JPH08290995A - Silicon single crystal and its production - Google Patents

Silicon single crystal and its production

Info

Publication number
JPH08290995A
JPH08290995A JP7093299A JP9329995A JPH08290995A JP H08290995 A JPH08290995 A JP H08290995A JP 7093299 A JP7093299 A JP 7093299A JP 9329995 A JP9329995 A JP 9329995A JP H08290995 A JPH08290995 A JP H08290995A
Authority
JP
Japan
Prior art keywords
single crystal
crucible
silicon single
silicon
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7093299A
Other languages
Japanese (ja)
Inventor
Naoki Ikeda
直紀 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP7093299A priority Critical patent/JPH08290995A/en
Publication of JPH08290995A publication Critical patent/JPH08290995A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To obtain a silicon single crystal containing prescribed amounts of oxygen and carbon and giving a substrate having high IG capacity and a defect- free layer with high completeness by charging an Si raw material and carbon into a crucible and growing a single crystal under specific condition. CONSTITUTION: A crucible 1 is charged with a silicon raw material and 5.7-96.1×10<-7> pts.wt. (based on 1 pt.wt. of the silicon raw material) of carbon. The crucible is heated with a heater 2 to completely melt the silicon raw material in the crucible 1 and form a molten liquid raw material layer 6a and the lower part of the crucible 1 is cooled to form a solid raw material layer 6b at the lower part in the crucible. A seed crystal 4 is brought into contact with the molten liquid layer 6a. A silicon single crystal 3 containing 5×10<17> to 1.3×10<18> atoms/cm<3> of oxygen and 4.8×10<15> to 8.5×10<16> atoms/cm<3> of carbon is pulled up from the molten liquid layer 6a while melting the solid layer 6b from the top downward and controlling the rotational speeds of a pull-up shaft 5 and the crucible 1, the pull-up speed, etc.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はシリコン単結晶及びその
製造方法に関し、より詳細には、例えば半導体材料とし
て使用されるシリコン単結晶及びその製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon single crystal and a method for manufacturing the same, and more particularly to a silicon single crystal used as a semiconductor material and a method for manufacturing the same.

【0002】[0002]

【従来の技術】現在、LSI等の回路素子を形成するた
めの半導体基板(シリコン基板)の製造には、大部分が
回転引き上げ法、すなわちCZ法により石英坩堝内のシ
リコン溶融液から引き上げられた単結晶シリコンが用い
られている。CZ法による場合、シリコン溶融液中には
石英(SiO2 )坩堝の一部が溶解して生じた酸素が存
在しており、このシリコン溶融液から引き上げられた単
結晶シリコンには約1.5×1018atoms/cm3
程度の酸素不純物が含まれている。
2. Description of the Related Art At present, most of semiconductor substrates (silicon substrates) for forming circuit elements such as LSIs are pulled from a silicon melt in a quartz crucible by a rotary pulling method, that is, a CZ method. Single crystal silicon is used. In the case of the CZ method, oxygen generated by the dissolution of a part of the quartz (SiO 2 ) crucible is present in the silicon melt, and the single crystal silicon pulled from this silicon melt has about 1.5 × 10 18 atoms / cm 3
It contains some oxygen impurities.

【0003】一方、例えばLSI製造時に施される代表
的な熱酸化処理の温度としての1000℃では、シリコ
ン中における酸素の固溶度は約3.0×1017atom
s/cm3 程度である。したがってLSI製造のための
熱処理の際、シリコン基板に含有される酸素は常に過飽
和状態にあり、シリコン基板内に酸素が析出し易い状態
になっている。
On the other hand, for example, at 1000 ° C. which is a temperature of a typical thermal oxidation process performed at the time of manufacturing an LSI, the solid solubility of oxygen in silicon is about 3.0 × 10 17 atom.
It is about s / cm 3 . Therefore, during heat treatment for manufacturing LSI, oxygen contained in the silicon substrate is always in a supersaturated state, and oxygen is likely to precipitate in the silicon substrate.

【0004】シリコン単結晶中における酸素の働きは複
雑であり、かつ多岐にわたっている。酸素が結晶格子間
に存在するときは、転位を固着する効果があり、熱処理
の際に発生するシリコン基板の反りを抑制する。他方、
酸素が析出してSiO2 に変化すると、体積膨張により
シリコン原子が放出されて積層欠陥を形成したり、さら
に歪みが大きい場合にはパンチアウト転位等の微小欠陥
を形成する。
The function of oxygen in a silicon single crystal is complicated and diverse. When oxygen exists between crystal lattices, it has the effect of fixing dislocations and suppresses the warpage of the silicon substrate that occurs during heat treatment. On the other hand,
When oxygen precipitates and changes to SiO 2 , silicon atoms are released due to volume expansion to form stacking faults, or when the strain is large, minute defects such as punch-out dislocations are formed.

【0005】これらの微小欠陥がシリコン基板の表面か
ら十分に離れた内部にのみ発生する場合には、LSIの
製造工程中においてシリコン基板の表面に付着した重金
属等の汚染物質を吸着して素子の活性領域(シリコン基
板表面近傍)から除去する作用、いわゆるイントリンシ
ック・ゲッタリング(Intrinsic Gettering )作用が働
き、高品質のLSIを製造するのに有用となる。ところ
が、これらの微小欠陥が前記素子の活性領域に存在する
と酸化膜耐圧特性の劣化、PN接合におけるリーク電流
の増大等の原因になり、LSIにとって有害となる。
When these minute defects are generated only in the interior sufficiently distant from the surface of the silicon substrate, contaminants such as heavy metals adhering to the surface of the silicon substrate are adsorbed on the surface of the silicon substrate during the LSI manufacturing process. The action of removing from the active region (in the vicinity of the surface of the silicon substrate), that is, the so-called intrinsic gettering action works, and is useful for manufacturing a high quality LSI. However, if these minute defects are present in the active region of the element, they cause deterioration of the oxide film withstand voltage characteristic, increase of leakage current in the PN junction, and the like, and are harmful to the LSI.

