JP3915252B2 - Method for manufacturing silicon carbide semiconductor substrate - Google Patents

Method for manufacturing silicon carbide semiconductor substrate Download PDF

Info

Publication number
JP3915252B2
JP3915252B2 JP16033898A JP16033898A JP3915252B2 JP 3915252 B2 JP3915252 B2 JP 3915252B2 JP 16033898 A JP16033898 A JP 16033898A JP 16033898 A JP16033898 A JP 16033898A JP 3915252 B2 JP3915252 B2 JP 3915252B2
Authority
JP
Japan
Prior art keywords
silicon carbide
sic
semiconductor substrate
carbide semiconductor
hydrogen chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16033898A
Other languages
Japanese (ja)
Other versions
JP2000001398A (en
Inventor
隆一 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Device Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Device Technology Co Ltd filed Critical Fuji Electric Device Technology Co Ltd
Priority to JP16033898A priority Critical patent/JP3915252B2/en
Publication of JP2000001398A publication Critical patent/JP2000001398A/en
Application granted granted Critical
Publication of JP3915252B2 publication Critical patent/JP3915252B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体素子を形成する炭化けい素半導体基板の製造方法に関する。
【0002】
【従来技術】
高周波、大電力の制御を目的として、シリコン(以下Siと記す)を用いた電力用半導体素子(以下パワーデバイスと称する)では、各種の工夫により高性能化が進められている。しかし、パワーデバイスは高温や放射線等の存在下で使用されることもあり、そのような条件下ではSiのパワーデバイスは使用できないことがある。
【0003】
また、Siのパワーデバイスより更に高性能のものを求める声に対して、新しい材料の適用が検討されている。本発明でとりあげる炭化けい素(以下SiCと記す)は広い禁制帯幅(4H−SiCで3.26eV、6H−SiCで3.02eV)をもつため、高温での電気伝導度の制御性や耐放射線性に優れ、またSiより約1桁高い絶縁破壊電圧をもつため、高耐圧素子への適用が可能である。さらに、SiCはSiの約2倍の電子飽和ドリフト速度をもつので、高周波大電力制御にも適する。
【0004】
しかし、SiCの優れた物性をパワーデバイスに応用するためには、Siのプロセス技術並みに洗練された要素技術が必要となる。すなわち、SiC基板の表面を鏡面に仕上げた後、SiC薄膜をエピタキシャル成長させ、或いはドナーやアクセプターをドーピングしたり、金属膜や酸化膜を形成する等の工程条件の最適化が必要である。
【0005】
エピタキシャル成長においては、意図したキャリア密度をもち、かつ結晶性のよい薄膜を得ることが重要である。従来、SiCのエピタキシャル成長は、モノシラン、プロパンを反応ガスとして、約1500℃でおこなわれていた。
従来、Siのエピタキシャル成長においては、原料ガスに塩素を含むシランガス(例えばSiCl4 )を用いることは知られていた。これに対し、SiC上のエピタキシャル成長においては、立方晶の3C−SiCを成膜する原料ガスとしてSiCl2 2 等を用いた報告[例えば、E.niemann et al. Inst. Phys. Conf. Ser. No.142, pp.165-168 参照]や、シリコン半導体基板上への3C−SiCのヘテロエピタキシャル成長のために塩素を含む炭化水素(例えばCH3Cl)を用いる出願[特開平4−124815号]があるだけで、六方晶の4Hまたは6H−SiCの薄膜成長についてはそのような例もなく、塩化水素を添加することは知られていなかった。
【0006】
また、六方晶の4Hまたは6H−SiCの薄膜成長に関して、薄膜成長前の基板の表面処理に塩化水素を用いた例がある[例えば、A.A.Burk,Jr., L.B.Rowland, J. Crystal Growth, vol.167, pp.586-595,(1996)参照]。この処理により成長層表面のモホロジーが制御できるとされている。また同様の基板処理により基板/成長層界面のアルミの意図しないドーピングを抑制できることが報告されている[A.A.Burk,Jr., L.B.Rowland, Appl.Phys.Lett, vol.68, pp.382-384 1996. ]。
【0007】
【発明が解決しようとする課題】
優れた特性のSiC半導体素子とするためには、SiC薄膜のエピタキシャル成長においても、一層良質のエピタキシャル層すなわち、意図したキャリア密度をもち、かつ結晶欠陥密度が低く結晶性のよい薄膜を得ることが課題である。
【0008】
【課題を解決するための手段】
発明者はエピタキシャル成長時に塩化水素を添加する実験をおこなった結果、塩化水素添加が有効であることを見いだした。
上記課題解決のため本発明は、炭化けい素半導体基板上に炭化けい素エピタキシャル層を成長させる炭化けい素半導体基板の製造方法において、水素、モノシラン、プロパンに塩化水素ガスを添加した雰囲気中でエピタキシャル層を成長する炭化けい素半導体基板の製造方法であって、
炭化けい素半導体基板が、4H−SiCまたは6H−SiCのいずれかであり、
塩化水素の添加量が体積比で0.1〜1%であり、
さらに、エピタキシャル成長時の温度が1450℃〜1550℃であるものとする。
【0009】
そのようにすれば、基板表面の清浄化がおこなわれ、結晶欠陥であるエッチピット密度が減少し、例えば、キャリア移動度などエピタキシャル層の膜質が向上する。
特に、塩化水素の添加量を体積比で0.1〜0.8%、更に望ましくは0.2〜0.6%とするのがよい。
【0010】
0.2〜0.6%の濃度範囲においては、一層効果が顕著になる。
炭化けい素半導体基板が、4H−SiCまたは6H−SiCであるものとする。
4H−SiCまたは6H−SiCは、広い禁制帯幅を有する高温用半導体素子等に適する結晶であり、実施例に示したように塩化水素ガスの添加により、結晶性の改善が見られた。
【0011】
炭化けい素半導体基板の表面は(0001)Si面、(000−1)炭素面またはそれらの面から数度のオフセット角を持つ面であるものとする。
そのような結晶面は、平滑な面が得られ、エピタキシャル成長に適する面である。
【0012】
【発明の実施の形態】
以下本発明のためにおこなった実験および実施例について説明する。
[実験1]
エピタキシャル成長前の炭化けい素半導体基板(以下基板と呼ぶ)としては鏡面研磨された4H−SiC単結晶を用い、(0001)Si面から〈1、1、−2、0〉方向に8度傾けて研磨した面を使用した。
【0013】
先ず、基板をダイサーにより5mm角のチップに切り分け、有機溶剤と酸による洗浄をした後、エッチングするSi面を上にして、基板をSiCで被覆した黒鉛のサセプタに載せる。基板を載せたサセプタを石英反応管内に挿入し、1Pa以下の真空にひく。
次に気相エッチングをおこなう。気相エッチングは、水素と塩化水素をそれぞれ毎分1L、10mLの流量で混ぜた混合ガスを流しながら1350℃で5分間加熱した。サセプタの加熱法は高周波誘導加熱である。
【0014】
続いてSiC薄膜をエピタキシャル成長する。水素(H2 )、モノシラン(SiH4 )、プロパン(C3 8 )、塩化水素(HCl)をそれぞれ毎分3L、0.3mL、0.25mL、3〜30mLの流量比率で混合したものを反応管内に導入した。この状態で1500℃で2時間加熱した。すると基板上に4H型のSiC薄膜がエピタキシャル成長する。薄膜のキャリア密度は5×1015cm-3であった。
