulk single crystal substrate 1 having an off angle of 4 degrees in the <11-20> direction with respect to the (0001) plane (C plane) serving as the main surface is prepared. Here, the off angle is not limited to 4 degrees, and may be in the range of 2 degrees to 10 degrees.

具体的には、4H−SiCバルク単結晶基板1に対し、機械研磨、及び酸性又はアルカリ性を呈する薬液を用いた化学機械研磨により平坦化処理を行う。さらに、アセトンを用いて超音波洗浄を施し有機物を除去する。次に、4H−SiCバルク単結晶基板1に対していわゆるRCA洗浄を行う。即ち、75℃(±5℃)に加熱したアンモニア水と過酸化水素水の混合液(1:9)に10分間浸した後に、75℃(±5℃)に加熱した塩酸と過酸化水素水(1:9)に浸す。さらに、体積比率で5%程度のフッ酸を含む水溶液に浸し、更に純水により置換処理を施すことにより、4H−SiCバルク単結晶基板1に対する表面洗浄を行う。   Specifically, the 4H—SiC bulk single crystal substrate 1 is planarized by mechanical polishing and chemical mechanical polishing using a chemical solution exhibiting acidity or alkalinity. Furthermore, ultrasonic cleaning is performed using acetone to remove organic substances. Next, so-called RCA cleaning is performed on the 4H—SiC bulk single crystal substrate 1. That is, after immersing in a mixed solution (1: 9) of ammonia water and hydrogen peroxide solution heated to 75 ° C. (± 5 ° C.) for 10 minutes, hydrochloric acid and hydrogen peroxide solution heated to 75 ° C. (± 5 ° C.) Immerse in (1: 9). Further, the 4H—SiC bulk single crystal substrate 1 is cleaned by immersing it in an aqueous solution containing about 5% hydrofluoric acid by volume ratio and further performing substitution treatment with pure water.

次に、4H−SiCバルク単結晶基板1をCVD装置に導入する。約1×10−7kPa程度にまで真空引きを行う。その後、1400℃〜1700℃程度まで加熱し、還元性ガス雰囲気中でのアニール工程を実施する。次に、図2に示すように、原料ガスを供給して、4H−SiCバルク単結晶基板1上に、直径2〜20μm、最深部の深さ10〜100nmの凹部2を有する単結晶4H−SiC層3をエピタキシャル成長させる。原料ガスには、例えば、Si原子の供給源としてシランガス(SiH)を用い、C原子の供給源としてプロパンガス(C)を用い、N型ドーピングとして窒素ガスを用いる。ここでは、SiHガスを500sccm、Cガスを200sccmの流量で供給を行い、膜厚10μmの単結晶4H−SiC層3を成膜する。また、基板界面ではキャリア濃度が1×1017/cmとなり、活性領域ではキャリア濃度が8×1015/cmとなるようにN型ドーピングとして窒素ガスを供給した。その後、原料ガスの供給を停止し、室温まで降温させる。 Next, the 4H—SiC bulk single crystal substrate 1 is introduced into a CVD apparatus. Vacuuming is performed to about 1 × 10 −7 kPa. Then, it heats to about 1400 degreeC-1700 degreeC, and implements the annealing process in a reducing gas atmosphere. Next, as shown in FIG. 2, a source gas is supplied and a single crystal 4H− having a recess 2 having a diameter of 2 to 20 μm and a depth of 10 to 100 nm on the 4H—SiC bulk single crystal substrate 1. The SiC layer 3 is epitaxially grown. As the source gas, for example, silane gas (SiH 4 ) is used as a supply source of Si atoms, propane gas (C 3 H 8 ) is used as a supply source of C atoms, and nitrogen gas is used as N-type doping. Here, SiH 4 gas is supplied at a flow rate of 500 sccm and C 3 H 8 gas is supplied at a flow rate of 200 sccm to form a single crystal 4H—SiC layer 3 having a thickness of 10 μm. Nitrogen gas was supplied as N-type doping so that the carrier concentration was 1 × 10 17 / cm 3 at the substrate interface and the carrier concentration was 8 × 10 15 / cm 3 in the active region. Thereafter, the supply of the source gas is stopped and the temperature is lowered to room temperature.

