JPH11189495A - Silicon single crystal and its production - Google Patents

Silicon single crystal and its production

Info

Publication number
JPH11189495A
JPH11189495A JP36121797A JP36121797A JPH11189495A JP H11189495 A JPH11189495 A JP H11189495A JP 36121797 A JP36121797 A JP 36121797A JP 36121797 A JP36121797 A JP 36121797A JP H11189495 A JPH11189495 A JP H11189495A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
crystal
single crystal
silicon
growth
grown
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP36121797A
Other languages
Japanese (ja)
Other versions
JP4147599B2 (en )
Inventor
Hidekazu Asayama
Masataka Horai
Shigeru Umeno
正隆 宝来
繁 梅野
英一 浅山
Original Assignee
Sumitomo Metal Ind Ltd
住友金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a high-quality silicon single crystal with excellent device characteristics through Czochralski process. SOLUTION: In this method for producing a silicon single crystal through crystal growth by Czochralski process, the crystal growth is performed in such an inert gas atmosphere so as to incorporated the grown crystal with hydrogen at a concentration of 5×10<11> to 1×10<15> atoms/cm<3> in the crystal and the ratio: V/G is set at such a critical value or lower that ring-shaped oxidation-induced laminating defects vanish at the crystal center (where, V is single crystal growth velocity, and G is the intracrystal temperature gradient in the growth direction within the temperature range from the melting point of silicon to 1,300 deg.C during single crystal growth process).

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術分野】本発明は、半導体デバイスとして使用されるシリコン単結晶の製造方法に関し、詳しくは、チョクラルスキー法(以下、CZ法という)によって育成されるシリコン単結晶の製造方法に関する。 BACKGROUND OF THE INVENTION The present invention relates to a method for manufacturing a silicon single crystal used as a semiconductor device, particularly, the Czochralski method (hereinafter, referred to as CZ method) relates to a method for producing a silicon single crystal is grown by .

【0002】 [0002]

【従来の技術】半導体材料に用いられるシリコン単結晶の製造には、種々の方法があるが、一般にCZ(Czochr The production of a silicon single crystal for use in the Prior Art Semiconductor material, there are various methods, generally CZ (Czochr
alski)法、又は、FZ(Floating Zone)法が用いられている。 Alski) method, or, FZ (Floating Zone) method is used.

【0003】CZ法は、石英ルツボに充填したシリコン多結晶をヒーターで加熱溶融した後、この融液に種結晶を浸し、これを回転させつつ上方に引き上げることによって単結晶を成長させる方法である。 [0003] CZ method, after a polycrystalline silicon filled in the quartz crucible is heated and melted by a heater, immersing a seed crystal in this melt, is a method of growing a single crystal by pulling upwards while rotating it .

【0004】また、FZ法は、多結晶シリコンインゴットの一部を高周波で加熱溶融して溶融帯域を作り、この溶融帯域を移動させながら単結晶を成長させる方法である。 Further, FZ method, a portion of the polycrystalline silicon ingot created a melting zone heated and melted to a high frequency, while moving the melting zone is a method of growing a single crystal.

【0005】前記CZ法は、大きな直径の結晶の形成が容易であるため、CZ法で製造したシリコン単結晶から切り出したウエハが、高集積度半導体素子基板として用いられている。 [0005] The CZ method, since the formation of crystals of large diameter is easy, is a wafer cut out from a silicon single crystal produced by the CZ method is used as a highly integrated semiconductor device substrate.

【0006】CZ法によって育成された結晶中には、結晶育成条件によって、リング状の酸誘起積層欠陥(以下、OSF(Oxidation induced Stacking Fault)という)が発生する場合がある。 [0006] During crystal grown by the CZ method, the crystal growth conditions, the ring-shaped acid-induced stacking fault (hereinafter, OSF (referred Oxidation induced Stacking Fault)) sometimes occurs. その他に、数種類の微小欠陥(以下、Grown-in欠陥という)が形成される。 In addition, several types of micro-defects (hereinafter, referred Grown-in defects) are formed.

【0007】OSFリングの結晶内の発生部位は、単結晶の成長速度Vと、育成される単結晶のシリコン融点〜 [0007] generation site in the OSF ring crystal has a growth rate V of the single crystal, the melting point of silicon single crystal to be grown -
1300℃の引き上げ軸方向の結晶内での温度勾配Gの比V/Gによって決定される。 It is determined by the ratio V / G of the temperature gradient G at the pulling axis direction within the crystal of 1300 ° C..

