JP4842094B2 - Epitaxial silicon carbide single crystal substrate manufacturing method - Google Patents

Epitaxial silicon carbide single crystal substrate manufacturing method Download PDF

Info

Publication number
JP4842094B2
JP4842094B2 JP2006299035A JP2006299035A JP4842094B2 JP 4842094 B2 JP4842094 B2 JP 4842094B2 JP 2006299035 A JP2006299035 A JP 2006299035A JP 2006299035 A JP2006299035 A JP 2006299035A JP 4842094 B2 JP4842094 B2 JP 4842094B2
Authority
JP
Japan
Prior art keywords
growth
epitaxial
single crystal
silicon carbide
carbide single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006299035A
Other languages
Japanese (ja)
Other versions
JP2008115034A (en
Inventor
崇 藍郷
昇 大谷
泰三 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006299035A priority Critical patent/JP4842094B2/en
Publication of JP2008115034A publication Critical patent/JP2008115034A/en
Application granted granted Critical
Publication of JP4842094B2 publication Critical patent/JP4842094B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Description

本発明は、エピタキシャル炭化珪素(SiC)単結晶基板の製造方法に関するものである。 The present invention relates to a manufacturing method of the epitaxial silicon carbide (SiC) single crystal base plate.

炭化珪素(SiC)は、耐熱性及び機械的強度に優れ、物理的、化学的に安定なことから、耐環境性半導体材料として注目されている。また、近年、高周波高耐圧電子デバイス等の基板としてSiC単結晶基板の需要が高まっている。   Silicon carbide (SiC) has attracted attention as an environmentally resistant semiconductor material because it is excellent in heat resistance and mechanical strength and is physically and chemically stable. In recent years, the demand for SiC single crystal substrates has increased as a substrate for high-frequency, high-voltage electronic devices.

SiC単結晶基板を用いて、電力デバイス、高周波デバイス等を作製する場合には、通常、基板上に熱CVD法(熱化学蒸着法)と呼ばれる方法を用いてSiC薄膜をエピタキシャル成長させたり、イオン注入法により直接ドーパントを打ち込んだりするのが一般的であるが、後者の場合には、注入後に高温でのアニ−ルが必要となるため、エピタキシャル成長による薄膜形成が多用されている。   When manufacturing a power device, a high-frequency device, etc. using a SiC single crystal substrate, a SiC thin film is epitaxially grown on the substrate by a method called thermal CVD (thermochemical vapor deposition) or ion implantation is usually performed. In general, the dopant is directly implanted by the method, but in the latter case, annealing at a high temperature is required after the implantation, so that thin film formation by epitaxial growth is frequently used.

SiC単結晶基板に存在する欠陥は、螺旋転位、刃状貫通転位、基底面内転位の3つに大別される。この内、螺旋転位と刃状貫通転位はc軸に平行であり、基底面内転位は(0001)基底面に存在する。通常、SiC基板上にエピタキシャル成長を行う場合、基板としては1°より大きいオフ角度を持つものを用い、所謂ステップフロー成長を実施する。したがって、エピタキシャル成長用基板には、螺旋転位、刃状貫通転位に加え、基底面内転位もまた存在している。このような基板にエピタキシャル成長を行った際、基板の螺旋転位及び刃状貫通転位は、エピタキシャル層にそのまま引き継がれる。基板の基底面内転位は、エピタキシャル成長が開始される時、表面との相互作用により、その70〜90%は刃状貫通転位へと変換されてエピタキシャル層内に伝播するが、残りの10〜30%は依然として基底面内転位としてエピタキシャル層に引き継がれる。このようにして、エピタキシャル層内に存在する基底面内転位の密度は通常103/cm2以上であるが、近年の研究進展により、この基底面内転位がデバイスの特性劣化を引き起こすことが明らかになってきている(非特許文献1)。 Defects existing in SiC single crystal substrates are roughly classified into three types: screw dislocations, edge threading dislocations, and basal plane dislocations. Among these, the screw dislocation and the edge threading dislocation are parallel to the c-axis, and the basal plane dislocation exists on the (0001) basal plane. Normally, when epitaxial growth is performed on a SiC substrate, a substrate having an off angle larger than 1 ° is used, and so-called step flow growth is performed. Therefore, in the epitaxial growth substrate, in addition to the screw dislocation and the edge threading dislocation, the basal plane dislocation also exists. When epitaxial growth is performed on such a substrate, spiral dislocations and edge threading dislocations of the substrate are inherited as they are in the epitaxial layer. Dislocations in the basal plane of the substrate are propagated into the epitaxial layer by converting 70 to 90% of them into edge threading dislocations by the interaction with the surface when epitaxial growth is started, but the remaining 10 to 30 % Is still transferred to the epitaxial layer as dislocations in the basal plane. In this way, the density of dislocations in the basal plane existing in the epitaxial layer is usually 10 3 / cm 2 or more, but it is clear that the dislocations in the basal plane cause device characteristic deterioration due to recent research progress. (Non-Patent Document 1).