ここで、発明者は、単結晶4H−SiC層3を形成する際に、成長炉内の圧力と温度を適切に設定することで、単結晶4H−SiC層3の成長表面に非常に微小な凹部2が形成されることを発見した。図3は、単結晶4H−SiC層の成長表面に形成された凹部を光学顕微鏡で観察した顕微鏡写真像である。光学顕微鏡により凹部2の密度を算出したところ、その密度は約600個/cmであった。この凹部2の表面形状を原子間力顕微鏡(Atomic Force Microscope)により測定したところ、形は非対称な楕円錐型であり、直径2〜20μm、最深部の深さ10〜100nmであった。さらに詳細な実験を繰り返した結果、凹部の大きさは成膜されるエピタキシャル膜の膜厚によって異なっており、膜が厚い方が凹部の直径や深さも大きくなることが分かった。図4は凹部の直径とエピタキシャル膜の膜厚の関係を示す図である。図5は凹部の深さとエピタキシャル膜の膜厚の関係を示す図である。実験の結果、エピタキシャル膜の膜厚をX[μm]とすると、凹部の直径Y[μm]は0.2×X[μm]以上、2×X[μm]以下であり、かつ凹部の深さZ[nm]は0.95×X[μm]+0.5[nm]以上、10×X[μm]以下であることが分かった。 Here, when the inventor forms the single crystal 4H-SiC layer 3, the pressure and temperature in the growth furnace are appropriately set, so that the growth surface of the single crystal 4H-SiC layer 3 is very small. It has been found that the recess 2 is formed. FIG. 3 is a photomicrograph image obtained by observing a recess formed on the growth surface of the single crystal 4H—SiC layer with an optical microscope. When the density of the recesses 2 was calculated using an optical microscope, the density was about 600 / cm 2 . When the surface shape of the concave portion 2 was measured by an atomic force microscope, the shape was an asymmetrical elliptical cone shape, the diameter was 2 to 20 μm, and the depth of the deepest portion was 10 to 100 nm. As a result of repeating further detailed experiments, it was found that the size of the recess differs depending on the film thickness of the epitaxial film to be formed, and that the thicker the film, the larger the diameter and depth of the recess. FIG. 4 is a diagram showing the relationship between the diameter of the recess and the film thickness of the epitaxial film. FIG. 5 is a diagram showing the relationship between the depth of the recess and the film thickness of the epitaxial film. As a result of the experiment, assuming that the film thickness of the epitaxial film is X [μm], the diameter Y [μm] of the recess is 0.2 × X [μm] or more and 2 × X [μm] or less, and the depth of the recess It was found that Z [nm] was 0.95 × X [μm] +0.5 [nm] or more and 10 × X [μm] or less.

図6は、単結晶4H−SiC層の表面の凹部の密度と欠陥密度の関係を示す図である。欠陥密度はフォトルミネッセンストポグラフィー法(PL−TOPO法)により観測した。ここでは、欠陥密度をPL−TOPO法で観察される発光異常領域と定義する。一般的な成長条件を用いて単結晶4H−SiC層を成膜させた従来の基板の場合、光学顕微鏡では凹部はほとんど観察されず、その密度は10個/cmより少ない。この場合の欠陥密度は60個/cm以上となる。デバイス電極の面積が1〜2mm角以上と大きいものもあり、従来の単結晶4H−SiC基板を用いると電極下に1個以上の欠陥が存在することになり、デバイスの耐電圧特性等が劣化する。 FIG. 6 is a diagram showing the relationship between the density of the recesses on the surface of the single crystal 4H—SiC layer and the defect density. The defect density was observed by a photoluminescence topography method (PL-TOPO method). Here, the defect density is defined as an abnormal emission region observed by the PL-TOPO method. In the case of a conventional substrate on which a single crystal 4H—SiC layer is formed using general growth conditions, the concave portion is hardly observed with an optical microscope, and the density thereof is less than 10 pieces / cm 2 . In this case, the defect density is 60 pieces / cm 2 or more. Some device electrodes have a large area of 1 to 2 mm square or more. If a conventional single crystal 4H-SiC substrate is used, one or more defects will exist under the electrodes, and the device withstand voltage characteristics will deteriorate. To do.