【0015】
成長した膜の転位密度を評価するために、水酸化カリウム(KOH)によるエッチングをおこなった。このエッチングは、ニッケル(Ni)坩堝内で400℃に加熱した水酸化カリウムに試料を30秒間浸漬する方法を用いた。欠陥密度の計数はSEM観察によった。
図1は、エピタキシャル成長時の塩化水素濃度[HCl/(H2 +SiH4 +C3 8 +HCl)]とSiC薄膜中のエッチピット密度との関係を示す特性図である。この図から塩化水素濃度が0.1から0.8%でエッチピット密度が減少し、特に0.2から0.6%のとき、顕著に減少し塩化水素を添加しない場合より約一桁低減できることがわかる。
【0016】
エッチピットは、エピタキシャル層中の線状欠陥である転位の位置にできるのであり、結晶性の良否を反映するともに、電気的にはキャリアのトラップになるとされている。
図2は、発明者らが実験したエッチピット密度とキャリアの移動度との関係を示す特性図である。エッチピット密度が多いほど、移動度が急速に低下している。これから、エッチピット密度を一桁減らせば、移動度をほぼ2倍にできることがわかる。なお、移動度の評価法としては、van der Pauw 法を用いた。すなわち、試料のエピタキシャル層上の四隅に、金属マスクを使ったスパッタ法によりニッケル(Ni)電極を形成する。電極の直径は200μm、厚さは400nmである。この後、整流性を除きオーミックな接触とするためアルゴン(Ar)雰囲気中で1050℃、5分間のアニールをおこなった。
【0017】
従って、図1、2から、成長するエピタキシャル層の結晶性は、塩化水素濃度が0.1〜0.8%、更に望ましくは0.2〜0.6%含まれるとき改善されるので、そのような条件でエピタキシャル成長をおこなうのが良いと結論づけられる。
これは、エピタキシャル成長時に、表面の清浄化およびエッチングが十分に行われるためと考えられる。また、シリコン半導体において見られる金属不純物のゲッタリング作用もあるかもしれない。
【0018】
上記実施例では1500℃のエッチング条件における結果のみを記したが、1450から1550℃の範囲において同様の実験をおこない、1450℃では塩化水素濃度を0.5〜1%、1550℃では濃度を0.1〜0.3%とするとよいことがわかった。 また成長面についても4H−SiCの(0001)Si面だけでなく、4H−SiCの(000−1)C面や6H−SiCのSi、C面、またはそれらの面から微小角度で傾斜した面にも適用できる。
【0019】
【発明の効果】
以上説明したように本発明によれば、SiC半導体基板のエピタキシャル成長時に、体積比で0.1〜1.0%の塩化水素を添加し、1450〜1550℃で成長することによって、成長するエピタキシャル層の結晶性を改善し、SiC半導体素子の特性を向上させることができる。
【図面の簡単な説明】
【図1】 エピタキシャル成長時HCl濃度とエッチピット密度の関係を示す特性図
【図2】 エッチピット密度と移動度との関係を示す特性図
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a silicon carbide semiconductor substrate for forming a semiconductor element.
[0002]
[Prior art]
For the purpose of controlling high frequency and high power, power semiconductor elements (hereinafter referred to as power devices) using silicon (hereinafter referred to as Si) have been improved in performance by various devices. However, the power device may be used in the presence of high temperature or radiation, and the Si power device may not be used under such conditions.
[0003]
Also, the application of new materials is being studied in response to the demand for higher performance than Si power devices. Since silicon carbide (hereinafter referred to as SiC) taken up by the present invention has a wide forbidden band width (3.26 eV for 4H-SiC and 3.02 eV for 6H-SiC), it has controllability and resistance to electrical conductivity at high temperatures. Since it has excellent radiation properties and has a dielectric breakdown voltage that is about an order of magnitude higher than that of Si, it can be applied to high breakdown voltage devices. Furthermore, since SiC has an electron saturation drift velocity approximately twice that of Si, it is suitable for high-frequency and high-power control.
[0004]
However, in order to apply the excellent physical properties of SiC to a power device, element technology as sophisticated as Si process technology is required. That is, after finishing the surface of the SiC substrate to be a mirror surface, it is necessary to optimize process conditions such as epitaxially growing a SiC thin film, doping a donor or an acceptor, or forming a metal film or an oxide film.
[0005]
In epitaxial growth, it is important to obtain a thin film having an intended carrier density and good crystallinity. Conventionally, the epitaxial growth of SiC has been performed at about 1500 ° C. using monosilane and propane as reaction gases.
Conventionally, in the epitaxial growth of Si, it has been known to use a silane gas containing chlorine as a source gas (for example, SiCl 4 ). On the other hand, in the epitaxial growth on SiC, a report using SiCl 2 H 2 or the like as a source gas for forming cubic 3C-SiC [for example, E.niemann et al. Inst. Phys. Conf. Ser. No. 142, pp. 165-168] and applications using a hydrocarbon containing chlorine (for example, CH 3 Cl) for heteroepitaxial growth of 3C—SiC on a silicon semiconductor substrate [Japanese Patent Laid-Open No. 4-124815] However, there was no such example for the growth of hexagonal 4H or 6H—SiC thin films, and it was not known to add hydrogen chloride.