SiCエピタキシャル層の基底面内転位を低減する方法として、エピタキシャル成長を行う際に材料ガス中に含まれる炭素と珪素の原子数比(C/Si比)を上げる方法(非特許文献2)、あるいは成長速度を下げる方法(非特許文献2)が報告されており、また、SiC基板をエッチングした後にエピタキシャル成長を行う方法(非特許文献3)も報告されている。しかし、非特許文献2の方法の場合、使用する成長装置によって最適なC/Si比が異なることが懸念され、また、成長速度を下げることによる生産性の低下も問題である。非特許文献3の方法の場合には、KOH溶液でエッチングを行うため、エッチング後に多数の凸凹が生じ、このような基板上にエピタキシャル成長を行った場合、これらの凸凹がエピタキシャル成長後にも残るため、成長後に基板の再研磨が必要になり、コスト増につながる。   As a method of reducing dislocations in the basal plane of the SiC epitaxial layer, a method of increasing the atomic ratio (C / Si ratio) of carbon and silicon contained in the material gas during epitaxial growth (Non-Patent Document 2) or growth A method for reducing the speed (Non-Patent Document 2) has been reported, and a method for performing epitaxial growth after etching a SiC substrate (Non-Patent Document 3) has also been reported. However, in the case of the method of Non-Patent Document 2, there is a concern that the optimum C / Si ratio varies depending on the growth apparatus to be used, and a decrease in productivity due to a decrease in growth rate is also a problem. In the case of the method of Non-Patent Document 3, since etching is performed with a KOH solution, a large number of irregularities are generated after etching. When epitaxial growth is performed on such a substrate, these irregularities remain even after epitaxial growth. Subsequent substrate re-polishing is required, leading to increased costs.

したがって、今後デバイスへの応用が期待されるSiCエピタキシャル成長基板であるが、現状技術では、効率良く低コストで、デバイスの特性や歩留りを劣化させない102/cm2以下程度にまで基底面内転位を減少させることは困難である。一方、所謂on-axis基板を使用し、エピタキシャル成長を行えば、基板表面に基底面転位が現れないため、エピタキシャル層にも基底面転位は存在せず、上記問題は解決されると考えられる。しかし、on-axis基板を用いた場合には、ステップバンチング等による表面状態の劣化が生じ易く、このようなエピタキシャル成長基板を用いた場合には、デバイスの耐圧特性が劣化する等の別の問題が発生し、実用化の弊害となる。
J. P. Bergman, et al., Mater. Sci. Forum, Vol.353-356, p.299 (2001) T. Ohno, et al., J. Crystal Growth, Vol.271, p.1 (2004) Z. Zhang, et al., Appl. Phys. Lett., Vol.87, p.151913-1 (2005)
Therefore, it is a SiC epitaxial growth substrate that is expected to be applied to devices in the future. However, with the current technology, dislocation within the basal plane is reduced to about 10 2 / cm 2 or less, which is efficient and low-cost, and does not degrade device characteristics or yield. It is difficult to reduce. On the other hand, if a so-called on-axis substrate is used and epitaxial growth is performed, basal plane dislocations do not appear on the substrate surface, and therefore no basal plane dislocations exist in the epitaxial layer, and the above problem is considered to be solved. However, when an on-axis substrate is used, the surface state is likely to deteriorate due to step bunching or the like, and when such an epitaxial growth substrate is used, another problem such as deterioration of the breakdown voltage characteristics of the device occurs. Occurs and becomes a negative effect of practical use.
JP Bergman, et al., Mater. Sci. Forum, Vol.353-356, p.299 (2001) T. Ohno, et al., J. Crystal Growth, Vol.271, p.1 (2004) Z. Zhang, et al., Appl. Phys. Lett., Vol.87, p.151913-1 (2005)

本発明は、上記エピタキシャル成長において、基底面内転位の少ない高品質エピタキシャル膜(SiC単結晶薄膜)を有するエピタキシャルSiC単結晶基板の製造方法を提供するものである。 The present invention, in the epitaxial growth, there is provided a method for producing an epitaxial SiC single crystal base plate having a small inside basal plane dislocation high-quality epitaxial film (SiC single crystal thin film).

本発明は、エピタキシャル成長中に、エピタキシャル成長装置内で、成長を1回以上中断することにより、上記課題を解決できることを見出し、完成したものである。即ち、本発明は、
本発明は、エピタキシャル成長中に、エピタキシャル成長装置内で、成長を1回以上中断することにより、上記課題を解決できることを見出し、完成したものである。即ち、本発明は、
(1)炭化珪素単結晶基板上に炭化珪素単結晶薄膜をエピタキシャル成長で形成する際に、成長装置内でエピタキシャル成長を少なくとも1回中断する操作を含むエピタキシャル炭化珪素単結晶基板の製造方法であって、0.5〜1μmのエピタキシャル成長を行って中断を実施するようにして、エピタキシャル層の厚さが5μmに到達するまでに複数回の中断を行うことを特徴とするエピタキシャル炭化珪素単結晶基板の製造方法、
(2) 前記炭化珪素単結晶薄膜のエピタキシャル成長が、熱化学蒸着法(CVD法)による(1)記載のエピタキシャル炭化珪素単結晶基板の製造方法、
(3) 前記炭化珪素単結晶基板のオフ角度が1°よりも大きい(1)又は(2)に記載のエピタキシャル炭化珪素単結晶基板の製造方法、
(4) 前記中断の時間が5〜30分である(1)〜(3)のいずれか1項に記載のエピタキシャル炭化珪素単結晶基板の製造方法、
(5) 成長装置内へのSi源及びC源の材料ガスの供給を一旦止めて、エピタキシャル成長を中断させる(1)〜(4)のいずれか1項に記載のエピタキシャル炭化珪素単結晶基板の製造方法、
(6) 1400℃以下の温度に下げてから成長中断を行う(1)〜(5)のいずれか1項に記載のエピタキシャル炭化珪素単結晶基板の製造方法、
である。
The present invention has been completed by finding that the above-mentioned problems can be solved by interrupting the growth once or more in the epitaxial growth apparatus during the epitaxial growth. That is, the present invention
The present invention has been completed by finding that the above-mentioned problems can be solved by interrupting the growth once or more in the epitaxial growth apparatus during the epitaxial growth. That is, the present invention
(1) A method for producing an epitaxial silicon carbide single crystal substrate including an operation of interrupting epitaxial growth at least once in a growth apparatus when forming a silicon carbide single crystal thin film on a silicon carbide single crystal substrate by epitaxial growth , A method for producing an epitaxial silicon carbide single crystal substrate, wherein the interruption is performed by performing epitaxial growth of 0.5 to 1 μm, and the interruption is performed a plurality of times until the thickness of the epitaxial layer reaches 5 μm. ,
(2) The method for producing an epitaxial silicon carbide single crystal substrate according to (1), wherein the epitaxial growth of the silicon carbide single crystal thin film is performed by a thermal chemical vapor deposition method (CVD method),
(3) The method for producing an epitaxial silicon carbide single crystal substrate according to (1) or (2), wherein an off angle of the silicon carbide single crystal substrate is larger than 1 °.
(4) The method for producing an epitaxial silicon carbide single crystal substrate according to any one of (1) to (3), wherein the interruption time is 5 to 30 minutes,
(5) The production of the epitaxial silicon carbide single crystal substrate according to any one of (1) to (4) , wherein the supply of the material gas of the Si source and the C source into the growth apparatus is temporarily stopped to stop the epitaxial growth. Method,
(6) The method for producing an epitaxial silicon carbide single crystal substrate according to any one of (1) to (5) , wherein growth is interrupted after the temperature is lowered to 1400 ° C. or lower.
It is.