一方、凹部2の密度を10個/cm以上とした本実施の形態に係る単結晶4H−SiC基板の場合には、欠陥密度は2個/cmと大幅に低減できる。凹部2の密度を1500個/cmとした場合には欠陥密度は1個/cmと非常に低密度となった。 On the other hand, in the case of the single crystal 4H—SiC substrate according to the present embodiment in which the density of the recesses 2 is 10 pieces / cm 2 or more, the defect density can be greatly reduced to 2 pieces / cm 2 . When the density of the recesses 2 was 1500 / cm 2 , the defect density was as low as 1 / cm 2 .

以上説明したように、本実施の形態では、直径Y[μm]が0.2×X[μm]以上、2×X[μm]以下であり、かつ深さZ[nm]が0.95×X[μm]+0.5[nm]以上、10×X[μm]以下である凹部を有する単結晶4H−SiC層3をエピタキシャル成長させる。これにより、結晶欠陥を低減することができる。さらに、この高品質な単結晶4H−SiC基板を用いたデバイスの耐電圧特性、信頼性、歩留りを向上させることができる。   As described above, in the present embodiment, the diameter Y [μm] is 0.2 × X [μm] or more and 2 × X [μm] or less, and the depth Z [nm] is 0.95 ×. The single crystal 4H—SiC layer 3 having a recess that is X [μm] +0.5 [nm] or more and 10 × X [μm] or less is epitaxially grown. Thereby, crystal defects can be reduced. Furthermore, the withstand voltage characteristics, reliability, and yield of a device using this high-quality single crystal 4H—SiC substrate can be improved.

なお、単結晶4H−SiC層3を形成する際に、必要に応じてP型ドーピング用にAl、B、Beを含む有機金属材料を供給してもよい。また、成長の高速化を図るため、塩素を含むガスを併用してもよい。また、原料ガス流量を変えることで単結晶4H−SiC層3の成長速度を変えることができ、成長速度が1μm/hであっても、10μm/hであっても同様の効果があることを確認した。   Note that when forming the single crystal 4H—SiC layer 3, an organometallic material containing Al, B, and Be may be supplied for P-type doping as necessary. In order to increase the growth speed, a gas containing chlorine may be used in combination. In addition, the growth rate of the single crystal 4H—SiC layer 3 can be changed by changing the raw material gas flow rate, and the same effect can be obtained regardless of whether the growth rate is 1 μm / h or 10 μm / h. confirmed.

また、凹部2の密度は成長炉内の圧力と温度を適切に設定することで調整できることを見出した。ただし、その条件は一義的に決定されるものでは無く、CVD装置の炉内構成、構造等により大きく依存すると考えられ、それぞれの場合において好適な条件が決まる。   Moreover, it discovered that the density of the recessed part 2 could be adjusted by setting the pressure and temperature in a growth furnace appropriately. However, the conditions are not uniquely determined, and are considered to largely depend on the internal structure and structure of the CVD apparatus, and suitable conditions are determined in each case.

実施の形態2.
以下、本発明の実施の形態2に係る単結晶4H−SiC基板の製造方法について説明する。図7は、本発明の実施の形態2に係る単結晶4H−SiC基板の製造方法を示す断面図である。
Embodiment 2. FIG.
Hereinafter, a method for manufacturing a single crystal 4H—SiC substrate according to Embodiment 2 of the present invention will be described. FIG. 7 is a cross-sectional view showing a method for manufacturing a single crystal 4H—SiC substrate according to Embodiment 2 of the present invention.