【0006】このため、LSI製造の前処理として、シ
リコン基板表面に無欠陥層(Denuded Zone、以下DZ層
と記す) を形成し、シリコン基板の内部に欠陥層( Intr
insic Gettering 、以下IG層と記す)を形成する処理
が行われている。すなわち、引き上げたシリコン単結晶
のインゴットをスライスしてシリコン基板を作製した
後、このシリコン基板を窒素雰囲気中で例えば1100
℃程度に加熱し、表面近傍の酸素を外方へ拡散させて酸
素濃度を低下させ、次いで例えば700℃程度の熱処理
を施してシリコン基板内に酸素の析出核を形成する処理
が行われている。
Therefore, as a pretreatment for LSI manufacturing, a defect-free layer (Denuded Zone, hereinafter referred to as a DZ layer) is formed on the surface of the silicon substrate, and a defect layer (Intr) is formed inside the silicon substrate.
Insic Gettering, hereinafter referred to as IG layer) is performed. That is, after the pulled silicon single crystal ingot is sliced to produce a silicon substrate, the silicon substrate is sliced in a nitrogen atmosphere to, for example, 1100.
A treatment of heating to about 0 ° C. to diffuse oxygen in the vicinity of the surface outward to reduce the oxygen concentration and then performing heat treatment at, for example, about 700 ° C. to form oxygen precipitation nuclei in the silicon substrate is performed. .

【0007】[0007]

【発明が解決しようとする課題】ところが、近年におい
てはLSIの高集積化、高機能化に伴いシリコン基板表
面に形成されたDZ層の完全性への要求が従来にも増し
て厳しくなり、前記DZ層の完全性をより高めることが
急務となっている。このためシリコン単結晶中の酸素濃
度を下げて、シリコン基板表面近傍に発生する酸素析出
物及び該酸素析出物による表面近傍の積層欠陥や微小欠
陥等の二次欠陥を低減することが考えられている。とこ
ろが、シリコン単結晶中の酸素濃度を下げると、シリコ
ン基板内部での酸素析出物の形成が十分にできず、IG
能力が不足するという課題があった。
However, in recent years, the demand for the integrity of the DZ layer formed on the surface of the silicon substrate has become more stringent than ever before with the high integration and high functionality of LSIs. There is an urgent need to further improve the integrity of the DZ layer. Therefore, it is considered that the oxygen concentration in the silicon single crystal is reduced to reduce oxygen precipitates generated near the surface of the silicon substrate and secondary defects such as stacking faults and minute defects near the surface due to the oxygen precipitates. There is. However, if the oxygen concentration in the silicon single crystal is lowered, oxygen precipitates cannot be sufficiently formed inside the silicon substrate, and the IG
There was a problem of lack of ability.

【0008】一方、磁場中におかれた坩堝から低酸素濃
度のシリコン単結晶を引き上げる磁場印加CZ(Mag
netic field applied CZ、以
下、MCZと記す)法において、酸素の析出を促進する
作用を有する炭素を添加することによりIG能力を高め
ようとする技術が提案されている(特開昭60−140
716号公報)。
On the other hand, a magnetic field application CZ (Mag) for pulling a low oxygen concentration silicon single crystal from a crucible placed in a magnetic field.
In the method of "natural field applied CZ" (hereinafter referred to as "MCZ"), there is proposed a technique for increasing the IG capability by adding carbon having an action of promoting precipitation of oxygen (Japanese Patent Laid-Open No. 60-140).
No. 716).

【0009】しかしながら、シリコンに対する炭素の偏
析係数は1より小さいため、シリコン単結晶の引き上げ
率に応じてシリコン単結晶中の炭素濃度は漸次増加する
こととなり、所望範囲内の炭素濃度を有するシリコン基
板はシリコン単結晶のインゴットの極一部からしか得ら
れないという課題があった。
However, since the segregation coefficient of carbon with respect to silicon is smaller than 1, the carbon concentration in the silicon single crystal gradually increases according to the pulling rate of the silicon single crystal, and the silicon substrate having the carbon concentration within the desired range is obtained. Has a problem that it can be obtained only from a very small part of a silicon single crystal ingot.

【0010】本発明はかかる課題に鑑みなされたもので
あり、酸素濃度が低く、しかもIG能力がインゴットの
軸方向で均一に高いシリコン単結晶を提供すること、及
びその製造方法を提供することを目的としている。
The present invention has been made in view of the above problems, and it is an object of the present invention to provide a silicon single crystal having a low oxygen concentration and a high IG capability even in the axial direction of the ingot, and a method for manufacturing the same. Has an aim.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
に本発明に係るシリコン単結晶は、溶融液層と固体層の
2層からなる原料中から引き上げられたシリコン単結晶
であって、酸素を5.0×1017〜1.3×1018at
oms/cm3 の割合で、かつ炭素を4.8×1015
8.5×1016atoms/cm3 の割合で含んでいる
ことを特徴としている。
In order to achieve the above object, a silicon single crystal according to the present invention is a silicon single crystal pulled from a raw material composed of two layers of a melt layer and a solid layer, 5.0 × 10 17 to 1.3 × 10 18 at
at a rate of oms / cm 3 and carbon of 4.8 × 10 15 ~
It is characterized in that it is contained at a rate of 8.5 × 10 16 atoms / cm 3 .

