JP3525150B2 - Method for manufacturing silicon carbide semiconductor substrate - Google Patents

Method for manufacturing silicon carbide semiconductor substrate

Info

Publication number
JP3525150B2
JP3525150B2 JP28679597A JP28679597A JP3525150B2 JP 3525150 B2 JP3525150 B2 JP 3525150B2 JP 28679597 A JP28679597 A JP 28679597A JP 28679597 A JP28679597 A JP 28679597A JP 3525150 B2 JP3525150 B2 JP 3525150B2
Authority
JP
Japan
Prior art keywords
silicon carbide
sic
substrate
etching
epitaxial layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28679597A
Other languages
Japanese (ja)
Other versions
JPH11121441A (en
Inventor
隆一 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Device Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Device Technology Co Ltd filed Critical Fuji Electric Device Technology Co Ltd
Priority to JP28679597A priority Critical patent/JP3525150B2/en
Publication of JPH11121441A publication Critical patent/JPH11121441A/en
Application granted granted Critical
Publication of JP3525150B2 publication Critical patent/JP3525150B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Drying Of Semiconductors (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、半導体素子を形成
する炭化けい素基板の製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for manufacturing a silicon carbide substrate for forming a semiconductor element.

【0002】[0002]

【従来の技術】高周波、大電力の制御を目的として、シ
リコン(以下Siと記す)を用いた電力用半導体素子
(以下パワーデバイスと称する)では、各種の工夫によ
り高性能化が進められている。しかし、パワーデバイス
は高温や放射線等の存在下で使用されることもあり、そ
のような条件下ではSiのパワーデバイスは使用できな
いことがある。
2. Description of the Related Art For the purpose of controlling high frequency and large power, a power semiconductor element (hereinafter referred to as a power device) using silicon (hereinafter referred to as Si) has been improved in performance by various means. . However, since the power device may be used in the presence of high temperature or radiation, the Si power device may not be usable under such conditions.

【0003】また、Siのパワーデバイスより更に高性
能のものを求める声に対して、新しい材料の適用が検討
されている。本提案でとりあげる炭化けい素(以下Si
Cと記す)は広い禁制帯幅(4H−SiCで3.26e
V、6H−SiCで3.02eV)をもつため、高温で
の電気伝導度の制御性や耐放射線性に優れ、またSiよ
り約1桁高い絶縁破壊電圧をもつため、高耐圧素子への
適用が可能である。さらに、SiCはSiの約2倍の電
子飽和ドリフト速度をもつので、高周波大電力制御にも
適する。
Further, in response to the demand for higher performance than Si power devices, the application of new materials is being studied. Silicon carbide (hereinafter Si)
The width of the forbidden band is 3.26e in 4H-SiC.
Since it has V2 and 6H-SiC of 3.02 eV), it has excellent controllability of electric conductivity at high temperature and radiation resistance, and has a dielectric breakdown voltage that is about an order of magnitude higher than Si. Is possible. Furthermore, since SiC has an electron saturation drift velocity that is about twice that of Si, it is also suitable for high-frequency, high-power control.

【0004】しかし、SiCの優れた物性をパワーデバ
イスに応用するためには、Siのプロセス技術並みに洗
練された要素技術が必要となる。すなわち、SiC基板
の表面を鏡面に仕上げた後、SiC薄膜をエピタキシャ
ル成長させたり、その過程でドナーやアクセプターをド
ーピングしたり、金属膜や酸化膜を形成する等の工程条
件の最適化が必要である。
However, in order to apply the excellent physical properties of SiC to power devices, elemental technology as sophisticated as the process technology of Si is required. That is, after finishing the surface of the SiC substrate to a mirror surface, it is necessary to optimize the process conditions such as epitaxially growing a SiC thin film, doping a donor or an acceptor in the process, forming a metal film or an oxide film. .

【0005】エピタキシャル成長における課題は、その
後作製する素子の特性が満足なものとなるように、意図
したキャリア密度をもち、かつ結晶性のよい薄膜を得る
ことである。Siのエピタキシャル成長においては、成
長前の下地板(以下基板と呼ぶ)に塩酸(以下HClと
記す)ガスエッチングをおこない、基板表面を平坦かつ
清浄にしている。そしてこのように表面を制御して作製
したショットキーダイオードの特性は表面処理しないも
のに比べ向上する。
The problem in epitaxial growth is to obtain a thin film having an intended carrier density and good crystallinity so that the characteristics of the device to be manufactured thereafter will be satisfactory. In the epitaxial growth of Si, a base plate (hereinafter referred to as a substrate) before growth is subjected to hydrochloric acid (hereinafter referred to as HCl) gas etching to make the surface of the substrate flat and clean. The characteristics of the Schottky diode manufactured by controlling the surface in this way are improved as compared with those without surface treatment.