まず、実施の形態1と同様に、成長表面に凹部2を有する単結晶4H−SiC層3をエピタキシャル成長により膜厚300nmで形成する。なお、単結晶4H−SiC層3の膜厚は300nmに限らず、50nm〜10μmの範囲であればよい。次に、図7に示すように、単結晶4H−SiC層3上に、凹部2を埋め込むように単結晶4H−SiC層4をエピタキシャル成長により膜厚10μmで形成する。   First, similarly to the first embodiment, a single crystal 4H—SiC layer 3 having a recess 2 on the growth surface is formed by epitaxial growth with a film thickness of 300 nm. Note that the film thickness of the single crystal 4H—SiC layer 3 is not limited to 300 nm and may be in the range of 50 nm to 10 μm. Next, as shown in FIG. 7, the single crystal 4H—SiC layer 4 is formed on the single crystal 4H—SiC layer 3 to a thickness of 10 μm by epitaxial growth so as to fill the recess 2.

このとき、SiHガスを900sccm、Cガスを360sccmの流量で供給し、N型ドーピングとしてキャリア濃度が8×1015/cmとなるように窒素ガスを供給する。その後、原料ガスの供給を停止し、室温まで降温させる。その他の構成及び製造工程は、実施の形態1と同様である。 At this time, SiH 4 gas is supplied at a flow rate of 900 sccm and C 3 H 8 gas is supplied at a flow rate of 360 sccm, and nitrogen gas is supplied so that the carrier concentration is 8 × 10 15 / cm 3 as N-type doping. Thereafter, the supply of the source gas is stopped and the temperature is lowered to room temperature. Other configurations and manufacturing steps are the same as those in the first embodiment.

ここで、成長温度等を適宜設定して、ステップフロー成長と呼ばれる成長モードが支配的な成長条件で単結晶4H−SiC層4を成長させれば、単結晶4H−SiC層3の凹部2を埋め込むことができる。   Here, if the single crystal 4H—SiC layer 4 is grown under a growth condition in which a growth mode called step flow growth is dominant by appropriately setting the growth temperature and the like, the recess 2 of the single crystal 4H—SiC layer 3 is formed. Can be embedded.

本実施の形態に係る単結晶4H−SiC基板の表面の凹部2の密度を光学顕微鏡により算出したところ、約1個/cmと非常に低密度であった。さらに、10μm角正方領域を原子間力顕微鏡により評価したところ、ステップバンチングと呼ばれる異常成長の発生も無く、平均荒さ(Ra)は0.3nm以下と非常に良好な結果であった。また、PL−TOPO法で観測した結果、欠陥密度は2個/cmと非常に低く、単結晶4H−SiC層3の成膜時に得られた低い欠陥密度を維持できていることを確認した。 When the density of the concave portions 2 on the surface of the single crystal 4H—SiC substrate according to the present embodiment was calculated by an optical microscope, it was very low as about 1 piece / cm 2 . Furthermore, when the 10 μm square region was evaluated with an atomic force microscope, no abnormal growth called step bunching occurred, and the average roughness (Ra) was very good at 0.3 nm or less. Further, as a result of observation by the PL-TOPO method, it was confirmed that the defect density was as low as 2 pieces / cm 2 and the low defect density obtained at the time of forming the single crystal 4H—SiC layer 3 could be maintained. .

本実施の形態では、単結晶4H−SiC層3の凹部2を埋め込むように単結晶4H−SiC層4を形成する。これにより、結晶欠陥を低減することができ、かつ単結晶4H−SiC基板の平坦性を向上させることもできる。   In the present embodiment, single crystal 4H—SiC layer 4 is formed so as to fill recess 2 of single crystal 4H—SiC layer 3. Thereby, crystal defects can be reduced and the flatness of the single crystal 4H—SiC substrate can be improved.