本発明によれば、基底面転位密度の少ない高品質なエピタキシャル膜を有するエピタキシャルSiC単結晶基板を提供することが可能である。   According to the present invention, it is possible to provide an epitaxial SiC single crystal substrate having a high-quality epitaxial film with a low basal plane dislocation density.

また、本発明のエピタキシャルSiC単結晶基板の製造方法においては、特にCVD法を用いてSiC単結晶薄膜をエピタキシャル成長させることで、装置構成が容易で制御性にも優れ、均一性、再現性の高いエピタキシャル膜が得られる。   In addition, in the method of manufacturing an epitaxial SiC single crystal substrate of the present invention, the SiC single crystal thin film is epitaxially grown using the CVD method in particular, so that the apparatus configuration is easy, the controllability is excellent, and the uniformity and reproducibility are high. An epitaxial film is obtained.

さらに、本発明のエピタキシャルSiC単結晶基板を用いたデバイスは、基底面転位密度の少ない高品質エピタキシャル膜上に形成されるため、その特性及び歩留りが向上する。   Furthermore, since the device using the epitaxial SiC single crystal substrate of the present invention is formed on a high quality epitaxial film having a low basal plane dislocation density, its characteristics and yield are improved.

本発明の具体的な内容について述べる。
まず、SiC単結晶基板上へのエピタキシャル成長について述べる。
本発明で好適にエピタキシャル成長に用いる装置は、横型のCVD装置である。CVD法は、装置構成が簡単であり、ガスのon/offで成長を制御できるため、エピタキシャル膜の制御性、再現性に優れた成長方法である。
The specific contents of the present invention will be described.
First, epitaxial growth on a SiC single crystal substrate will be described.
The apparatus preferably used for epitaxial growth in the present invention is a horizontal CVD apparatus. The CVD method has a simple apparatus configuration and can control growth by gas on / off, and is therefore a growth method with excellent controllability and reproducibility of the epitaxial film.

図1に、成長を行う際の典型的な成長シーケンスを、ガスの導入タイミングと併せて示す。まず、成長炉に基板をセットし、成長炉内を真空排気した後、水素ガスを導入して圧力を1×104〜3×104Paに調整する。その後、圧力を一定に保ちながら成長炉の温度を上げ、1400℃程度で10〜30分間、水素中あるいは塩化水素を導入して塩化水素中での基板のエッチングを行う。これは、研磨等に伴う基板表面の変質層を取り除き、清浄な表面を出すためのものである。その後、温度を成長温度である1500〜1600℃に上げ、材料ガスであるSiH4とC3H8を導入して成長を開始する。SiH4流量は毎分4〜5cm3、C3H8流量は毎分1〜3cm3であり、成長速度は毎時5〜6μmである。この成長速度は、通常利用されるエピタキシャル層の膜厚が10μm程度であるため、生産性を考慮して決定されたものである。一定時間成長し、所望の膜厚が得られた時点でSiH4とC3H8の導入を止め、水素ガスのみ流した状態で温度を下げる。温度が常温まで下がった後、水素ガスの導入を止め、成長室内を真空排気し、不活性ガスを成長室に導入して、成長室を大気圧に戻してから、基板を取り出す。 FIG. 1 shows a typical growth sequence for the growth, together with the gas introduction timing. First, a substrate is set in a growth furnace, the inside of the growth furnace is evacuated, and hydrogen gas is introduced to adjust the pressure to 1 × 10 4 to 3 × 10 4 Pa. Thereafter, the temperature of the growth furnace is raised while keeping the pressure constant, and the substrate is etched in hydrogen chloride by introducing hydrogen or hydrogen chloride at about 1400 ° C. for 10 to 30 minutes. This is for removing the altered layer on the surface of the substrate due to polishing or the like, and providing a clean surface. Thereafter, the temperature is increased to 1500 to 1600 ° C. which is the growth temperature, and SiH 4 and C 3 H 8 which are material gases are introduced to start the growth. The SiH 4 flow rate is 4-5 cm 3 per minute, the C 3 H 8 flow rate is 1-3 cm 3 per minute, and the growth rate is 5-6 μm per hour. This growth rate is determined in consideration of productivity because the film thickness of the normally used epitaxial layer is about 10 μm. When the film is grown for a certain period of time and a desired film thickness is obtained, the introduction of SiH 4 and C 3 H 8 is stopped, and the temperature is lowered with only hydrogen gas flowing. After the temperature has dropped to room temperature, the introduction of hydrogen gas is stopped, the growth chamber is evacuated, an inert gas is introduced into the growth chamber, the growth chamber is returned to atmospheric pressure, and the substrate is taken out.