【0008】比V/Gが、OSFリングが結晶中心部で消滅する臨界値(以下、単に臨界値と記す。)より大きい場合には、空孔が凝集して、0.1μm程度の八面体を基本構造とした空洞(ボイド)欠陥が形成される。 [0008] The ratio V / G is the critical value that OSF ring disappears at the center of the crystal (hereinafter simply referred to. As a critical value) is larger than the aggregated vacancies, 0.1 [mu] m approximately octahedral is the formation of voids defects as a basic structure is formed a.

【0009】一方、比V/Gが、臨界値より小さい場合は、格子間シリコンが凝集して転位クラスタが形成される。 On the other hand, the ratio V / G is less than the critical value, the dislocation clusters are formed interstitial silicon aggregate.

【0010】一般に半導体素子基板として用いられているウエハは、ボイドが形成される条件で成長させた単結晶から切り出されたウエハである。 [0010] wafer generally used as a semiconductor element substrate is a wafer cut out from a single crystal grown under a condition in which voids are formed. このボイドは、半導体素子の電気特性の一つである酸化膜耐圧を低下させる。 The void reduces the oxide dielectric breakdown voltage which is one of electric characteristics of a semiconductor element.

【0011】結晶中、単位体積あたりのボイド数(欠陥密度)を低減させるために、結晶育成時に、ボイドが形成される温度領域(1100℃前後)で徐冷する方法が行われている。 [0011] in the crystal, in order to reduce the number of voids per unit volume (defect density), at the time of crystal growth, a method for annealing in a temperature region (1100 ° C. so) that voids are formed is performed.

【0012】 [0012]

【発明が解決しようとする課題】しかし、この方法では、欠陥密度が10 5 cm -3程度までしか低減できず、 [SUMMARY OF THE INVENTION] However, this method can only reduced to defect density of about 10 5 cm -3,
また、欠陥密度は低減されても、欠陥のサイズが粗大化することが明らかにされており、次世代の半導体素子に用いるシリコン単結晶の育成においては、更なる改善が必要とされている。 Also, the defect density is reduced, has been shown to be the size of the defect becomes coarse, the growth of a silicon single crystal for use in the next generation semiconductor devices, there is a need for further improvement.

【0013】ここで、比V/Gが臨界値以下となる条件で育成された単結晶から切り出されたウエハは、ボイドが存在せず、従って、酸化膜耐圧特性が良好となる。 [0013] Here, the wafer the ratio V / G was cut out from a single crystal grown under a condition equal to or less than the critical value, there is no voids, therefore, oxide dielectric breakdown voltage characteristics are improved. しかし、前記ウエハは、転位クラスタが存在するため、p However, the wafer is, for dislocation cluster is present, p
n接合リーク特性を劣化させる。 Degrading n junction leakage characteristics.

【0014】そこで、本発明は、ボイドや、転位クラスタ等のGrown-in欠陥を含まず、シリコン単結晶の高品質化、及び、高品質単結晶を得ることの可能なシリコン単結晶の製造方法を提供することを目的とする。 [0014] Therefore, the present invention, the void and does not include the Grown-in defects dislocation clusters and the like, high-quality silicon single crystal, and method of the possible silicon single crystal to obtain a high-quality single crystals an object of the present invention is to provide a.

【0015】 [0015]

【課題を解決するための手段】本願第1請求項に記載した発明は、チョクラルスキー法により結晶育成するシリコン単結晶の製造方法において、結晶の育成は、水素を含む不活性ガス雰囲気中で行うとともに、単結晶の成長速度Vと、単結晶成長時のシリコン融点から1300℃ Described herein first claim SUMMARY OF THE INVENTION The invention is a method of manufacturing a silicon single crystal to be crystal grown by the Czochralski method, growing the crystal in an inert gas atmosphere containing hydrogen It performs a growth rate V of the single crystal, 1300 ° C. from the melting point of silicon in the single crystal growth
までの温度範囲における成長方向の結晶内温度勾配Gとの比V/Gを、リング状の酸化誘起積層欠陥が結晶中心で消滅する臨界値以下に設定する構成のシリコン単結晶の製造方法である。 The ratio V / G of the crystal in the temperature gradient G in the growth direction in the temperature range up to, oxidation induced stacking faults ring is a construction method for manufacturing a silicon single crystal to be set below the critical value disappears in the center of the crystal .