なお、実施の形態2のように単結晶4H−SiC層を2層構造とした場合にも、図6に示した凹部の密度と欠陥密度の関係が得られる。また、凹部が形成された単結晶4H−SiC層3は、必ずしも4H−SiCバルク単結晶基板1と接する必要はなく、例えば単結晶4H−SiC層4の層間にあっても同様に結晶欠陥を低減することができる。従って、要求されるデバイスの仕様により、単結晶4H−SiC層3の層位置を自由に変更することができる。この結果、活性領域のキャリア濃度と膜厚を精密に制御しながら、同時に欠陥密度の制御も可能となる。   Note that even when the single crystal 4H—SiC layer has a two-layer structure as in the second embodiment, the relationship between the density of the recesses and the defect density shown in FIG. 6 can be obtained. In addition, the single crystal 4H—SiC layer 3 in which the recesses are formed is not necessarily in contact with the 4H—SiC bulk single crystal substrate 1. can do. Therefore, the layer position of the single crystal 4H—SiC layer 3 can be freely changed according to the required device specifications. As a result, it is possible to simultaneously control the defect density while precisely controlling the carrier concentration and film thickness of the active region.

1 4H−SiCバルク単結晶基板、2 凹部、3 単結晶4H−SiC層(第1の単結晶4H−SiC層)、4 単結晶4H−SiC層(第2の単結晶4H−SiC層) 1 4H-SiC bulk single crystal substrate, 2 recesses, 3 single crystal 4H-SiC layer (first single crystal 4H-SiC layer), 4 single crystal 4H-SiC layer (second single crystal 4H-SiC layer)

Claims (19)