【0012】また本発明に係るシリコン単結晶の製造方
法は、坩堝内に重量比でシリコン原料1に対し、炭素を
5.7〜96.1×10-7の割合で装入した後、坩堝内
に原料固体層と原料溶融液層との2層を形成し、引き上
げ軸及び前記坩堝の回転数、引き上げ速度等を制御し、
前記溶融液層から酸素を5.0×1017〜1.3×10
18atoms/cm3 の割合で含むシリコン単結晶を引
き上げることを特徴としている。
In the method for producing a silicon single crystal according to the present invention, carbon is charged into the crucible at a weight ratio of 1 to 1 of silicon raw material and carbon is charged at a ratio of 5.7 to 96.1 × 10 -7 , and then the crucible is heated. Two layers, a raw material solid layer and a raw material melt layer, are formed therein, and the pulling shaft, the rotation speed of the crucible, the pulling speed, etc. are controlled,
Oxygen from the melt layer is 5.0 × 10 17 to 1.3 × 10
It is characterized in that a silicon single crystal containing 18 atoms / cm 3 is pulled.

【0013】[0013]

【作用】本発明に係るシリコン単結晶にあっては、前記
溶融液層と前記固体層の2層からなる前記原料中から引
き上げられた前記シリコン単結晶であって、酸素を5.
0×1017〜1.3×1018atoms/cm3 の割合
で、かつ炭素を4.8×1015〜8.5×1016ato
ms/cm3 の割合で含んでいるので、酸素濃度が小さ
いことからシリコン基板形成時に完全性の高いDZ層が
得られると共に、炭素により基板内部における酸素の析
出が促進され、高いIG能力が得られることとなる。
In the silicon single crystal according to the present invention, the silicon single crystal pulled from the raw material consisting of the melt layer and the solid layer has two layers of oxygen.
Carbon at a rate of 0 × 10 17 to 1.3 × 10 18 atoms / cm 3 and carbon of 4.8 × 10 15 to 8.5 × 10 16 atoms.
Since it is contained at a rate of ms / cm 3 , the oxygen concentration is low, so a DZ layer with high integrity can be obtained at the time of forming a silicon substrate, and carbon promotes the precipitation of oxygen inside the substrate to obtain a high IG capability. Will be done.

【0014】また本発明に係るシリコン単結晶の製造方
法によれば、坩堝内に重量比でシリコン原料1に対し、
炭素を5.7〜96.1×10-7の割合で装入した後、
前記坩堝内に前記原料固体層と前記原料溶融液層との2
層を形成し、前記引き上げ軸及び前記坩堝の回転数、前
記引き上げ速度等を制御し、前記溶融液層から酸素を
5.0×1017〜1.3×1018atoms/cm3
割合で含む前記シリコン単結晶を引き上げるので、該シ
リコン単結晶のインゴット軸方向の酸素濃度及び炭素濃
度を所望の範囲内に制御し得ることとなり、完全性の高
いDZ層を有し、高いIG能力を有したシリコン基板の
製造が可能になる。
According to the method for producing a silicon single crystal according to the present invention, the silicon raw material 1 in the crucible in a weight ratio is
After charging carbon at a rate of 5.7-96.1 × 10 -7 ,
The raw material solid layer and the raw material melted liquid layer are provided in the crucible 2
A layer is formed, and the number of rotations of the pulling shaft and the crucible, the pulling speed, and the like are controlled to supply oxygen from the melt layer at a rate of 5.0 × 10 17 to 1.3 × 10 18 atoms / cm 3 . Since the silicon single crystal containing the silicon single crystal is pulled, it is possible to control the oxygen concentration and the carbon concentration in the ingot axis direction of the silicon single crystal within a desired range, and to have a highly complete DZ layer and a high IG capability. It is possible to manufacture a silicon substrate that has been manufactured.

【0015】[0015]

【実施例及び比較例】以下、本発明に係るシリコン単結
晶及びその製造方法の実施例及び比較例を図面に基づい
て説明する。図1は、実施例に係るシリコン単結晶の引
き上げ用装置の構成を示した模式的断面図であり、図中
1は坩堝を示している。坩堝1は水冷式のチャンバ8内
に配設されており、有底円筒状をなす石英製の内層容器
1bと、該内層容器1bの外側に配置されたグラファイ
ト製の外層保持容器1aとから構成されている。坩堝1
の外周囲にはヒータ2が同心円筒状に配設されている。
また、ヒータ2の外周囲には、坩堝1を取り囲むように
保温筒7a、7bがそれぞれ配置されている。坩堝1の
底部中央にはチャンバ8の底部を貫通して支持軸9が連
結されており、支持軸9によって坩堝1が回転させら
れ、昇降するようになっている。チャンバ8の上方から
引き上げ軸5が吊設され、チャンバ8内に導入されてお
り、引き上げ軸5は回転しつつ上方に引き上げられるよ
うになっている。また、引き上げ軸5の回転速度及び引
き上げ速度は引き上げ機構(図示せず)により制御され
るようになっている。引き上げ軸5の先端部にはシード
チャック(図示せず)を介して種結晶4が取り付けられ
ており、これら坩堝1、ヒータ2、引き上げ軸5、チャ
ンバ8等を含んでシリコン単結晶引き上げ装置10が構
成されている。
EXAMPLES AND COMPARATIVE EXAMPLES Examples and comparative examples of a silicon single crystal and a method for producing the same according to the present invention will be described below with reference to the drawings. FIG. 1 is a schematic cross-sectional view showing the configuration of an apparatus for pulling a silicon single crystal according to an example, in which 1 denotes a crucible. The crucible 1 is arranged in a water-cooled chamber 8 and is composed of a quartz inner layer container 1b having a bottomed cylindrical shape and a graphite outer layer holding container 1a arranged outside the inner layer container 1b. Has been done. Crucible 1
A heater 2 is concentrically arranged around the outer periphery of the.
In addition, around the outer periphery of the heater 2, heat retaining cylinders 7 a and 7 b are arranged so as to surround the crucible 1. A support shaft 9 is connected to the center of the bottom of the crucible 1 so as to pass through the bottom of the chamber 8. The support shaft 9 causes the crucible 1 to rotate and move up and down. The pull-up shaft 5 is suspended from above the chamber 8 and is introduced into the chamber 8. The pull-up shaft 5 is rotated and pulled upward. Further, the rotation speed and the lifting speed of the lifting shaft 5 are controlled by a lifting mechanism (not shown). A seed crystal 4 is attached to the tip of the pulling shaft 5 via a seed chuck (not shown). The silicon single crystal pulling device 10 including these crucible 1, heater 2, pulling shaft 5, chamber 8 and the like. Is configured.