次に、本発明の内容を図2の成長シーケンスで説明する。SiC単結晶基板をセットし、水素あるいは塩化水素中でのエッチングまでは、図1と同様である。その後、1500〜1600℃の成長温度に上げ、材料ガスであるSiH4とC3H8を流して成長を開始するが、成長膜厚が所望の値になる前に、水素ガスは流したままでSiH4とC3H8ガスの供給を一旦停止する。この成長中断時間は5〜30分の間が好ましい。これは、中断時間が5分より短いと、成長した最表面層の状態が安定せず、また30分より長いと水素ガスによる表面エッチングが顕著となり、表面荒れを起こしやすくなるためである。その後、再びSiH4とC3H8ガスを流して成長を開始し、所望の膜厚値になるまで成長を行う。成長後のシーケンスは図1と同様である。表面に現れている基底面転位は、エピタキシャル成長が開始される時に、エピタキシャル膜との相互作用によって刃状貫通転位に変換されていくため、図2のような成長シーケンスを実施することにより、成長が再開される度に刃状貫通転位に変換される数が増え、基底面転位が減少することになる。 Next, the contents of the present invention will be described with reference to the growth sequence of FIG. The process up to setting a SiC single crystal substrate and etching in hydrogen or hydrogen chloride is the same as in FIG. After that, the temperature is raised to 1500-1600 ° C., and the growth is started by flowing the material gases SiH 4 and C 3 H 8 , but the hydrogen gas is kept flowing before the growth film thickness reaches the desired value. Stop supply of SiH 4 and C 3 H 8 gases. This growth interruption time is preferably between 5 and 30 minutes. This is because when the interruption time is shorter than 5 minutes, the state of the grown outermost surface layer is not stable, and when it is longer than 30 minutes, surface etching with hydrogen gas becomes remarkable and surface roughness is likely to occur. Thereafter, SiH 4 and C 3 H 8 gases are flowed again to start growth, and growth is performed until a desired film thickness value is obtained. The sequence after growth is the same as in FIG. The basal plane dislocations appearing on the surface are converted into edge threading dislocations by the interaction with the epitaxial film when the epitaxial growth is started. Therefore, by performing the growth sequence as shown in FIG. Each time it is restarted, the number of blade threading dislocations increases, and basal plane dislocations decrease.

このような考察の基、全体で10μmのエピタキシャル成長を行う際の途中5μmの時点で、5分間成長を中断し、再び残り5μmを成長させたところ、基底面転位を低減させることができた。エピタキシャル層の厚さは、通常5〜50μmが用いられるため、成長中断は、エピタキシャル層の厚さが5μmに到達するまでに行うことが、基底面転位を低減させるのには好ましい。   Based on such considerations, when the total growth of 10 μm was performed at 5 μm, the growth was interrupted for 5 minutes and the remaining 5 μm was grown again. As a result, basal plane dislocations could be reduced. Since the thickness of the epitaxial layer is usually 5 to 50 μm, it is preferable to stop the growth until the thickness of the epitaxial layer reaches 5 μm in order to reduce the basal plane dislocation.

本発明により、エピタキシャル成長の途中で成長を中断させることで、基底面転位の発生を従来よりも低減させることが可能になったが、中断の回数は2回以上が好ましい。これは、通常の(成長の中断を行わない)方法ではエピタキシャル層中に存在する基底面転位の数が103/cm2以上であり、それをデバイス特性に影響を与えない102/cm2以下まで低減するには、成長再開時における基底面転位の刃状貫通転位への変換割合が80%程度であることから導出されるものである。さらに、複数回の成長中断を行う際には、0.5〜1μmのエピタキシャル成長を行った後に実施することが好ましい。これは、成長層が薄過ぎると、刃状貫通転位への変換割合が減少し、また厚過ぎると、上述した5μmの適正膜厚を超えるためである。特に、エピタキシャル成長の初期に成長中断を繰り返し、最後に所望の膜厚まで1度で成長することが、基底面転位の低減には有効である。また、図2においては、成長温度を保ちながら成長の中断を行っているが、成長中断時にエピタキシャル層表面が水素ガス中でエッチングされることによる表面荒れを防ぐためには、1400℃以下に温度を下げてから成長中断を行うことも有効である。成長するエピタキシャル層の厚さは任意であるが、通常形成されるデバイスの耐圧、エピタキシャル膜の生産性等を考慮した場合、5μm 以上50μm以下が好ましい。さらに、基板のオフ角については、1°以下であると、元々表面に存在する基底面欠陥が少ないため、本発明の効果が現れ難く、さらに、基板表面に存在するステップ数が少ないため、正常なエピタキシャル成長が困難になる。また、オフ角が10°を越えるとインゴットから基板を作製する際に、より斜めに切り出す必要があるため、収率が下がる。したがって、1°より大きく10°以下が望ましいが、より好ましくは4°〜8°の間である。 According to the present invention, the occurrence of basal plane dislocations can be reduced as compared with the prior art by interrupting the growth in the middle of the epitaxial growth, but the number of interruptions is preferably two or more. This (no interruption of growth) typically on how is the number of basal plane dislocations present in the epitaxial layer 10 3 / cm 2 or more, it does not affect the device characteristics 10 2 / cm 2 The reduction to the following is derived from the fact that the conversion ratio of basal plane dislocations to edge threading dislocations at the time of restarting growth is about 80%. Furthermore, it is preferable that the growth is interrupted a plurality of times after the epitaxial growth of 0.5 to 1 μm is performed. This is because if the growth layer is too thin, the ratio of conversion to edge threading dislocations decreases, and if it is too thick, the above-mentioned appropriate film thickness of 5 μm is exceeded. In particular, it is effective in reducing the basal plane dislocations to repeat the growth interruption at the initial stage of epitaxial growth and finally grow up to a desired film thickness once. In FIG. 2, the growth is interrupted while maintaining the growth temperature, but in order to prevent surface roughness due to etching of the epitaxial layer surface in hydrogen gas during the growth interruption, the temperature is set to 1400 ° C. or lower. It is also effective to suspend growth after lowering. The thickness of the epitaxial layer to be grown is arbitrary, but it is preferably 5 μm or more and 50 μm or less in consideration of the breakdown voltage of a device usually formed, the productivity of the epitaxial film, and the like. Further, when the off-angle of the substrate is 1 ° or less, since the basal plane defects originally present on the surface are few, the effect of the present invention is hardly exhibited, and furthermore, the number of steps existing on the substrate surface is small, and thus normal. Epitaxial growth becomes difficult. On the other hand, when the off angle exceeds 10 °, it is necessary to cut the substrate more obliquely when producing the substrate from the ingot. Therefore, it is desirable to be greater than 1 ° and not more than 10 °, but more preferably between 4 ° and 8 °.