平坦性を有し、オフ角が2度以上10度以下である4H−SiCバルク単結晶基板を準備する工程と、
前記4H−SiCバルク単結晶基板上に凹部を有する第1の単結晶4H−SiC層をエピタキシャル成長させる工程とを備え、
前記第1の単結晶4H−SiC層の膜厚をX[μm]とすると、前記凹部の直径Y[μm]は0.2×X以上、2×X以下であり、かつ前記凹部の深さZ[μm]は(0.95×X+0.5)×0.001以上、0.01×X以下であることを特徴とする単結晶4H−SiC基板の製造方法。
Preparing a 4H-SiC bulk single crystal substrate having flatness and an off angle of 2 degrees or more and 10 degrees or less;
Epitaxially growing a first single crystal 4H-SiC layer having a recess on the 4H-SiC bulk single crystal substrate,
When the film thickness of the first single crystal 4H—SiC layer is X [μm], the diameter Y [μm] of the recess is 0.2 × X or more and 2 × X or less, and the depth of the recess Z [μm] is (0.95 × X + 0.5) × 0.001 or more and 0.01 × X or less, and a method for producing a single crystal 4H—SiC substrate.
前記第1の単結晶4H−SiC層の表面の前記凹部の密度が1個/cm以上であることを特徴とする請求項1に記載の単結晶4H−SiC基板の製造方法。 2. The method for producing a single crystal 4H—SiC substrate according to claim 1, wherein the density of the recesses on the surface of the first single crystal 4H—SiC layer is 1 piece / cm 2 or more. 前記第1の単結晶4H−SiC層を形成する際に、前記第1の単結晶4H−SiC層の成長表面に前記凹部が形成されるように成長炉内の圧力と温度を設定することを特徴とする請求項1又は2に記載の単結晶4H−SiC基板の製造方法。   When forming the first single crystal 4H—SiC layer, the pressure and temperature in the growth furnace are set so that the recess is formed on the growth surface of the first single crystal 4H—SiC layer. The manufacturing method of the single-crystal 4H-SiC substrate of Claim 1 or 2 characterized by the above-mentioned. 前記凹部の直径Y[μm]は2μm以上20μm以下であり、前記凹部の深さZ[μm]は0.01μm以上0.1μm以下であることを特徴とする請求項1〜3の何れか1項に記載の単結晶4H−SiC基板の製造方法。   The diameter Y [μm] of the recess is 2 μm or more and 20 μm or less, and the depth Z [μm] of the recess is 0.01 μm or more and 0.1 μm or less. The manufacturing method of the single-crystal 4H-SiC board | substrate as described in a term. 前記第1の単結晶4H−SiC層の膜厚X[μm]は0.3μm以上10μm以下であることを特徴とする請求項1〜4の何れか1項に記載の単結晶4H−SiC基板の製造方法。   5. The single-crystal 4H—SiC substrate according to claim 1, wherein a film thickness X [μm] of the first single-crystal 4H—SiC layer is 0.3 μm or more and 10 μm or less. Manufacturing method. 前記第1の単結晶4H−SiC層の欠陥密度は2個/cm以下であることを特徴とする請求項1〜5の何れか1項に記載の単結晶4H−SiC基板の製造方法。 The method for producing a single crystal 4H-SiC substrate according to any one of claims 1 to 5, wherein the defect density of the first single crystal 4H-SiC layer is 2 pieces / cm 2 or less. 前記第1の単結晶4H−SiC層はN型不純物がドーピングされていることを特徴とする請求項1〜6の何れか1項に記載の単結晶4H−SiC基板の製造方法。   The method for manufacturing a single crystal 4H-SiC substrate according to any one of claims 1 to 6, wherein the first single crystal 4H-SiC layer is doped with an N-type impurity. 前記第1の単結晶4H−SiC層上に、前記凹部を埋め込むように第2の単結晶4H−SiC層をエピタキシャル成長させる工程を更に備えることを特徴とする請求項1〜7の何れか1項に記載の単結晶4H−SiC基板の製造方法。   8. The method according to claim 1, further comprising a step of epitaxially growing a second single crystal 4H—SiC layer on the first single crystal 4H—SiC layer so as to fill the recess. The manufacturing method of the single-crystal 4H-SiC board | substrate as described in 2 .. 前記第2の単結晶4H−SiC層はN型不純物がドーピングされていることを特徴とする請求項8に記載の単結晶4H−SiC基板の製造方法。   The method for manufacturing a single crystal 4H-SiC substrate according to claim 8, wherein the second single crystal 4H-SiC layer is doped with an N-type impurity. 前記第2の単結晶4H−SiC層の表面平均粗さは0.3nm以下であることを特徴とする請求項8又は9に記載の単結晶4H−SiC基板の製造方法。   The method for producing a single crystal 4H-SiC substrate according to claim 8 or 9, wherein the second single crystal 4H-SiC layer has a surface average roughness of 0.3 nm or less. 平坦性を有し、オフ角が2度以上10度以下である4H−SiCバルク単結晶基板と、