【0016】このように構成された装置10を用いて実
施例に係るシリコン単結晶3を引き上げる場合、まず坩
堝1内にシリコン原料及び炭素を装入する。この時、前
記シリコン原料に対して不純物としてのP及び炭素を所
定の割合で添加する。その後ヒータ2により坩堝1内の
シリコン原料を一旦全て溶融させて溶融液層6aを形成
する。次に坩堝1を回転させながらヒータ2を所定位置
に移動させ、坩堝1の下部を冷却し、坩堝1底部から上
方に向けて固体層6bを形成していく。このように、坩
堝1内の上部には溶融液層6aを、下部には固体層6b
を形成した後、種結晶4を溶融液層6aに接触させてな
じませ、固体層6bを上側から下側へ溶融させて溶融液
層6aに変換しつつ、引き上げ軸5を所定の速度で回転
させながら引き上げる(DLCZ法)ことにより、種結
晶4の下端からシリコン単結晶3を成長させる。
In the case of pulling up the silicon single crystal 3 according to the embodiment using the apparatus 10 thus constructed, first, the silicon raw material and carbon are charged into the crucible 1. At this time, P and carbon as impurities are added to the silicon raw material at a predetermined ratio. After that, the silicon raw material in the crucible 1 is once melted by the heater 2 to form the molten liquid layer 6a. Next, the heater 2 is moved to a predetermined position while rotating the crucible 1, the lower portion of the crucible 1 is cooled, and the solid layer 6b is formed upward from the bottom of the crucible 1. Thus, in the crucible 1, the upper portion of the crucible 1 is the melt layer 6a and the lower portion is the solid layer 6b.
After forming the seed crystal 4, the seed crystal 4 is brought into contact with the melted layer 6a to be blended, and the solid layer 6b is melted from the upper side to the lower side to be converted into the melted layer 6a, and the pulling shaft 5 is rotated at a predetermined speed. The silicon single crystal 3 is grown from the lower end of the seed crystal 4 by pulling it up (DLCZ method).

【0017】以下、上記製造方法により様々な酸素濃度
及び炭素濃度を有するシリコン単結晶を形成し、それぞ
れを比較した結果について説明する。
Hereinafter, the results of comparing silicon single crystals having various oxygen concentrations and carbon concentrations by the above manufacturing method and comparing them will be described.

【0018】ここで、各試料としては、直径が約6イン
チ、長さが約1100mmのシリコン単結晶インゴット
を切り出し、片面に鏡面研磨を施して厚さが約0.62
5mmのシリコン基板を作製し、窒素雰囲気中で約11
00℃で4時間程度の加熱処理を行い、次に約700℃
で4時間程度の加熱処理の後、酸素雰囲気中で約100
0℃、16時間の加熱処理を行って酸素の析出欠陥を形
成したものを用いた。
Here, as each sample, a silicon single crystal ingot having a diameter of about 6 inches and a length of about 1100 mm was cut out, and one surface was mirror-polished to have a thickness of about 0.62.
A 5 mm silicon substrate is prepared, and about 11
Heat treatment at 00 ℃ for about 4 hours, then about 700 ℃
After heat treatment for about 4 hours at about 100 in oxygen atmosphere
The thing which formed the oxygen precipitation defect by heat-processing at 0 degreeC for 16 hours was used.

【0019】表1に、実施例及び比較例に係るシリコン
単結晶の酸素濃度(A〜F)、炭素濃度(a〜f)とを
示す。実施例及び比較例に係るシリコン単結晶は、これ
ら酸素濃度(A〜F)と炭素濃度(a〜g)との様々な
組み合わせにより決定されるものである。
Table 1 shows the oxygen concentration (A to F) and carbon concentration (a to f) of the silicon single crystals according to the examples and comparative examples. The silicon single crystals according to the examples and the comparative examples are determined by various combinations of the oxygen concentration (A to F) and the carbon concentration (a to g).

【0020】[0020]

【表1】 [Table 1]

【0021】シリコン単結晶中の酸素は固溶状態では格
子間位置に入り、一方、炭素はシリコン原子に置き換わ
って格子点を占有する。格子間酸素(Oi)と置換型炭
素(Cs)は、それぞれ室温において波数1106cm
-1と607cm-1に赤外吸収ピークとして観測されるの
で、その濃度は赤外吸収法で測定され得る。ここでは、
フーリエ変換型赤外分光装置(FT−IR)を用いて格
子間酸素濃度及び置換型炭素濃度の測定を行い、それぞ
れの結果を前記酸素濃度(A〜F)及び前記炭素濃度
(a〜g)の値とした。赤外吸収係数から各濃度への換
算係数としては、酸素濃度[Oi]については4.81
×1017atoms/cm2 を、炭素濃度[Cs]につ
いては1.00×1017atoms/cm2 をそれぞれ
用いた。
Oxygen in a silicon single crystal enters interstitial sites in the solid solution state, while carbon replaces silicon atoms and occupies lattice points. Interstitial oxygen (Oi) and substitutional carbon (Cs) each have a wave number of 1106 cm at room temperature.
Since it is observed as an infrared absorption peak at -1 and 607 cm -1 , its concentration can be measured by an infrared absorption method. here,
The interstitial oxygen concentration and the substitutional carbon concentration were measured by using a Fourier transform infrared spectroscope (FT-IR), and the respective results were described as the oxygen concentration (A to F) and the carbon concentration (a to g). The value of As a conversion coefficient from the infrared absorption coefficient to each concentration, the oxygen concentration [Oi] is 4.81.
X10 17 atoms / cm 2 was used, and the carbon concentration [Cs] was 1.00 × 10 17 atoms / cm 2 .