【0006】これに対し、SiC上のエピタキシャル成
長においては、基板の表面処理としては水素(H2 )中
加熱が最も一般的である。[例えば、C.Hallin, A.S.Ba
kin,F.Owman, P.Maertensson, O.Kordina, and E.Janze
n,"Silicon Carbide and Related Materials" Inst. of
Phys. Conf. Ser., no.142, 1996, pp.613-616参照]
HClによるエッチングも低濃度領域で試みられては
いるが、エッチピットを生じるとして一般的にはなって
いなかった。[例えば、A.A.Burk,Jr., L.B.Rowland,
J. Crystal Growth, vol.167, pp.586-595,(1996)参
照]
On the other hand, in the epitaxial growth on SiC, heating in hydrogen (H 2 ) is the most common surface treatment of the substrate. [For example, C. Hallin, ASBa
kin, F.Owman, P.Maertensson, O.Kordina, and E.Janze
n, "Silicon Carbide and Related Materials" Inst. of
Phys. Conf. Ser., No.142, 1996, pp.613-616]
Although etching with HCl has been attempted in a low concentration region, it has not been generally performed because it causes an etch pit. [For example, AABurk, Jr., LB Rowland,
J. Crystal Growth, vol.167, pp.586-595, (1996)]

【0007】[0007]

【発明が解決しようとする課題】しかし、H2 中加熱に
よるエッチングでは、表面にシリコンの液滴を生じるな
どの問題があった。[前記A.A.Burk,Jr., L.B.Rowlanの
文献参照] このような状況に鑑み本発明の目的は、素子特性の観点
からエピタキシャル成長前の処理として最適のエッチン
グ方法を提供することにある。
However, etching by heating in H 2 has a problem that silicon droplets are generated on the surface. [Refer to the above-mentioned reference of AA Burk, Jr., LB Rowlan] In view of such a situation, an object of the present invention is to provide an optimum etching method as a treatment before epitaxial growth from the viewpoint of device characteristics.

【0008】[0008]

【課題を解決するための手段】前述のようにSiC技術
においてはエピタキシャル成長前のHClエッチング
は、エッチピットを生じるとして一般的にはなっていな
かった。発明者はエピタキシャル成長する直前におこな
う基板の熱気相エッチングの条件、すなわちHClガス
をH2 またはアルゴン(Ar)で希釈するときの体積比
および温度について実験をおこなった結果、むしろ高濃
度の領域で、HClエッチングが有効であることを見い
だした。
As described above, in the SiC technique, HCl etching before epitaxial growth has not been generally performed because it causes an etch pit. The inventor conducted experiments on the conditions of hot-gas phase etching of a substrate immediately before epitaxial growth, that is, the volume ratio and temperature when diluting HCl gas with H 2 or argon (Ar), and as a result, in a high concentration region, We have found that HCl etching is effective.

【0009】上記課題解決のため本発明は、半導体素子
用の炭化けい素基板の製造方法にお坩堝いて、エピタキ
シャル成長前の炭化けい素下地板の表面を、体積比で
〜15%に希釈した塩酸ガス雰囲気中で1300〜15
00℃に加熱、気相エッチングし、エピタキシャル層を
成長するものとする。そのようにすれば、基板表面の清
浄化およびエッチングがおこなわれ、例えば、キャリア
移動度などエピタキシャル層の結晶性および膜質が向上
する。
In order to solve the above problems, the present invention provides a method of manufacturing a silicon carbide substrate for a semiconductor device, in which the surface of a silicon carbide base plate before epitaxial growth has a volume ratio of 6 %.
1300 to 15 in a hydrochloric acid gas atmosphere diluted to 15%
The epitaxial layer is grown by heating at 00 ° C. and performing vapor phase etching. By doing so, the substrate surface is cleaned and etched, and the crystallinity and film quality of the epitaxial layer such as carrier mobility are improved.

【0010】釈ガスとしては、H2 またはArが使用
できた。
[0010] As the dilution gas, H 2 or Ar is available.