【0016】前述したように、比V/Gを臨界値以下とする条件下で結晶を成長させると、ボイドは発生しない。 As previously mentioned, the ratio V / G under conditions less critical value When growing crystals, the voids do not occur. また、水素ガスを含む不活性ガス雰囲気中で結晶の育成を行うと、転位クラスタが発生しない。 Further, when the growth of the crystal in an inert gas atmosphere containing hydrogen gas, dislocation clusters do not occur. これは、不活性ガス雰囲気中に含まれる水素ガスがシリコン融液に溶け込み、融液が固化するときに、単結晶中に水素ガスが取り込まれ、あるいは、高温下において、固化した後、直接単結晶に取り込まれる。 This hydrogen gas contained in the inert gas atmosphere dissolves in the silicon melt, when the melt is solidified, the hydrogen gas is taken into the single crystal, or at a high temperature, after solidification, directly single It is incorporated in the crystal. そして、単結晶中に取り込まれた水素ガスが、格子間シリコン原子の拡散を抑制するため、格子間シリコン原子の凝集が起きず、結果として転位クラスタが発生しないからである。 Then, hydrogen gas was taken into the single crystal, in order to suppress the diffusion of interstitial silicon atoms, not occur agglomeration of interstitial silicon atoms, because dislocation clusters do not occur as a result.

【0017】このように、水素ガスを含む不活性ガス雰囲気中において、V/G値を臨界値以下となるように設定した条件下で、結晶育成を行うと、ボイドや転位クラスタ等のGrown-in欠陥が形成されない高品質単結晶の育成が可能となる。 [0017] Thus, in an inert gas atmosphere containing hydrogen gas, under conditions set the V / G value to be equal to or less than the critical value, when the crystal growth, such as voids and dislocation clusters Grown- development of high-quality single crystals in defect is not formed is possible.

【0018】本願第2請求項に記載した発明は、前記請求項1記載の条件下で行うシリコン単結晶の製造方法において、成長結晶中の水素が5×10 11 〜1×10 15 at [0018] This application is the invention according to the second claim, claim in the manufacturing method of the silicon single crystal under the conditions of 1, wherein the hydrogen in the growing crystal is 5 × 10 11 ~1 × 10 15 at
oms/cm 3の濃度となるように、不活性ガス中に水素が添加される構成のシリコン単結晶の製造方法である。 at a concentration of oms / cm 3, a method for manufacturing a silicon single crystal structure hydrogen in an inert gas is added.

【0019】減圧下において結晶育成を行うチョクラルスキー法においては、不活性ガス雰囲気中に、5%濃度以上の水素を添加すると、結晶中に巨大な異常欠陥が形成されたり、カーボンヒータが水素と反応して、メタンとなる反応が激しくなり、メタンやカーボン中の不純元素が結晶の汚染原因となる問題を生じたり、ヒータの消耗や、劣化が激しくなる等の問題を生じるおそれがある。 [0019] In the Czochralski method in which the crystal growth under reduced pressure, in an inert gas atmosphere, the addition of 5% concentration or more of hydrogen, or is a giant abnormal defects in the crystal is formed, a carbon heater is hydrogen react with, the methane reaction becomes violent, or cause problems impurities from methane and the carbon is cause contamination of the crystal, wear and the heater, which may cause problems such as deterioration becomes severe.

【0020】また、転位クラスタ抑制効果があるのは、 [0020] In addition, there is a dislocation cluster suppression effect,
シリコン単結晶中の水素濃度が5×10 11 atoms/cm 3以上であり、前述した巨大な異常欠陥を生じる水素濃度は、1×10 15 atoms/cm 3以上である。 The hydrogen concentration in the silicon single crystal is not less 5 × 10 11 atoms / cm 3 or more, the hydrogen concentration producing huge abnormal defects described above is 1 × 10 15 atoms / cm 3 or more.

【0021】従って、本発明においては、結晶中の水素濃度を5×10 11 〜1×10 15 atoms/cm 3に設定し、ボイドや転位クラスタ等のGrown-in欠陥が形成されない高品質単結晶の育成を可能としている。 [0021] Thus, in the present invention, by setting the hydrogen concentration in the crystal to 5 × 10 11 ~1 × 10 15 atoms / cm 3, high quality single crystals Grown-in defects such as voids and dislocation clusters are not formed thereby making it possible to foster.

【0022】本願第3請求項に記載した発明は、チョクラルスキー法により結晶が育成されるシリコン単結晶であって、結晶の育成は、水素を含む不活性ガス雰囲気中で行われるとともに、単結晶の成長速度Vと、単結晶成長時のシリコン融点から1300℃までの温度範囲における成長方向の結晶内温度勾配Gとの比V/Gは、リング状の酸化誘起積層欠陥が結晶中心で消滅する臨界値以下の設定条件下で育成される構成のシリコン単結晶である。 [0022] The present invention described in the third aspect, there is provided a silicon single crystal the crystal by the Czochralski method is grown, growth of crystals, with is performed in an inert gas atmosphere containing hydrogen, single and the growth rate V of the crystal, the ratio V / G of the crystal in the temperature gradient G in the growth direction in the temperature range from the melting point of silicon in the single crystal growth to 1300 ° C. is extinguished oxidation induced stacking fault ring shape at the center of the crystal a silicon single crystal structure is grown by the critical value following settings conditions that.