[0006]
In addition, regarding the hexagonal 4H or 6H—SiC thin film growth, there is an example in which hydrogen chloride is used for the surface treatment of the substrate before the thin film growth [for example, AABurk, Jr., LBRowland, J. Crystal Growth, vol.167. , pp.586-595, (1996)]. It is said that the morphology of the growth layer surface can be controlled by this treatment. In addition, it has been reported that unintentional doping of aluminum at the substrate / growth layer interface can be suppressed by the same substrate treatment [AABurk, Jr., LBRowland, Appl. Phys. Lett, vol.68, pp.382-384 1996. ].
[0007]
[Problems to be solved by the invention]
In order to obtain a SiC semiconductor device having excellent characteristics, it is also necessary to obtain a higher quality epitaxial layer, that is, a thin film having an intended carrier density and a low crystal defect density and good crystallinity even in the epitaxial growth of a SiC thin film. It is.
[0008]
[Means for Solving the Problems]
As a result of an experiment of adding hydrogen chloride during epitaxial growth, the inventor has found that hydrogen chloride addition is effective.
The present invention for the above problems solved, epitaxial method of manufacturing a silicon carbide semiconductor substrate to grow a silicon carbide epitaxial layer on a silicon carbide semiconductor substrate, hydrogen, monosilane, in an atmosphere with the addition of hydrogen chloride gas in propane A method of manufacturing a silicon carbide semiconductor substrate for growing a layer,
The silicon carbide semiconductor substrate is either 4H-SiC or 6H-SiC;
The amount of hydrogen chloride added is 0.1 to 1% by volume,
Furthermore, the temperature at the time of epitaxial growth shall be 1450 degreeC-1550 degreeC.
[0009]
By doing so, the substrate surface is cleaned, the etch pit density which is a crystal defect is reduced, and the film quality of the epitaxial layer such as carrier mobility is improved.
In particular, the amount of hydrogen chloride added is preferably 0.1 to 0.8%, more preferably 0.2 to 0.6% by volume.
[0010]
In the concentration range of 0.2 to 0.6%, the effect becomes more remarkable.
It is assumed that the silicon carbide semiconductor substrate is 4H—SiC or 6H—SiC.
4H—SiC or 6H—SiC is a crystal suitable for a high-temperature semiconductor device or the like having a wide forbidden band width, and improved crystallinity was observed by adding hydrogen chloride gas as shown in Examples.
[0011]
The surface of the silicon carbide semiconductor substrate is a (0001) Si plane, a (000-1) carbon plane, or a plane having an offset angle of several degrees from these planes.
Such a crystal plane is a plane suitable for epitaxial growth because a smooth plane is obtained.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, experiments and examples conducted for the present invention will be described.
[Experiment 1]
A mirror-polished 4H—SiC single crystal is used as a silicon carbide semiconductor substrate (hereinafter referred to as a substrate) before epitaxial growth, and is tilted 8 degrees from the (0001) Si plane in the <1, 1, -2, 0> direction. A polished surface was used.
[0013]
First, the substrate is cut into 5 mm square chips by a dicer, washed with an organic solvent and an acid, and then placed on a graphite susceptor coated with SiC with the Si surface to be etched facing up. A susceptor on which a substrate is placed is inserted into a quartz reaction tube, and a vacuum of 1 Pa or less is applied.
Next, vapor phase etching is performed. In the gas phase etching, heating was performed at 1350 ° C. for 5 minutes while flowing a mixed gas in which hydrogen and hydrogen chloride were mixed at a flow rate of 1 L / min and 10 mL / min. The method of heating the susceptor is high frequency induction heating.