【0022】図2は格子間酸素濃度(以下、単に酸素濃
度と記す)[Oi]に対する酸素析出量(ΔOi)を示
したグラフであり、図中a〜gは表1中のシリコン単結
晶の炭素濃度a〜gに相当し、図中A〜Fは表1中のシ
リコン単結晶の酸素濃度(A〜F)に相当する。
FIG. 2 is a graph showing the oxygen precipitation amount (ΔOi) with respect to the interstitial oxygen concentration (hereinafter, simply referred to as oxygen concentration) [Oi], where a to g are the silicon single crystals in Table 1. Corresponding to carbon concentrations a to g, A to F in the figure correspond to oxygen concentrations (A to F) of the silicon single crystal in Table 1.

【0023】図2から明らかなように、炭素濃度がa
(検出限界3.0×1015atoms/cm3 以下)で
あるシリコン単結晶において、酸素濃度がE(1.3×
1018atoms/cm3 )以下の低酸素濃度である場
合、酸素析出量は1.0×1017atoms/cm3
(図中x)以下となり、十分なIG能力が発揮され得な
い。これに対し、炭素濃度がb(4.8×1015ato
ms/cm3 )以上のシリコン単結晶においては、酸素
濃度がE(1.3×1018atoms/cm3 )以下の
低酸素濃度である場合においても、酸素析出量は1.0
×1017atoms/cm3 (図中x)以上となり、十
分なIG能力が発揮され得る。このことからシリコン単
結晶中の炭素濃度としては、4.8×1015atoms
/cm3 以上の範囲内の値が望ましいことがわかった。
他方、炭素濃度が1.0×1017atoms/cm3
上だと後述するように、シリコン基板表面近傍の欠陥密
度が目標値より高くなるといった不具合が生じる。
As is apparent from FIG. 2, the carbon concentration is a
In a silicon single crystal with a detection limit of 3.0 × 10 15 atoms / cm 3 or less, the oxygen concentration is E (1.3 ×).
When the oxygen concentration is 10 18 atoms / cm 3 ) or less, the oxygen precipitation amount is 1.0 × 10 17 atoms / cm 3
(X in the figure) or less, and sufficient IG capability cannot be exhibited. On the other hand, when the carbon concentration is b (4.8 × 10 15 ato
In a silicon single crystal of ms / cm 3 ) or more, the oxygen precipitation amount is 1.0 even when the oxygen concentration is a low oxygen concentration of E (1.3 × 10 18 atoms / cm 3 ) or less.
Since it becomes more than × 10 17 atoms / cm 3 (x in the figure), sufficient IG capability can be exhibited. From this, the carbon concentration in the silicon single crystal is 4.8 × 10 15 atoms
It has been found that a value within the range of / cm 3 or more is desirable.
On the other hand, if the carbon concentration is 1.0 × 10 17 atoms / cm 3 or more, as will be described later, the defect density near the surface of the silicon substrate becomes higher than the target value.

【0024】次に、実施例及び比較例に係るシリコン単
結晶から形成されたシリコン基板表面の近傍に発生した
欠陥の密度を片面20μmの選択エッチング(Wrig
htエッチング)で顕在化させて光学顕微鏡で評価し
た。図3はシリコン単結晶の酸素濃度に対する前記シリ
コン基板表面近傍の欠陥密度を示したグラフであり、縦
軸(欠陥密度)は対数メモリで表わしている。図中a〜
g及び図中A〜Fに関しては図2の場合と同様である。
Next, the density of defects generated in the vicinity of the surface of the silicon substrate formed of the silicon single crystal according to the example and the comparative example is determined by selective etching (Wrig) of 20 μm on each side.
It was made visible by an HT etching) and evaluated by an optical microscope. FIG. 3 is a graph showing the defect density near the surface of the silicon substrate with respect to the oxygen concentration of the silicon single crystal, and the vertical axis (defect density) is represented by a logarithmic memory. A- in the figure
g and A to F in the figure are the same as in the case of FIG.

【0025】図3から明らかなように、酸素濃度がA
(5.2×1017atoms/cm3)〜E(1.3×
1018atoms/cm3 )であるシリコン単結晶にお
いては、炭素濃度がa(検出限界3.0×1015ato
ms/cm3 以下)〜f(8.5×1016atoms/
cm3 )のいずれの値を有していても、シリコン基板表
面近傍の欠陥密度が1.0×103 cm2 (図中y)以
下となり、炭素を添加したことによる、シリコン基板表
面近傍の欠陥密度の極端な増加は見られなかった。これ
は、炭素の添加により酸素析出物のサイズが小さくなっ
たため、先に述べた1000℃の酸素雰囲気中での熱処
理段階においてシリコン基板表面近傍の酸素析出物で収
縮・消滅したものがあるためと考えられる。しかし、炭
素濃度がg(1.0×1017atoms/cm3 )であ
るシリコン単結晶はシリコン基板表面近傍の欠陥密度が
1.0×103 cm-2(図中y)より大きくなった。
As is apparent from FIG. 3, the oxygen concentration is A
(5.2 × 10 17 atoms / cm 3 ) to E (1.3 ×
In a silicon single crystal of 10 18 atoms / cm 3 , the carbon concentration is a (detection limit of 3.0 × 10 15 atoms).
ms / cm 3 or less) to f (8.5 × 10 16 atoms /
cm 3 ), the defect density in the vicinity of the surface of the silicon substrate is 1.0 × 10 3 cm 2 (y in the figure) or less. No extreme increase in defect density was observed. This is because the addition of carbon reduced the size of the oxygen precipitates, and some of the oxygen precipitates near the surface of the silicon substrate shrank and disappeared during the heat treatment step in the above-described 1000 ° C. oxygen atmosphere. Conceivable. However, in a silicon single crystal having a carbon concentration of g (1.0 × 10 17 atoms / cm 3 ), the defect density near the surface of the silicon substrate was larger than 1.0 × 10 3 cm -2 (y in the figure). .