このようにして成長されたエピタキシャルSiC単結晶基板上に好適に形成されるデバイスは、ショットキーバリアダイオード、PINダイオード、MOSダイオード、MOSトランジスタ等、特に電力制御用に用いられるデバイスである。   Devices suitably formed on the epitaxial SiC single crystal substrate grown in this way are devices used for power control, such as Schottky barrier diodes, PIN diodes, MOS diodes, MOS transistors, and the like.

(実施例1)
2インチ(50mm)ウェーハ用SiC単結晶インゴットから、約400μmの厚さでスライスし、粗削りとダイヤモンド砥粒による通常研磨を実施した、4H型のポリタイプを有するSiC単結晶基板のSi面に、エピタキシャル成長を実施した。基板のオフ角は8°である。基板表面の欠陥密度の典型的な値は、刃状貫通転位が2×103/cm2、基底面転位は1×104/cm2、螺旋転位が1×104/cm2である。成長の手順としては、成長炉に基板をセットし、成長炉内を真空排気した後、水素ガスを毎分16L導入しながら圧力を1.6×104 Paに調整した。その後、圧力を一定に保ちながら成長炉の温度を上げ、1400℃に到達した後、塩化水素を毎分10cm3流し、10分間基板のエッチングを行った。エッチング後、温度を1550℃まで上げ、SiH4流量を毎分4cm3、C3H8流量を毎分3cm3にしてエピタキシャル層を3μm成長した。その後、水素ガスは流したままSiH4とC3H8の導入を止め、温度は1550℃に保ちながら5分間成長を中断した。その後成長を再開し、エピタキシャル層の全体厚が6μmになった時点で再び成長を5分間中断した。さらに成長を再開し、エピタキシャル層の全体厚が10μmになるまで成長を実施した。この時の成長速度は毎時5μm程度であった。
(Example 1)
From a SiC single crystal ingot for 2 inch (50 mm) wafers, sliced at a thickness of about 400 μm, and then subjected to rough grinding and normal polishing with diamond abrasive grains, on the Si surface of the SiC single crystal substrate with 4H type polytype, Epitaxial growth was performed. The off angle of the substrate is 8 °. Typical values of the defect density of the substrate surface, edge-like threading dislocations 2 × 10 3 / cm 2, basal plane dislocation is 1 × 10 4 / cm 2, screw dislocations is 1 × 10 4 / cm 2. As a growth procedure, a substrate was set in a growth furnace, the inside of the growth furnace was evacuated, and then the pressure was adjusted to 1.6 × 10 4 Pa while introducing 16 L of hydrogen gas per minute. Thereafter, the temperature of the growth furnace was raised while keeping the pressure constant, and after reaching 1400 ° C., 10 cm 3 of hydrogen chloride was flowed per minute and the substrate was etched for 10 minutes. After etching, the temperature was raised to 1550 ° C., the SiH 4 flow rate was 4 cm 3 / min, the C 3 H 8 flow rate was 3 cm 3 / min, and an epitaxial layer was grown to 3 μm. Thereafter, the introduction of SiH 4 and C 3 H 8 was stopped while the hydrogen gas was flowing, and the growth was interrupted for 5 minutes while maintaining the temperature at 1550 ° C. Thereafter, the growth was resumed, and when the total thickness of the epitaxial layer reached 6 μm, the growth was interrupted again for 5 minutes. Furthermore, the growth was resumed, and the growth was carried out until the total thickness of the epitaxial layer became 10 μm. The growth rate at this time was about 5 μm per hour.

このようにしてエピタキシャル成長を行った膜に、KOHエッチングを実施し、エッチピットによる欠陥密度の評価を行った。エッチング後の表面の光学顕微鏡写真を図3に示す。図3において、Aが螺旋転位、Bが刃状貫通転位によって生じるエッチピットであり、後述の比較例の図4におけるCが基底面転位によって生じるエッチピットである。図3の写真では、400μm×400μmの部分を観察しているが、この部分にはCのエッチピット、即ち、基底面転位は観察されなかった。2インチウェーハ内を複数点評価した結果、基底面転位密度の平均は約80/cm2であった。このような基板を用いてPINダイオードを形成した際、ダイオードの順方向特性に、基底面転位を起点にした積層欠陥形成による経時劣化は見られず、良好な特性が得られた。 KOH etching was performed on the film epitaxially grown in this way, and the defect density due to etch pits was evaluated. An optical micrograph of the etched surface is shown in FIG. In FIG. 3, A is an etch pit generated by a screw dislocation, B is an etch pit generated by an edge threading dislocation, and C in FIG. 4 of the comparative example described later is an etch pit generated by a basal plane dislocation. In the photograph of FIG. 3, a 400 μm × 400 μm portion was observed, but no C etch pits, that is, basal plane dislocations were observed in this portion. As a result of evaluating a plurality of points in the 2-inch wafer, the average basal plane dislocation density was about 80 / cm 2 . When a PIN diode was formed using such a substrate, the forward characteristics of the diode were not deteriorated over time due to stacking fault formation starting from the basal plane dislocation, and good characteristics were obtained.