[0014]
Subsequently, an SiC thin film is epitaxially grown. Hydrogen (H 2 ), monosilane (SiH 4 ), propane (C 3 H 8 ), and hydrogen chloride (HCl) mixed at a flow rate of 3 L, 0.3 mL, 0.25 mL, and 3 to 30 mL per minute, respectively. It introduced into the reaction tube. In this state, it was heated at 1500 ° C. for 2 hours. Then, a 4H type SiC thin film is epitaxially grown on the substrate. The carrier density of the thin film was 5 × 10 15 cm −3 .
[0015]
In order to evaluate the dislocation density of the grown film, etching with potassium hydroxide (KOH) was performed. For this etching, a method of immersing the sample in potassium hydroxide heated to 400 ° C. in a nickel (Ni) crucible for 30 seconds was used. The defect density was counted by SEM observation.
FIG. 1 is a characteristic diagram showing the relationship between the hydrogen chloride concentration [HCl / (H 2 + SiH 4 + C 3 H 8 + HCl)] during epitaxial growth and the etch pit density in the SiC thin film. From this figure, the etch pit density decreases when the hydrogen chloride concentration is 0.1 to 0.8%, especially when the hydrogen chloride concentration is 0.2 to 0.6%. I understand that I can do it.
[0016]
Etch pits can be formed at the positions of dislocations, which are linear defects in the epitaxial layer, and reflect the quality of crystallinity, and are electrically trapped carriers.
FIG. 2 is a characteristic diagram showing the relationship between etch pit density and carrier mobility, which the inventors have experimented with. The mobility decreases rapidly as the etch pit density increases. From this, it can be seen that if the etch pit density is reduced by an order of magnitude, the mobility can be almost doubled. The van der Pauw method was used as the mobility evaluation method. That is, nickel (Ni) electrodes are formed at the four corners on the epitaxial layer of the sample by sputtering using a metal mask. The electrode has a diameter of 200 μm and a thickness of 400 nm. Thereafter, annealing was performed at 1050 ° C. for 5 minutes in an argon (Ar) atmosphere in order to obtain ohmic contact except for rectification.
[0017]
Accordingly, from FIGS. 1 and 2, the crystallinity of the growing epitaxial layer is improved when the hydrogen chloride concentration is 0.1 to 0.8%, more preferably 0.2 to 0.6%. It can be concluded that epitaxial growth should be performed under such conditions.
This is presumably because the surface is sufficiently cleaned and etched during epitaxial growth. There may also be gettering action of metal impurities found in silicon semiconductors.
[0018]
In the above example, only the results under the etching conditions of 1500 ° C. were described, but the same experiment was conducted in the range of 1450 to 1550 ° C., and the hydrogen chloride concentration was 0.5 to 1% at 1450 ° C., and the concentration was 0 at 1550 ° C. It was found to be 0.1 to 0.3%. The growth surface is not only the (0001) Si surface of 4H—SiC, but also the (000-1) C surface of 4H—SiC, the Si, C surface of 6H—SiC, or a surface inclined at a minute angle from these surfaces. It can also be applied to.
[0019]
【The invention's effect】
As described above, according to the present invention, during the epitaxial growth of the SiC semiconductor substrate, the epitaxial layer is grown by adding 0.1 to 1.0% hydrogen chloride by volume and growing at 1450 to 1550 ° C. The crystallinity of the SiC semiconductor device can be improved, and the characteristics of the SiC semiconductor device can be improved.
[Brief description of the drawings]
FIG. 1 is a characteristic diagram showing the relationship between HCl concentration and etch pit density during epitaxial growth. FIG. 2 is a characteristic diagram showing the relationship between etch pit density and mobility.