【0011】[0011]

【発明の実施の形態】以下本発明のためにおこなった実
験および実施例について説明する。 [実験1]まず、HCl濃度について実験をおこなっ
た。エピタキシャル成長前のサブストレート(以下基板
と呼ぶ)としては鏡面研磨された4H−SiC単結晶を
用い、(0001)Si面から〈1、1、−2、0〉方
向に8度傾けて研磨した面を使用した。
BEST MODE FOR CARRYING OUT THE INVENTION Experiments and examples conducted for the present invention will be described below. [Experiment 1] First, an experiment was conducted on the HCl concentration. As a substrate (hereinafter referred to as a substrate) before epitaxial growth, a mirror-polished 4H-SiC single crystal was used, and a surface polished from the (0001) Si plane by tilting 8 degrees in the <1, 1, -2, 0> direction It was used.

【0012】先ず、基板をダイサーにより5mm角のチ
ップに切り分け、有機溶剤と酸による洗浄をした後、エ
ッチングするSi面を上にして、基板をSiCで被覆し
た黒鉛のサセプタに載せる。基板を載せたサセプタを石
英反応管内に挿入し、1Pa以下の真空にひく。次に気
相エッチングをおこなう。気相エッチングは、H2 にH
Clガスを毎分10〜150mLの流量で混ぜた混合ガ
スを流しながら1400℃で5分間加熱した。サセプタ
の加熱法は高周波誘導加熱である。
First, the substrate is cut into 5 mm square chips by a dicer, washed with an organic solvent and an acid, and then the substrate is placed on a graphite susceptor coated with SiC with the Si surface to be etched up. The susceptor on which the substrate is placed is inserted into the quartz reaction tube and evacuated to a vacuum of 1 Pa or less. Next, vapor phase etching is performed. The vapor phase etching is H 2 to H 2 .
The mixture was heated at 1400 ° C for 5 minutes while flowing a mixed gas in which Cl gas was mixed at a flow rate of 10 to 150 mL per minute. The heating method for the susceptor is high frequency induction heating.

【0013】続いて化学気相成長法でSiC薄膜を成長
する。H2 ガス、モノシランガス(SiH4 )、プロパ
ンガス(C3 8 )をそれぞれ毎分3L、0.3mL、
0.25mLの流量比率で混合したものを反応管内に導
入する。この状態で1550℃で2時間加熱した。する
と基板上に4H型SiCエピタキシャル層が成長する。
Subsequently, a SiC thin film is grown by the chemical vapor deposition method. H 2 gas, monosilane gas (SiH 4 ), propane gas (C 3 H 8 ) 3 L / min, 0.3 mL,
The mixture having a flow rate ratio of 0.25 mL is introduced into the reaction tube. In this state, it was heated at 1550 ° C. for 2 hours. Then, a 4H type SiC epitaxial layer grows on the substrate.

【0014】成長した膜の転位密度を評価するために、
水酸化カリウム(KOH)によるエッチングをおこなっ
た。このエッチングは、Ni坩堝内で400℃に加熱し
たKOHに試料を30秒間浸漬する方法を用いた。欠陥
密度の計数はSEM観察によった。エピタキシャル層の
キャリア密度は5×1015cm-3であった。図2に、エ
ピタキシャル層成長前のエッチング条件(HCl濃度)
とSiCエピタキシャル層中のエッチピット密度の関係
を示す。この図からHCl濃度(すなわち体積比)が増
すにつれて、エッチピット密度が減少し、特に10%を
越えるとエッチピット密度の減少が顕著になることが分
る。実験をおこなったうちの最高濃度である15%にお
いて、もっとも低いエッチピット密度を示した。
In order to evaluate the dislocation density of the grown film,
Etching was performed with potassium hydroxide (KOH). For this etching, a method of immersing the sample in KOH heated to 400 ° C. for 30 seconds in a Ni crucible was used. The defect density was counted by SEM observation. The carrier density of the epitaxial layer was 5 × 10 15 cm −3 . Figure 2 shows the etching conditions (HCl concentration) before epitaxial layer growth.
And shows the relationship between the etch pit density in the SiC epitaxial layer. From this figure, it can be seen that the etch pit density decreases as the HCl concentration (that is, the volume ratio) increases, and particularly when it exceeds 10%, the etch pit density decreases remarkably. The lowest etch pit density was exhibited at the highest concentration of 15% of the experiments.