(実施例2)
実施例1と同様にスライス、粗削り、通常研磨を行った、4H型のポリタイプを有する2インチ(50mm)のSiC単結晶基板のSi面に、エピタキシャル成長を実施した。基板のオフ角は8°であり、基板表面に存在する欠陥密度は、実施例1と同様である。成長手順、ガス流量、温度等は、実施例1と同様であるが、成長開始後エピタキシャル膜厚が1μm、2μm、3μmの時点でそれぞれ5分間成長を中断した。その後成長を再開し、エピタキシャル層の全体厚が10μmになるまで成長を実施した。成長後、実施例1と同様にエッチピットによる欠陥密度の評価を行ったところ、基底面転位密度の平均は約60/cm2であった。このような基板を用いてPINダイオードを形成した際、ダイオードの順方向特性に、基底面転位を起点にした積層欠陥形成による経時劣化は見られず、良好な特性が得られた。
(Example 2)
Epitaxial growth was performed on the Si surface of a 2 inch (50 mm) SiC single crystal substrate having a 4H-type polytype, which was sliced, roughly ground, and normally polished in the same manner as in Example 1. The off angle of the substrate is 8 °, and the defect density existing on the substrate surface is the same as in Example 1. The growth procedure, gas flow rate, temperature, and the like are the same as in Example 1, but after the start of growth, the growth was interrupted for 5 minutes each when the epitaxial film thickness was 1 μm, 2 μm, and 3 μm. Thereafter, the growth was resumed, and the growth was carried out until the total thickness of the epitaxial layer became 10 μm. After the growth, the defect density by etch pits was evaluated in the same manner as in Example 1. As a result, the average basal plane dislocation density was about 60 / cm 2 . When a PIN diode was formed using such a substrate, the forward characteristics of the diode were not deteriorated over time due to stacking fault formation starting from the basal plane dislocation, and good characteristics were obtained.

(実施例3)
実施例1と同様にスライス、粗削り、通常研磨を行った、4H型のポリタイプを有する2インチ(50mm)のSiC単結晶基板のSi面に、エピタキシャル成長を実施した。基板のオフ角は8°であり、基板表面に存在する欠陥密度は、実施例1と同様である。成長手順、ガス流量、温度等のパラメータ、及び成長中断タイミングは実施例1と同様であるが、成長中断時間を20分とした。成長後、実施例1と同様にエッチピットによる欠陥密度の評価を行ったところ、基底面転位密度の平均は約80/cm2であった。このような基板を用いてPINダイオードを形成した際、ダイオードの順方向特性に、基底面転位を起点にした積層欠陥形成による経時劣化は見られず、良好な特性が得られた。
(Example 3)
Epitaxial growth was performed on the Si surface of a 2 inch (50 mm) SiC single crystal substrate having a 4H-type polytype, which was sliced, roughly ground, and normally polished in the same manner as in Example 1. The off angle of the substrate is 8 °, and the defect density existing on the substrate surface is the same as in Example 1. The growth procedure, parameters such as gas flow rate, temperature, and growth interruption timing were the same as in Example 1, but the growth interruption time was 20 minutes. After the growth, the defect density by the etch pit was evaluated in the same manner as in Example 1. As a result, the average basal plane dislocation density was about 80 / cm 2 . When a PIN diode was formed using such a substrate, the forward characteristics of the diode were not deteriorated over time due to stacking fault formation starting from the basal plane dislocation, and good characteristics were obtained.

(比較例)
比較例として、実施例1と同様にスライス、粗削り、通常研磨を行った、4H型のポリタイプを有する2インチ(50mm)のSiC単結晶基板のSi面に、エピタキシャル成長を実施した。基板のオフ角は8°であり、基板表面に存在する欠陥密度は、実施例1と同様である。成長手順、ガス流量、温度等は、実施例1と同様であるが、成長の中断は行っていない。成長を行った膜にKOHエッチングを実施し、エッチピットによる欠陥密度の評価を行った。エッチング後の表面の光学顕微鏡写真を図4に示す。観察面積は図3と同じである。図4では、A及びBのエッチピット以外に、基底面転位によるCのエッチピットが観察されており、2インチウェーハ内を複数点評価した結果、基底面転位密度の平均は約3000/cm2であった。このような基板を用いてPINダイオードを形成した際、ダイオードの順方向特性における立ち上がり電圧が時間と共に変化する経時劣化が見られた。
(Comparative example)
As a comparative example, epitaxial growth was performed on the Si surface of a 2 inch (50 mm) SiC single crystal substrate having a 4H type polytype, which was sliced, roughly ground, and normally polished as in Example 1. The off angle of the substrate is 8 °, and the defect density existing on the substrate surface is the same as in Example 1. The growth procedure, gas flow rate, temperature and the like are the same as in Example 1, but the growth is not interrupted. KOH etching was performed on the grown film, and the defect density due to etch pits was evaluated. An optical micrograph of the etched surface is shown in FIG. The observation area is the same as in FIG. In FIG. 4, in addition to the A and B etch pits, C etch pits due to basal plane dislocations are observed. As a result of evaluating multiple points in a 2-inch wafer, the average basal plane dislocation density is about 3000 / cm 2. Met. When a PIN diode was formed using such a substrate, deterioration over time was observed in which the rising voltage in the forward characteristics of the diode changed with time.