Claims (2)

炭化けい素半導体基板上に炭化けい素エピタキシャル層を成長させる炭化けい素半導体基板の製造方法において、
水素、モノシラン、プロパンに塩化水素ガスを添加した雰囲気中でエピタキシャル層を成長する炭化けい素半導体基板の製造方法であって、
炭化けい素半導体基板が、4H−SiCまたは6H−SiCのいずれかであり、
塩化水素の添加量が体積比で0.1〜1%であり、
さらに、エピタキシャル成長時の温度が1450℃〜1550℃である、
ことを特徴とする炭化けい素半導体基板の製造方法。
The method of manufacturing a silicon carbide semiconductor substrate to grow a silicon carbide epitaxial layer on a silicon carbide semiconductor substrate,
A silicon carbide semiconductor substrate manufacturing method for growing an epitaxial layer in an atmosphere in which hydrogen chloride gas is added to hydrogen, monosilane, and propane,
The silicon carbide semiconductor substrate is either 4H-SiC or 6H-SiC;
The amount of hydrogen chloride added is 0.1 to 1% by volume,
Furthermore, the temperature during epitaxial growth is 1450 ° C. to 1550 ° C.,
A method for producing a silicon carbide semiconductor substrate, comprising:
塩化水素の添加量を体積比で0.2〜0.6%とすることを特徴とする請求項1記載の炭化けい素半導体基板の製造方法。2. The method for producing a silicon carbide semiconductor substrate according to claim 1, wherein the amount of hydrogen chloride added is 0.2 to 0.6% by volume.
JP16033898A 1998-06-09 1998-06-09 Method for manufacturing silicon carbide semiconductor substrate Expired - Lifetime JP3915252B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16033898A JP3915252B2 (en) 1998-06-09 1998-06-09 Method for manufacturing silicon carbide semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16033898A JP3915252B2 (en) 1998-06-09 1998-06-09 Method for manufacturing silicon carbide semiconductor substrate

Publications (2)

Publication Number Publication Date
JP2000001398A JP2000001398A (en) 2000-01-07
JP3915252B2 true JP3915252B2 (en) 2007-05-16

Family

ID=15712829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16033898A Expired - Lifetime JP3915252B2 (en) 1998-06-09 1998-06-09 Method for manufacturing silicon carbide semiconductor substrate