【0026】一方、酸素濃度がF(1.5×1018at
oms/cm3 )であるシリコン単結晶においては、炭
素濃度が上記のいずれの値を有するものであっても、シ
リコン基板表面近傍の欠陥密度が1×103 cm2 (図
中y)より大きくなった。これは、炭素の添加により酸
素析出物がシリコン基板表面に多量に析出したためであ
ると考えられる。このことから、酸素濃度を、A(5.
0×1017atoms/cm3 〜E(1.3×1018
toms/cm3 )の範囲内の値にした場合、炭素濃度
がa(検出下限3.0×1015atoms/cm3
下)〜f(8.5×1016atoms/cm3 )の値を
有するシリコン単結晶で、完全性の高いDZ層が形成さ
れることがわかった。
On the other hand, when the oxygen concentration is F (1.5 × 10 18 at)
In a silicon single crystal of oms / cm 3 ), the defect density in the vicinity of the silicon substrate surface is larger than 1 × 10 3 cm 2 (y in the figure) regardless of the carbon concentration having any of the above values. became. It is considered that this is because a large amount of oxygen precipitates were deposited on the surface of the silicon substrate due to the addition of carbon. From this, the oxygen concentration is changed to A (5.
0 × 10 17 atoms / cm 3 to E (1.3 × 10 18 a
When the value is within the range of (toms / cm 3 ), the carbon concentration is a (detection lower limit of 3.0 × 10 15 atoms / cm 3 or less) to f (8.5 × 10 16 atoms / cm 3 ). It was found that a highly perfect DZ layer was formed with the silicon single crystal.

【0027】以上の説明からわかるように、実施例に係
るシリコン単結晶3にあっては、酸素を5.0×1017
〜1.3×1018atoms/cm3 の割合で、かつ炭
素を4.8×1015〜8.5×1016atoms/cm
3 の割合で含んでおり、シリコン基板形成時に完全性の
高いDZ層を得ることができると共に、高いIG能力を
与えることができる。
As can be seen from the above description, in the silicon single crystal 3 according to the example, oxygen was added at 5.0 × 10 17
˜1.3 × 10 18 atoms / cm 3 and carbon 4.8 × 10 15 to 8.5 × 10 16 atoms / cm 3.
Since it is contained in a ratio of 3, a DZ layer having high integrity can be obtained at the time of forming a silicon substrate, and a high IG capability can be provided.

【0028】次に、実施例及び比較例に係るシリコン単
結晶のインゴット軸方向の炭素分布の評価を行った。図
4は、実施例に係るシリコン単結晶3と、比較例として
MCZ法により成長させたシリコン単結晶との両者にお
けるインゴット軸方向の炭素濃度の分布を調べたグラフ
を示している。図4において縦軸は炭素濃度[Cs]を
示しており、横軸はインゴット軸方向のポジションを示
している。図4から明らかなように、酸素の析出量を精
密に制御するために炭素濃度の目標範囲値を例えば4.
5〜6.5×1016atoms/cm3 (図中q)に設
定した場合、実施例に係るシリコン単結晶3ではインゴ
ットのトップ部からの長さ100mmの箇所より900
mmの箇所にかけて(図中z)が目標範囲内に入ること
となり、インゴットの長さ1000mm中のほとんどが
目標範囲内に入る。これに対し、比較例に係るシリコン
単結晶ではインゴットのトップ部からの長さ240mm
の箇所から540mmの箇所まで(図中p)しか目標範
囲に入らない。すなわち実施例に係るシリコン単結晶の
場合を100%とした時の、[(540−240)/
(900−100)]×100=37.5%しか目標範
囲に入らない。
Next, the carbon distribution in the ingot axial direction of the silicon single crystals according to the examples and comparative examples was evaluated. FIG. 4 is a graph showing the distribution of carbon concentration in the ingot axis direction in both the silicon single crystal 3 according to the example and the silicon single crystal grown by the MCZ method as a comparative example. In FIG. 4, the vertical axis represents the carbon concentration [Cs], and the horizontal axis represents the position in the ingot axis direction. As is apparent from FIG. 4, the target range value of the carbon concentration is, for example, 4. In order to precisely control the amount of precipitation of oxygen.
When it is set to 5 to 6.5 × 10 16 atoms / cm 3 (q in the figure), in the silicon single crystal 3 according to the example, 900 is obtained from a position 100 mm in length from the top of the ingot.
The area (mm in the figure) reaches the target range over the area of mm, and most of the ingot length of 1000 mm falls within the target range. On the other hand, in the silicon single crystal according to the comparative example, the length from the top of the ingot is 240 mm.
The target range can be entered only from the point to the point of 540 mm (p in the figure). That is, when the case of the silicon single crystal according to the example is set to 100%, [(540-240) /
(900-100)] × 100 = 37.5% only falls within the target range.

【0029】このように、実施例に係るシリコン単結晶
の製造方法によれば固体層6bを漸次溶融させてゆくの
で溶融液層6a中の炭素濃度を略一定に保つことがで
き、インゴット軸方向の広い範囲で炭素濃度を略一定に
できる。
As described above, according to the method for producing a silicon single crystal according to the embodiment, the solid layer 6b is gradually melted, so that the carbon concentration in the melt layer 6a can be kept substantially constant, and the ingot axial direction can be maintained. The carbon concentration can be made substantially constant over a wide range.