前記4H−SiCバルク単結晶基板上に形成され、凹部を有する第1の単結晶4H−SiC層とを備え、
前記第1の単結晶4H−SiC層の膜厚をX[μm]とすると、前記凹部の直径Y[μm]は0.2×X以上、2×X以下であり、かつ前記凹部の深さZ[μm]は(0.95×X+0.5)×0.001以上、0.01×X以下であることを特徴とする単結晶4H−SiC基板。
A 4H-SiC bulk single crystal substrate having flatness and an off angle of 2 degrees or more and 10 degrees or less;
A first single crystal 4H-SiC layer formed on the 4H-SiC bulk single crystal substrate and having a recess;
When the film thickness of the first single crystal 4H—SiC layer is X [μm], the diameter Y [μm] of the recess is 0.2 × X or more and 2 × X or less, and the depth of the recess Z [μm] is (0.95 × X + 0.5) × 0.001 or more and 0.01 × X or less, a single crystal 4H—SiC substrate.
前記第1の単結晶4H−SiC層の表面の前記凹部の密度が1個/cm以上であることを特徴とする請求項11に記載の単結晶4H−SiC基板。 The single crystal 4H-SiC substrate according to claim 11, wherein the density of the concave portions on the surface of the first single crystal 4H-SiC layer is 1 piece / cm 2 or more. 前記凹部の直径Y[μm]は2μm以上20μm以下であり、前記凹部の深さZ[μm]は0.01μm以上0.1μm以下であることを特徴とする請求項11又は12に記載の単結晶4H−SiC基板。   The diameter Y [μm] of the recess is 2 μm or more and 20 μm or less, and the depth Z [μm] of the recess is 0.01 μm or more and 0.1 μm or less. Crystal 4H-SiC substrate. 前記第1の単結晶4H−SiC層の膜厚X[μm]は0.3μm以上10μm以下であることを特徴とする請求項11〜13の何れか1項に記載の単結晶4H−SiC基板。   14. The single-crystal 4H—SiC substrate according to claim 11, wherein a film thickness X [μm] of the first single-crystal 4H—SiC layer is 0.3 μm or more and 10 μm or less. . 前記第1の単結晶4H−SiC層の欠陥密度は2個/cm以下であることを特徴とする請求項11〜14の何れか1項に記載の単結晶4H−SiC基板。 The single crystal 4H-SiC substrate according to any one of claims 11 to 14, wherein a defect density of the first single crystal 4H-SiC layer is 2 pieces / cm 2 or less. 前記第1の単結晶4H−SiC層はN型不純物がドーピングされていることを特徴とする請求項11〜15の何れか1項に記載の単結晶4H−SiC基板。   The single crystal 4H-SiC substrate according to any one of claims 11 to 15, wherein the first single crystal 4H-SiC layer is doped with an N-type impurity. 前記第1の単結晶4H−SiC層上に形成された第2の単結晶4H−SiC層を更に備え、
前記凹部は前記第2の単結晶4H−SiC層に埋め込まれていることを特徴とする請求項11〜16の何れか1項に記載の単結晶4H−SiC基板。
A second single crystal 4H-SiC layer formed on the first single crystal 4H-SiC layer;
The single crystal 4H-SiC substrate according to any one of claims 11 to 16, wherein the recess is embedded in the second single crystal 4H-SiC layer.
前記第2の単結晶4H−SiC層はN型不純物がドーピングされていることを特徴とする請求項17に記載の単結晶4H−SiC基板。   The single crystal 4H-SiC substrate according to claim 17, wherein the second single crystal 4H-SiC layer is doped with an N-type impurity. 前記第2の単結晶4H−SiC層の表面平均粗さは0.3nm以下であることを特徴とする請求項17に記載の単結晶4H−SiC基板。   The single-crystal 4H-SiC substrate according to claim 17, wherein the surface average roughness of the second single-crystal 4H-SiC layer is 0.3 nm or less.
JP2017064949A 2017-03-29 2017-03-29 SINGLE CRYSTAL 4H-SiC SUBSTRATE AND PRODUCTION METHOD THEREOF Pending JP2017122047A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017064949A JP2017122047A (en) 2017-03-29 2017-03-29 SINGLE CRYSTAL 4H-SiC SUBSTRATE AND PRODUCTION METHOD THEREOF