この発明によれば、SiC単結晶基板上へのエピタキシャル成長において、基底面転位の少ない高品質エピタキシャル膜を有するエピタキシャルSiC単結晶基板を作成することが可能である。そのため、このような基板上に電子デバイスを形成すればデバイスの特性及び歩留まりが向上することが期待できる。本実施例においては、材料ガスとしてSiH4及びC3H8を用いているが、Si源としてトリクロルシラン、C源としてC2H4等を用いた場合についても同様である。 According to the present invention, it is possible to produce an epitaxial SiC single crystal substrate having a high-quality epitaxial film with few basal plane dislocations during epitaxial growth on the SiC single crystal substrate. Therefore, if an electronic device is formed on such a substrate, it can be expected that the characteristics and yield of the device are improved. In this embodiment, SiH 4 and C 3 H 8 are used as the material gas, but the same applies to the case where trichlorosilane is used as the Si source, C 2 H 4 is used as the C source, and the like.

従来技術によるSiCエピタキシャル膜の成長シーケンスを示す図。The figure which shows the growth sequence of the SiC epitaxial film by a prior art. 本発明の一例によるSiCエピタキシャル膜の成長シーケンスを示す図。The figure which shows the growth sequence of the SiC epitaxial film by an example of this invention. 本発明の一例によって成長されたSiCエピタキシャル膜のKOHエッチング後のエッチピットを示す光学顕微鏡像。The optical microscope image which shows the etch pit after KOH etching of the SiC epitaxial film grown by the example of this invention. 従来技術によって成長されたSiCエピタキシャル膜のKOHエッチング後のエッチピットを示す光学顕微鏡像。The optical microscope image which shows the etch pit after KOH etching of the SiC epitaxial film grown by the prior art.

符号の説明Explanation of symbols

A 螺旋転位によって生じるエッチピット
B 刃状貫通転位によって生じるエッチピット
C 基底面転位によって生じるエッチピット
A Etch pit caused by screw dislocation
B Etch pit caused by edge threading dislocation
C Etch pit caused by basal plane dislocation

Claims (6)

炭化珪素単結晶基板上に炭化珪素単結晶薄膜をエピタキシャル成長で形成する際に、成長装置内でエピタキシャル成長を少なくとも1回中断する操作を含むエピタキシャル炭化珪素単結晶基板の製造方法であって、0.5〜1μmのエピタキシャル成長を行って中断を実施するようにして、エピタキシャル層の厚さが5μmに到達するまでに複数回の中断を行うことを特徴とするエピタキシャル炭化珪素単結晶基板の製造方法。 An epitaxial silicon carbide single crystal substrate manufacturing method comprising an operation of interrupting epitaxial growth at least once in a growth apparatus when forming a silicon carbide single crystal thin film on a silicon carbide single crystal substrate by epitaxial growth, A method of manufacturing an epitaxial silicon carbide single crystal substrate, wherein the interruption is performed by performing epitaxial growth of ˜1 μm, and the interruption is performed a plurality of times until the thickness of the epitaxial layer reaches 5 μm . 前記炭化珪素単結晶薄膜のエピタキシャル成長が、熱化学蒸着法(CVD法)による請求項1記載のエピタキシャル炭化珪素単結晶基板の製造方法。   2. The method for producing an epitaxial silicon carbide single crystal substrate according to claim 1, wherein the epitaxial growth of the silicon carbide single crystal thin film is performed by a thermal chemical vapor deposition method (CVD method). 前記炭化珪素単結晶基板のオフ角度が1°よりも大きい請求項1又は2に記載のエピタキシャル炭化珪素単結晶基板の製造方法。   The method for manufacturing an epitaxial silicon carbide single crystal substrate according to claim 1 or 2, wherein an off angle of the silicon carbide single crystal substrate is larger than 1 °. 前記中断の時間が5〜30分である請求項1〜3のいずれか1項に記載のエピタキシャル炭化珪素単結晶基板の製造方法。   The method for producing an epitaxial silicon carbide single crystal substrate according to any one of claims 1 to 3, wherein the interruption time is 5 to 30 minutes. 成長装置内へのSi源及びC源の材料ガスの供給を一旦止めて、エピタキシャル成長を中断させる請求項1〜4のいずれか1項に記載のエピタキシャル炭化珪素単結晶基板の製造方法。 The method for manufacturing an epitaxial silicon carbide single crystal substrate according to any one of claims 1 to 4 , wherein the epitaxial growth is interrupted by temporarily stopping the supply of the material gas of the Si source and the C source into the growth apparatus . 1400℃以下の温度に下げてから成長中断を行う請求項1〜5のいずれか1項に記載のエピタキシャル炭化珪素単結晶基板の製造方法。 The method for producing an epitaxial silicon carbide single crystal substrate according to any one of claims 1 to 5, wherein the growth is interrupted after the temperature is lowered to 1400 ° C or lower .
JP2006299035A 2006-11-02 2006-11-02 Epitaxial silicon carbide single crystal substrate manufacturing method Active JP4842094B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006299035A JP4842094B2 (en) 2006-11-02 2006-11-02 Epitaxial silicon carbide single crystal substrate manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006299035A JP4842094B2 (en) 2006-11-02 2006-11-02 Epitaxial silicon carbide single crystal substrate manufacturing method

Publications (2)

Publication Number Publication Date
JP2008115034A JP2008115034A (en) 2008-05-22
JP4842094B2 true JP4842094B2 (en) 2011-12-21

Family

ID=39501292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006299035A Active JP4842094B2 (en) 2006-11-02 2006-11-02 Epitaxial silicon carbide single crystal substrate manufacturing method

Country Status (1)