【0015】エッチピットは、エピタキシャル層中の線
状欠陥である転位の位置にできるのであり、結晶性の良
否を反映している。従って、図から、成長するエピタキ
シャル層の結晶性は、エッチング時のHCl濃度が高い
程改善され、3%以上、更に望ましくは6%以上とする
のが良いと結論づけられる。 [実験2]次に、エッチング条件とSiCエピタキシャ
ル層中の移動度の関係を調べた。
The etch pits can be formed at the positions of dislocations which are linear defects in the epitaxial layer, and reflect the quality of crystallinity. Therefore, it can be concluded from the figure that the crystallinity of the growing epitaxial layer is improved as the HCl concentration during etching is increased, and is preferably 3% or more, more preferably 6% or more. [Experiment 2] Next, the relationship between the etching conditions and the mobility in the SiC epitaxial layer was investigated.

【0016】その実験方法を以下に述べる。SiCをエ
ピタキシャル成長した試料の作製方法は実施例1と同じ
とした。エピタキシャル層の移動度の評価法としては、
vander Pauw 法を用いた。すなわち、試料のエピタキ
シャル層上の四隅に、金属マスクを使ったスパッタ法に
よりニッケル(Ni)電極を形成する。電極の直径は2
00μm、厚さは400nmである。この後、整流性を
除きオーミックな接触とするためアルゴン(Ar)雰囲
気中で1050℃、5分間のアニールをおこなう。
The experimental method will be described below. The method for producing a sample in which SiC was epitaxially grown was the same as in Example 1. As a method of evaluating the mobility of the epitaxial layer,
The vander Pauw method was used. That is, nickel (Ni) electrodes are formed at four corners on the epitaxial layer of the sample by the sputtering method using a metal mask. The diameter of the electrode is 2
The thickness is 00 μm and the thickness is 400 nm. After that, annealing is performed at 1050 ° C. for 5 minutes in an argon (Ar) atmosphere to obtain ohmic contact except for rectifying property.

【0017】図3に、エピタキシャル層成長前のエッチ
ング条件とSiCエピタキシャル層中の移動度との関係
を示す。図において、HCl濃度の増大とともに、移動
度が急速に向上し、10%を越えると飽和していること
が見られる。すなわち、移動度の観点から、エピタキシ
ャル層成長前処理のHCl濃度は高いが良く、3%以
上、更に望ましくは6%以上とするのが良いと結論づけ
られる。これは、エピタキシャル成長前に、表面の清浄
化およびエッチングが十分に行われたためである。ま
た、シリコン半導体において見られる金属不純物のゲッ
タリング作用もあるかもしれない。
FIG. 3 shows the relationship between the etching conditions before the growth of the epitaxial layer and the mobility in the SiC epitaxial layer. In the figure, it can be seen that the mobility rapidly increases as the HCl concentration increases and becomes saturated when the concentration exceeds 10%. That is, from the viewpoint of mobility, it is concluded that the higher the HCl concentration in the epitaxial layer growth pretreatment, the better, and the better it is 3% or more, and more desirably 6% or more. This is because the surface was sufficiently cleaned and etched before the epitaxial growth. It may also have a gettering effect on metal impurities found in silicon semiconductors.

【0018】[実施例]エッチング条件のデバイス特性
への直接的な影響を調べる目的で、ショットキーダイオ
ードを作製した。以下に実験方法を述べる。用いた基板
とその清浄法、基板のエッチング法とエピタキシャル成
長法は実験1と同じである。ショットキーダイオードは
以下に説明するような方法により作製した。
Example A Schottky diode was manufactured for the purpose of investigating the direct influence of etching conditions on the device characteristics. The experimental method is described below. The substrate used and its cleaning method, the substrate etching method and the epitaxial growth method are the same as in Experiment 1. The Schottky diode was manufactured by the method described below.