Country Status (1)

Country Link
JP (1) JP3915252B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6329088B1 (en) * 1999-06-24 2001-12-11 Advanced Technology Materials, Inc. Silicon carbide epitaxial layers grown on substrates offcut towards <1{overscore (1)}00>
US7147713B2 (en) * 2003-04-30 2006-12-12 Cree, Inc. Phase controlled sublimation
US7247513B2 (en) * 2003-05-08 2007-07-24 Caracal, Inc. Dissociation of silicon clusters in a gas phase during chemical vapor deposition homo-epitaxial growth of silicon carbide
JP2005167035A (en) 2003-12-03 2005-06-23 Kansai Electric Power Co Inc:The Silicon carbide semiconductor device and manufacturing method thereof
JP4539140B2 (en) * 2004-03-29 2010-09-08 住友電気工業株式会社 Silicon carbide substrate and method for manufacturing the same
JP4786223B2 (en) * 2005-05-24 2011-10-05 新日本製鐵株式会社 Epitaxial silicon carbide single crystal substrate and manufacturing method thereof
JP4707148B2 (en) * 2007-03-26 2011-06-22 日立金属株式会社 Silicon carbide single crystal substrate and method for manufacturing the same
CN102301043B (en) * 2009-01-30 2014-07-23 新日铁住金株式会社 Epitaxial silicon carbide single crystal substrate and mehtod for producing same
CN104619881A (en) * 2012-08-17 2015-05-13 株式会社Ihi Method for manufacturing heat resistant composite material and manufacturing device
JP6579710B2 (en) * 2015-12-24 2019-09-25 昭和電工株式会社 Method for manufacturing SiC epitaxial wafer
JP6164672B1 (en) 2016-07-19 2017-07-19 国立研究開発法人産業技術総合研究所 Semiconductor device and manufacturing method thereof

Also Published As

Publication number Publication date
JP2000001398A (en) 2000-01-07

Similar Documents

Publication Publication Date Title
US4912063A (en) Growth of beta-sic thin films and semiconductor devices fabricated thereon
JP3854508B2 (en) SiC wafer, SiC semiconductor device, and method of manufacturing SiC wafer
US5011549A (en) Homoepitaxial growth of Alpha-SiC thin films and semiconductor devices fabricated thereon
JP5285202B2 (en) Bipolar semiconductor device and manufacturing method thereof
US7507650B2 (en) Process for producing Schottky junction type semiconductor device
KR101302845B1 (en) Method of surface reconstruction for silicon carbide substrate
WO2005093796A1 (en) Bipolar semiconductor device and process for producing the same
JP2000319099A (en) SiC WAFER, SiC SEMICONDUCTOR DEVICE AND PRODUCTION OF SiC WAFER
JP2007131504A (en) SiC EPITAXIAL WAFER AND SEMICONDUCTOR DEVICE USING THE SAME
JP2006321696A (en) Method for manufacturing silicon carbide single crystal
JP4879507B2 (en) Bipolar semiconductor device forward voltage recovery method, stacking fault reduction method, and bipolar semiconductor device
WO2001018286A1 (en) Sic SINGLE CRYSTAL AND METHOD FOR GROWING THE SAME
JP3915252B2 (en) Method for manufacturing silicon carbide semiconductor substrate
JP4442366B2 (en) Epitaxial SiC film, manufacturing method thereof, and SiC semiconductor device
JPH0952796A (en) Method for growing silicon carbide crystal and silicon carbide semiconductor device
JP3742877B2 (en) Method for producing SiC single crystal thin film
WO2008015766A1 (en) Method for recovering forward voltage of bipolar semiconductor device, method for reducing lamination defect and bipolar semiconductor device
JP2000133819A (en) Silicon carbide schottky barrier diode and manufacture thereof
JP3508356B2 (en) Semiconductor crystal growth method and semiconductor thin film
JP2001181095A (en) Silicon carbide single crystal and its growing method
JPH10261615A (en) Surface morphology control method of sic semiconductor and growing method of sic semiconductor thin film
JPH0952798A (en) Production of silicon carbide thin film as well as silicon carbide thin film and laminated substrate
JP3525150B2 (en) Method for manufacturing silicon carbide semiconductor substrate
JP2000150393A (en) Manufacture of silicon carbide
King et al. Chemical Vapor Cleaning of 6H‐SiC Surfaces

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060522

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060704

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070129

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term