【0030】以上説明したように実施例に係るシリコン
単結晶の製造方法によれば、シリコン単結晶3のインゴ
ット軸方向の酸素濃度及び炭素濃度を所望の範囲内に制
御することができ、かかるシリコン単結晶3を用いれば
完全性の高いDZ層を有し、高いIG能力を有したシリ
コン基板を製造することができる。
As described above, according to the method for producing a silicon single crystal according to the embodiment, the oxygen concentration and the carbon concentration in the ingot axis direction of the silicon single crystal 3 can be controlled within a desired range, and the silicon concentration can be controlled. If the single crystal 3 is used, it is possible to manufacture a silicon substrate having a highly complete DZ layer and having a high IG capability.

【0031】[0031]

【発明の効果】以上詳述したように本発明に係るシリコ
ン単結晶は、溶融液層と固体層の2層からなる原料中か
ら引き上げられたシリコン単結晶であって、酸素を0.
5×1018〜1.3×1018atoms/cm3 の割合
で、かつ炭素を4.8×1015〜8.5×1016ato
ms/cm3 の割合で含んでいるので、酸素濃度が小さ
いことからシリコン基板形成時に完全性の高いDZ層を
得ることができると共に、炭素により基板内部における
酸素の析出が促進され、高いIG能力を得ることができ
る。
As described above in detail, the silicon single crystal according to the present invention is a silicon single crystal pulled from a raw material composed of two layers, a melt layer and a solid layer, and contains oxygen of 0.
Carbon at a rate of 5 × 10 18 to 1.3 × 10 18 atoms / cm 3 and carbon at 4.8 × 10 15 to 8.5 × 10 16 atoms.
Since the content of ms / cm 3 is contained, the oxygen concentration is low, so that a DZ layer with high integrity can be obtained at the time of forming the silicon substrate, and carbon promotes the precipitation of oxygen inside the substrate, which has a high IG capability. Can be obtained.

【0032】また本発明に係るシリコン単結晶の製造方
法によれば、坩堝内に重量比でシリコン原料1に対し、
炭素を5.7〜96.1×10-7の割合で装入した後、
坩堝内に原料固体層と原料溶融液層との2層を形成し、
引き上げ軸及び前記坩堝の回転数、引き上げ速度等を制
御し、前記溶融液層から酸素を0.5×1018〜1.3
×1018atoms/cm3 の割合で含むシリコン単結
晶を引き上げるので、シリコン単結晶3のインゴット軸
方向の酸素濃度及び炭素濃度を所望の範囲内に制御する
ことができ、完全性の高いDZ層を有し、高いIG能力
を有したシリコン基板を製造することができる。
According to the method for producing a silicon single crystal according to the present invention, the silicon raw material 1 in the crucible in a weight ratio is
After charging carbon at a rate of 5.7-96.1 × 10 -7 ,
Two layers of a raw material solid layer and a raw material melt layer are formed in the crucible,
By controlling the number of rotations of the pulling shaft and the crucible, the pulling speed, etc., oxygen was added from the melt layer to 0.5 × 10 18 to 1.3.
Since the silicon single crystal contained at a rate of × 10 18 atoms / cm 3 is pulled, the oxygen concentration and the carbon concentration in the ingot axis direction of the silicon single crystal 3 can be controlled within a desired range, and the DZ layer having high integrity can be obtained. And a silicon substrate having high IG capability can be manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係るシリコン単結晶の製造方
法に用いられる装置及び引き上げられたシリコン単結晶
を示した摸式的断面図である。
FIG. 1 is a schematic cross-sectional view showing an apparatus used in a method for manufacturing a silicon single crystal according to an embodiment of the present invention and a pulled silicon single crystal.

【図2】実施例及び比較例に係るシリコン単結晶から形
成されたシリコン基板において、酸素濃度及び炭素濃度
と酸素析出量との関係を示した図である。
FIG. 2 is a diagram showing a relationship between an oxygen concentration and a carbon concentration and an oxygen precipitation amount in a silicon substrate formed of a silicon single crystal according to an example and a comparative example.

【図3】実施例及び比較例に係るシリコン単結晶から形
成されたシリコン基板における、酸素濃度及び炭素濃度
とシリコン基板表面近傍の欠陥の密度との関係を示した
図である。
FIG. 3 is a diagram showing a relationship between oxygen concentration and carbon concentration and a defect density near the surface of a silicon substrate in a silicon substrate formed of a silicon single crystal according to an example and a comparative example.

【図4】実施例及び比較例に係るシリコン単結晶の製造
方法により引き上げられたシリコン単結晶の、インゴッ
ト軸方向の炭素濃度分布を示した図である。
FIG. 4 is a diagram showing a carbon concentration distribution in the ingot axis direction of a silicon single crystal pulled by a method for manufacturing a silicon single crystal according to an example and a comparative example.