【0019】まず、SiC基板の裏面にNiをスパッタ
し、Ar雰囲気中、1050℃、5分間のアニールによ
りバックコンタクトを形成した。次にSiCエピタキシ
ャル層の表面上にメタルマスクを介してAuをスパッタ
し、ショットキー電極とした。ショットキー電極の直径
は200μmである。このようにして作製したショット
キーダイオードの特性(ショットキー障壁高さ、耐圧)
とエッチング条件との関係を調べた。ショットキー障壁
高さと耐圧は電流−電圧(IV)曲線より求めた。図1
は、両特性のHCl濃度依存性を示す特性図である。
First, Ni was sputtered on the back surface of a SiC substrate, and a back contact was formed by annealing at 1050 ° C. for 5 minutes in an Ar atmosphere. Next, Au was sputtered on the surface of the SiC epitaxial layer through a metal mask to form a Schottky electrode. The diameter of the Schottky electrode is 200 μm. Characteristics of Schottky diode fabricated in this way (Schottky barrier height, breakdown voltage)
And the etching conditions were investigated. The Schottky barrier height and breakdown voltage were obtained from the current-voltage (IV) curve. Figure 1
FIG. 6 is a characteristic diagram showing the HCl concentration dependence of both characteristics.

【0020】HCl濃度が3%を越えると障壁高さ、耐
圧がともに増大している。さらに障壁高さは15%まで
徐々に増大している。また、耐圧はHCl濃度が5%で
520V程度に達しその後飽和している。10%のとき
の値は素子の設計値とほぼ一致する。以上の結果からH
Cl濃度を3%以上、のぞましくは6%以上とすること
によって、SiC半導体薄膜の結晶性および、半導体素
子の特性を向上させることができる。
When the HCl concentration exceeds 3%, both the barrier height and the breakdown voltage increase. Furthermore, the barrier height gradually increases to 15%. Further, the breakdown voltage reaches about 520 V when the HCl concentration is 5% and is saturated thereafter. The value at 10% almost agrees with the design value of the element. From the above results, H
By setting the Cl concentration to 3% or higher, preferably 6% or higher, the crystallinity of the SiC semiconductor thin film and the characteristics of the semiconductor element can be improved.

【0021】また、実験および実施例では1400℃の
エッチング条件における結果のみを記したが、1300
から1500℃の範囲において同様の結果が得られた。
また成長面についても上記4H−SiCの(0001)
Si面だけでなく、4H−SiCのC面、或いは6H−
SiCのSi面、C面またはこれらの面を微小角度で傾
斜した面にも適用できる。
Further, in the experiment and the example, only the result under the etching condition of 1400 ° C. is shown.
The same result was obtained in the range from 1 to 1500 ° C.
As for the growth surface, (0001) of 4H-SiC
Not only Si surface, 4H-SiC C surface or 6H-
It can also be applied to a Si surface of SiC, a C surface, or a surface obtained by inclining these surfaces at a minute angle.

【0022】[0022]

【発明の効果】以上説明したように本発明によれば、S
iC半導体基板のエピタキシャル成長前の表面を、体積
比で〜15%に希釈した塩酸ガス雰囲気中で1300
〜1500℃に加熱し、気相エッチングすることによっ
て、成長するエピタキシャル層の結晶性を改善し、Si
C半導体素子の特性を向上させることができる。
As described above, according to the present invention, S
The surface of the iC semiconductor substrate before epitaxial growth was diluted with a volume ratio of 6 to 15% in a hydrochloric acid gas atmosphere at 1300.
By heating to ˜1500 ° C. and performing vapor phase etching, the crystallinity of the growing epitaxial layer is improved,
The characteristics of the C semiconductor element can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】HCl濃度とショットキーダイオード特性(障
壁高さと耐圧)の関係を示す特性図
FIG. 1 is a characteristic diagram showing the relationship between HCl concentration and Schottky diode characteristics (barrier height and breakdown voltage).

【図2】HCl濃度とエッチピット密度の関係を示す特
性図
FIG. 2 is a characteristic diagram showing the relationship between HCl concentration and etch pit density.

【図3】HCl濃度と薄膜の移動度の関係を示す特性図FIG. 3 is a characteristic diagram showing the relationship between HCl concentration and thin film mobility.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】半導体素子用の炭化けい素基板の製造方法
において、エピタキシャル成長前の炭化けい素下地板の
表面を、体積比で〜15%に希釈した塩酸ガス雰囲気
中で1300〜1500℃に加熱、気相エッチングし、
エピタキシャル層を成長することを特徴とする炭化けい
素半導体基板の製造方法。
1. A method of manufacturing a silicon carbide substrate for a semiconductor device, wherein the surface of a silicon carbide base plate before epitaxial growth is heated to 1300 to 1500 ° C. in a hydrochloric acid gas atmosphere diluted to a volume ratio of 6 to 15%. Heating, vapor etching,
A method for manufacturing a silicon carbide semiconductor substrate, which comprises growing an epitaxial layer.
【請求項2】希釈ガスが水素またはアルゴンであること
を特徴とする請求項1に記載の炭化けい素半導体基板の
製造方法。
2. The method for manufacturing a silicon carbide semiconductor substrate according to claim 1, wherein the diluent gas is hydrogen or argon.
JP28679597A 1997-10-20 1997-10-20 Method for manufacturing silicon carbide semiconductor substrate Expired - Lifetime JP3525150B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28679597A JP3525150B2 (en) 1997-10-20 1997-10-20 Method for manufacturing silicon carbide semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28679597A JP3525150B2 (en) 1997-10-20 1997-10-20 Method for manufacturing silicon carbide semiconductor substrate