Country Link
JP (1) JP4842094B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105074059A (en) * 2013-02-20 2015-11-18 株式会社电装 Silicon carbide single crystal, and method for producing silicon carbide single crystal

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8293623B2 (en) 2007-09-12 2012-10-23 Showa Denko K.K. Epitaxial SiC single crystal substrate and method of manufacture of epitaxial SiC single crystal substrate
JP5458509B2 (en) * 2008-06-04 2014-04-02 日立金属株式会社 Silicon carbide semiconductor substrate
JP2010184833A (en) 2009-02-12 2010-08-26 Denso Corp Silicon carbide single crystal substrate and silicon carbide single crystal epitaxial wafer
JP4850960B2 (en) 2010-04-07 2012-01-11 新日本製鐵株式会社 Epitaxial silicon carbide single crystal substrate manufacturing method
JP5958949B2 (en) * 2011-05-26 2016-08-02 一般財団法人電力中央研究所 Silicon carbide substrate, silicon carbide wafer, silicon carbide wafer manufacturing method, and silicon carbide semiconductor element
KR101971597B1 (en) * 2011-10-26 2019-04-24 엘지이노텍 주식회사 Wafer and method of fabrication thin film
US8860040B2 (en) 2012-09-11 2014-10-14 Dow Corning Corporation High voltage power semiconductor devices on SiC
US9018639B2 (en) 2012-10-26 2015-04-28 Dow Corning Corporation Flat SiC semiconductor substrate
JP5996406B2 (en) * 2012-12-11 2016-09-21 新日鐵住金株式会社 Method for manufacturing silicon carbide epitaxial wafer
US9797064B2 (en) 2013-02-05 2017-10-24 Dow Corning Corporation Method for growing a SiC crystal by vapor deposition onto a seed crystal provided on a support shelf which permits thermal expansion
US9738991B2 (en) 2013-02-05 2017-08-22 Dow Corning Corporation Method for growing a SiC crystal by vapor deposition onto a seed crystal provided on a supporting shelf which permits thermal expansion
US9017804B2 (en) 2013-02-05 2015-04-28 Dow Corning Corporation Method to reduce dislocations in SiC crystal growth
JP2014175412A (en) * 2013-03-07 2014-09-22 Toshiba Corp Semiconductor substrate and semiconductor device
US8940614B2 (en) 2013-03-15 2015-01-27 Dow Corning Corporation SiC substrate with SiC epitaxial film
JP6122704B2 (en) * 2013-06-13 2017-04-26 昭和電工株式会社 SiC epitaxial wafer and manufacturing method thereof
US9279192B2 (en) 2014-07-29 2016-03-08 Dow Corning Corporation Method for manufacturing SiC wafer fit for integration with power device manufacturing technology
JP6299827B2 (en) * 2016-09-07 2018-03-28 住友電気工業株式会社 Semiconductor substrate

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7230274B2 (en) * 2004-03-01 2007-06-12 Cree, Inc Reduction of carrot defects in silicon carbide epitaxy
KR100853991B1 (en) * 2004-03-26 2008-08-25 간사이 덴료쿠 가부시키가이샤 Bipolar Semiconductor Device and Process for Producing the Same
JPWO2005116307A1 (en) * 2004-05-27 2008-04-03 株式会社ブリヂストン Method for manufacturing silicon carbide single crystal wafer
JP2007210861A (en) * 2006-02-10 2007-08-23 Mitsubishi Materials Corp METHOD OF MANUFACTURING SiC SUBSTRATE, SiC SUBSTRATE, AND SEMICONDUCTOR DEVICE

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105074059A (en) * 2013-02-20 2015-11-18 株式会社电装 Silicon carbide single crystal, and method for producing silicon carbide single crystal
CN105074059B (en) * 2013-02-20 2017-09-29 株式会社电装 The manufacture method of single-crystal silicon carbide and single-crystal silicon carbide

Also Published As

Publication number Publication date
JP2008115034A (en) 2008-05-22

Similar Documents

Publication Publication Date Title
JP4842094B2 (en) Epitaxial silicon carbide single crystal substrate manufacturing method
JP4954654B2 (en) Epitaxial silicon carbide single crystal substrate and manufacturing method thereof
JP4987792B2 (en) Epitaxial silicon carbide single crystal substrate manufacturing method
JP6524233B2 (en) Method of manufacturing epitaxial silicon carbide single crystal wafer
JP6237848B2 (en) Method for manufacturing silicon carbide single crystal substrate for epitaxial silicon carbide wafer and silicon carbide single crystal substrate for epitaxial silicon carbide wafer
JP4850960B2 (en) Epitaxial silicon carbide single crystal substrate manufacturing method
JP4937685B2 (en) Epitaxial silicon carbide single crystal substrate and manufacturing method thereof
JP5130468B2 (en) Method for manufacturing SiC epitaxial substrate
JP4954593B2 (en) Epitaxial silicon carbide single crystal substrate manufacturing method, and device using the obtained epitaxial silicon carbide single crystal substrate
JP6304699B2 (en) Method for manufacturing epitaxial silicon carbide wafer
JPWO2016133089A1 (en) Epitaxial silicon carbide single crystal wafer manufacturing method and epitaxial silicon carbide single crystal wafer
JP5786759B2 (en) Method for manufacturing epitaxial silicon carbide wafer
JP5664534B2 (en) Method for manufacturing epitaxial silicon carbide wafer
JP2006062931A (en) Sapphire substrate and its heat treatment method, and method of crystal growth
JP6052465B2 (en) Method for manufacturing epitaxial silicon carbide wafer
JP2011044505A (en) Method of manufacturing silicon epitaxial wafer
JP6628673B2 (en) Manufacturing method of epitaxial silicon carbide single crystal wafer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110927

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111005

R151 Written notification of patent or utility model registration

Ref document number: 4842094

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350