【符号の説明】[Explanation of symbols]

1 坩堝 3 シリコン単結晶 5 引き上げ軸 6a 溶融液層(原料溶融液層) 6b 固体層(原料固体層) DESCRIPTION OF SYMBOLS 1 Crucible 3 Silicon single crystal 5 Pulling shaft 6a Melt liquid layer (raw material melt liquid layer) 6b Solid layer (raw material solid layer)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 溶融液層と固体層の2層からなる原料中
から引き上げられたシリコン単結晶であって、酸素を
5.0×1017〜1.3×1018atoms/cm3
割合で、かつ炭素を4.8×1015〜8.5×1016
toms/cm3 の割合で含んでいることを特徴とする
シリコン単結晶。
1. A silicon single crystal pulled from a raw material composed of two layers, a melt layer and a solid layer, and having a rate of oxygen of 5.0 × 10 17 to 1.3 × 10 18 atoms / cm 3 . And carbon of 4.8 × 10 15 to 8.5 × 10 16 a
A silicon single crystal containing at a rate of toms / cm 3 .
【請求項2】 坩堝内に重量比でシリコン原料1に対
し、炭素を5.7〜96.1×10-7の割合で装入した
後、坩堝内に原料固体層と原料溶融液層との2層を形成
し、引き上げ軸及び前記坩堝の回転数、引き上げ速度等
を制御し、前記溶融液層から酸素を5.0×1017
1.3×1018atoms/cm3 の割合で含むシリコ
ン単結晶を引き上げることを特徴とするシリコン単結晶
の製造方法。
2. A crucible is charged with carbon at a ratio of 5.7 to 96.1 × 10 −7 with respect to 1 of silicon raw material in a weight ratio, and then a raw material solid layer and a raw material melt layer are formed in the crucible. 2 layers are formed, and the number of rotations of the pulling shaft and the crucible, the pulling speed, etc. are controlled to supply oxygen from the melt layer to 5.0 × 10 17 to
A method for producing a silicon single crystal, which comprises pulling a silicon single crystal contained at a rate of 1.3 × 10 18 atoms / cm 3 .
JP7093299A 1995-04-19 1995-04-19 Silicon single crystal and its production Pending JPH08290995A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7093299A JPH08290995A (en) 1995-04-19 1995-04-19 Silicon single crystal and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7093299A JPH08290995A (en) 1995-04-19 1995-04-19 Silicon single crystal and its production

Publications (1)

Publication Number Publication Date
JPH08290995A true JPH08290995A (en) 1996-11-05

Family

ID=14078486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7093299A Pending JPH08290995A (en) 1995-04-19 1995-04-19 Silicon single crystal and its production

Country Status (1)

Country Link
JP (1) JPH08290995A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11199380A (en) * 1997-12-26 1999-07-27 Sumitomo Metal Ind Ltd Silicon wafer and crystal growth
JP2002176058A (en) * 2000-12-11 2002-06-21 Sumitomo Metal Ind Ltd Method of manufacturing silicon semiconductor substrate
JP2002293691A (en) * 2001-03-30 2002-10-09 Shin Etsu Handotai Co Ltd Method of manufacturing silicon single crystal and silicon single crystal as well as silicon wafer
JP2005515633A (en) * 2001-12-21 2005-05-26 エムイーエムシー・エレクトロニック・マテリアルズ・インコーポレイテッド Silicon wafer with ideal oxygen precipitation having nitrogen / carbon stabilized oxygen precipitation nucleation center and method for producing the same
JP2008227525A (en) * 1999-07-28 2008-09-25 Sumco Corp Method for manufacturing silicon wafer with no aggregate of point defect

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11199380A (en) * 1997-12-26 1999-07-27 Sumitomo Metal Ind Ltd Silicon wafer and crystal growth
JP2008227525A (en) * 1999-07-28 2008-09-25 Sumco Corp Method for manufacturing silicon wafer with no aggregate of point defect
JP2002176058A (en) * 2000-12-11 2002-06-21 Sumitomo Metal Ind Ltd Method of manufacturing silicon semiconductor substrate
JP2002293691A (en) * 2001-03-30 2002-10-09 Shin Etsu Handotai Co Ltd Method of manufacturing silicon single crystal and silicon single crystal as well as silicon wafer
JP2005515633A (en) * 2001-12-21 2005-05-26 エムイーエムシー・エレクトロニック・マテリアルズ・インコーポレイテッド Silicon wafer with ideal oxygen precipitation having nitrogen / carbon stabilized oxygen precipitation nucleation center and method for producing the same

Similar Documents

Publication Publication Date Title
JP4805681B2 (en) Epitaxial wafer and method for manufacturing epitaxial wafer
JP5121139B2 (en) Annealed wafer manufacturing method
JPH11189495A (en) Silicon single crystal and its production
JP2001158690A (en) Method for producing high-quality silicon single crystal
CN114318500B (en) Crystal pulling furnace and method for pulling monocrystalline silicon rod and monocrystalline silicon rod
JPH10152395A (en) Production of silicon single crystal
KR100654511B1 (en) Silicon single crystal wafer and manufacturing process therefor
JPH0393700A (en) Heat treating method and device of silicon single crystal and production device thereof
JP4236243B2 (en) Silicon wafer manufacturing method
JPH08290995A (en) Silicon single crystal and its production
JP4750916B2 (en) Method for growing silicon single crystal ingot and silicon wafer using the same
JP2002198375A (en) Method of heat treatment of semiconductor wafer and semiconducor wafer fabricated therby
JP2004224577A (en) Manufacturing method of p-doped silicon single crystal and p-doped n type silicon single crystal wafer
JPH1192283A (en) Silicon wafer and its production
JPH0543382A (en) Production of silicon single crystal
JP4463950B2 (en) Method for manufacturing silicon wafer
JP4080657B2 (en) Method for producing silicon single crystal ingot
JP2002293691A (en) Method of manufacturing silicon single crystal and silicon single crystal as well as silicon wafer
JP3724535B2 (en) High quality silicon single crystal
JP4577320B2 (en) Silicon wafer manufacturing method
JP2002179496A (en) Method for growing silicon single crystal and silicon wafer
JPH0521303A (en) Semiconductor substrate and manufacture thereof
JP4577319B2 (en) Method for growing silicon single crystal
JPH0834698A (en) Method for pulling up single crystal
JPH09268098A (en) Production of silicon single crystal

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20040107

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20040120

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040317

A02 Decision of refusal

Effective date: 20040413

Free format text: JAPANESE INTERMEDIATE CODE: A02