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017064949A JP2017122047A (en) 2017-03-29 2017-03-29 SINGLE CRYSTAL 4H-SiC SUBSTRATE AND PRODUCTION METHOD THEREOF

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013064365A Division JP6123408B2 (en) 2013-03-26 2013-03-26 Single crystal 4H-SiC substrate and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2017122047A true JP2017122047A (en) 2017-07-13

Family

ID=59305537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017064949A Pending JP2017122047A (en) 2017-03-29 2017-03-29 SINGLE CRYSTAL 4H-SiC SUBSTRATE AND PRODUCTION METHOD THEREOF

Country Status (1)

Country Link
JP (1) JP2017122047A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003078702A1 (en) * 2002-03-19 2003-09-25 Central Research Institute Of Electric Power Industry METHOD FOR PREPARING SiC CRYSTAL AND SiC CRYSTAL
JP2006328455A (en) * 2005-05-24 2006-12-07 Nippon Steel Corp Epitaxial silicon carbide single crystal substrate, and its manufacturing method
JP2007529901A (en) * 2004-03-18 2007-10-25 クリー インコーポレイテッド Sequential lithography method for reducing stacking fault nucleation sites and structure with reduced stacking fault nucleation sites
JP2007299877A (en) * 2006-04-28 2007-11-15 Univ Meijo Semiconductor, and method of manufacturing semiconductor
JP2012116732A (en) * 2010-12-03 2012-06-21 Denso Corp Method of manufacturing silicon carbide single crystal
JP2013018659A (en) * 2011-07-07 2013-01-31 Mitsubishi Electric Corp Epitaxial wafer and semiconductor element
JP2013251419A (en) * 2012-06-01 2013-12-12 Sumitomo Electric Ind Ltd Silicon carbide semiconductor device and manufacturing method of the same
JP2014189422A (en) * 2013-03-26 2014-10-06 Mitsubishi Electric Corp SINGLE CRYSTAL 4H-SiC SUBSTRATE AND PRODUCTION METHOD THEREOF

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003078702A1 (en) * 2002-03-19 2003-09-25 Central Research Institute Of Electric Power Industry METHOD FOR PREPARING SiC CRYSTAL AND SiC CRYSTAL
JP2007529901A (en) * 2004-03-18 2007-10-25 クリー インコーポレイテッド Sequential lithography method for reducing stacking fault nucleation sites and structure with reduced stacking fault nucleation sites
JP2006328455A (en) * 2005-05-24 2006-12-07 Nippon Steel Corp Epitaxial silicon carbide single crystal substrate, and its manufacturing method
JP2007299877A (en) * 2006-04-28 2007-11-15 Univ Meijo Semiconductor, and method of manufacturing semiconductor
JP2012116732A (en) * 2010-12-03 2012-06-21 Denso Corp Method of manufacturing silicon carbide single crystal
JP2013018659A (en) * 2011-07-07 2013-01-31 Mitsubishi Electric Corp Epitaxial wafer and semiconductor element
JP2013251419A (en) * 2012-06-01 2013-12-12 Sumitomo Electric Ind Ltd Silicon carbide semiconductor device and manufacturing method of the same
JP2014189422A (en) * 2013-03-26 2014-10-06 Mitsubishi Electric Corp SINGLE CRYSTAL 4H-SiC SUBSTRATE AND PRODUCTION METHOD THEREOF

Similar Documents

Publication Publication Date Title
JP6123408B2 (en) Single crystal 4H-SiC substrate and manufacturing method thereof
KR101727544B1 (en) Method for manufacturing silicon carbide semiconductor device
WO2011126145A1 (en) Process for producing epitaxial single-crystal silicon carbide substrate and epitaxial single-crystal silicon carbide substrate obtained by the process
JP6012841B2 (en) Method for manufacturing SiC epitaxial wafer
JP2008091656A (en) Method for manufacturing silicon carbide semiconductor device and silicon carbide semiconductor device
KR102136000B1 (en) Method for producing silicon carbide single crystal epitaxial wafer and silicon carbide single crystal epitaxial wafer
KR101178505B1 (en) Substrate for semiconductor device and method for manufacturing the same
US9758902B2 (en) Method for producing 3C-SiC epitaxial layer, 3C-SiC epitaxial substrate, and semiconductor device
JP5997258B2 (en) Stacked substrate of silicon single crystal and group III nitride single crystal having off-angle, and method for manufacturing the same
JP5786759B2 (en) Method for manufacturing epitaxial silicon carbide wafer
CN106169497B (en) Silicon carbide substrate and method for producing silicon carbide substrate
JP2018067736A (en) Silicon carbide semiconductor device and method of manufacturing the same
JP2017122047A (en) SINGLE CRYSTAL 4H-SiC SUBSTRATE AND PRODUCTION METHOD THEREOF
JP6927429B2 (en) Manufacturing method of SiC epitaxial substrate
KR20150025648A (en) Epitaxial wafer
JP2019014628A (en) Method for manufacturing substrate having silicon carbide film, substrate having silicon carbide film, and silicon carbide single crystal substrate
Kościewicz et al. Comparison between polishing etching of on and off-axis C and Si-faces of 4H-SiC wafers
KR20140136703A (en) Epitaxial wafer

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180821