Publications (2)

Publication Number Publication Date
JPH11121441A JPH11121441A (en) 1999-04-30
JP3525150B2 true JP3525150B2 (en) 2004-05-10

Family

ID=17709149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28679597A Expired - Lifetime JP3525150B2 (en) 1997-10-20 1997-10-20 Method for manufacturing silicon carbide semiconductor substrate

Country Status (1)

Country Link
JP (1) JP3525150B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6489241B1 (en) * 1999-09-17 2002-12-03 Applied Materials, Inc. Apparatus and method for surface finishing a silicon film
JP5285202B2 (en) * 2004-03-26 2013-09-11 一般財団法人電力中央研究所 Bipolar semiconductor device and manufacturing method thereof
DE102005058713B4 (en) * 2005-12-08 2009-04-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for cleaning the volume of substrates, substrate and use of the method
JP4916479B2 (en) * 2008-05-13 2012-04-11 トヨタ自動車株式会社 Manufacturing method of silicon carbide epitaxial substrate

Also Published As

Publication number Publication date
JPH11121441A (en) 1999-04-30

Similar Documents

Publication Publication Date Title
US6995396B2 (en) Semiconductor substrate, semiconductor device and method for fabricating the same
KR100853991B1 (en) Bipolar Semiconductor Device and Process for Producing the Same
US20110006310A1 (en) Semiconductor device and semiconductor device manufacturing method
EP1981076A1 (en) Method for manufacturing silicon carbide semiconductor device
US8338833B2 (en) Method of producing silicon carbide semiconductor substrate, silicon carbide semiconductor substrate obtained thereby and silicon carbide semiconductor using the same
JP2009088223A (en) Silicon carbide semiconductor substrate and silicon carbide semiconductor device using the same
JP4100652B2 (en) SiC Schottky diode
JP2000319099A (en) SiC WAFER, SiC SEMICONDUCTOR DEVICE AND PRODUCTION OF SiC WAFER
JP4879507B2 (en) Bipolar semiconductor device forward voltage recovery method, stacking fault reduction method, and bipolar semiconductor device
WO2007094421A1 (en) Schottky junction type semiconductor element and method for manufacturing same
JP2003234301A (en) Semiconductor substrate, semiconductor element and method for manufacturing the same
WO2007032214A1 (en) Process for producing silicon carbide semiconductor device
JP3230650B2 (en) Silicon carbide semiconductor substrate, method of manufacturing the same, and silicon carbide semiconductor device using the substrate
JP3733792B2 (en) Method for manufacturing silicon carbide semiconductor element
JP3915252B2 (en) Method for manufacturing silicon carbide semiconductor substrate
JP2000133819A (en) Silicon carbide schottky barrier diode and manufacture thereof
JP3956487B2 (en) Method for manufacturing silicon carbide semiconductor device
JP3963154B2 (en) Method for manufacturing silicon carbide Schottky barrier diode
WO2008015766A1 (en) Method for recovering forward voltage of bipolar semiconductor device, method for reducing lamination defect and bipolar semiconductor device
JP3944970B2 (en) Method for manufacturing silicon carbide semiconductor device
JP3525150B2 (en) Method for manufacturing silicon carbide semiconductor substrate
US5155559A (en) High temperature refractory silicide rectifying contact
JPH10261615A (en) Surface morphology control method of sic semiconductor and growing method of sic semiconductor thin film
CN116705605A (en) Silicon-based gallium nitride HEMT device and preparation method thereof
JPH02253622A (en) Manufacture of silicon carbide semiconductor device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031225

R155 Notification before disposition of declining of application

Free format text: JAPANESE INTERMEDIATE CODE: R155

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110227

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110227

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term