【0023】本願第4請求項に記載した発明は、前記請求項3記載の発明において、前記設定条件下で育成されるシリコン単結晶は、結晶中の水素濃度が、5×10 11 [0023] This application is the invention described in the fourth aspect, in the invention of claim 3, wherein the silicon single crystal is fostering the setting conditions, the hydrogen concentration in the crystal, 5 × 10 11
〜1×10 15 atoms/cm 3となる濃度の水素が添加された条件下で育成される構成のシリコン単結晶である。 Silicon configurations hydrogen concentration to be ~1 × 10 15 atoms / cm 3 is grown under the conditions added is a single crystal.

【0024】このような、水素ガスを含む不活性ガス雰囲気中で、比V/Gが臨界値以下になる条件で単結晶を成長させると、ボイド及び転位クラスタ等の欠陥のない高品質なシリコン単結晶を得ることが可能となる。 [0024] Such, in an inert gas atmosphere containing hydrogen gas, the ratio V / G is a single crystal is grown under conditions such that below the critical value, high quality silicon without defects such as voids and dislocation clusters it is possible to obtain a single crystal.

【0025】また、結晶中の水素濃度が5×10 11 〜1 Further, the hydrogen concentration in the crystal is 5 × 10 11 to 1
×10 15 atoms/cm 3となるように設定した条件下でシリコン単結晶を成長させることにより、高品質なシリコン単結晶を得ることが可能となる。 By growing a silicon single crystal under the conditions set to be × 10 15 atoms / cm 3, it becomes possible to obtain a high-quality silicon single crystal.

【0026】 [0026]

【発明の実施の形態】以下、本発明を詳細に説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.

【0027】図1は、本発明の製造方法に用いられる、 [0027] FIG. 1 is used in the manufacturing method of the present invention,
CZ法を用いた単結晶成長装置の概略構成図である。 CZ method is a schematic diagram of a single crystal growth apparatus using.

【0028】図1に示すように、1は、石英ルツボを示し、このルツボ1は、有底円筒状の石英製の内層保持容器1aと、この内層保持容器1aの外側に嵌合された同じく有底円筒状の黒鉛製の外層保持容器1bとから構成されている。 As shown in FIG. 1, 1 denotes a quartz crucible, the crucible 1 includes a bottomed cylindrical quartz inner holding vessel 1a, also mated to the outside of the inner layer holding vessel 1a It is composed of a bottomed cylindrical graphite outer layers holding vessel 1b.

【0029】このような構成からなるルツボ1は、所定の速度で回転する支持軸1cに支持され、ルツボ1の外側には、ヒータ2が同心円筒状に配設されている。 The crucible 1 having such a structure is supported by a support shaft 1c which rotates at a predetermined speed, on the outside of the crucible 1, a heater 2 is disposed concentrically cylindrical. このルツボ1の内部には、前記ヒータ2の加熱によって溶融された原料の溶融液3が充填されており、ルツボ1の中心に引き上げ棒或はワイヤー等からなる引き上げ軸4が配設されている。 Inside the crucible 1, wherein the provided melt 3 of the raw materials is melted by heating of the heater 2 is filled, the pulling shaft 4 consisting of lifting rod or wire or the like in the center of the crucible 1 is disposed . この引き上げ軸4の先にはシードチャック及び種結晶5を溶融液3の表面に接触させる。 The earlier of the pulling shaft 4 contacting the seed chuck and the seed crystal 5 onto the surface of the melt 3.

【0030】更に、引き上げ軸4を、支持軸1cによって回転されるルツボ1と反対方向に所定の速度で回転させながら種結晶5を引き上げることによって、種結晶5 Furthermore, the pulling shaft 4, by pulling the seed crystal 5 while rotating at a predetermined speed in the crucible 1 and the opposite direction is rotated by the support shaft 1c, the seed crystal 5
の先端に溶融液3を凝固させて単結晶6を成長させていく。 Go single crystal 6 grown tip melt 3 is coagulated in the. 尚、図中9と10は、雰囲気ガスの供給口と排出口である。 In the drawing, 9 and 10 are the supply port and the discharge port of the atmospheric gas.

【0031】単結晶の育成に際し、最初に結晶を無転位化するために、シード絞りを行う。 [0031] Upon growth of the single crystal, in order to dislocation-free the first crystal, carry out the seed aperture.

【0032】その後、単結晶のボディ直径を確保するため、ショルダーを形成し、ボディ直径になったところで肩変えを行い、ボディ直径を一定にして単結晶本体の育成へ移行する。 [0032] Thereafter, in order to ensure the body diameter of the single crystal, to form a shoulder, it performs a changing shoulder where it becomes the body diameter, to migrate to the body diameter constant to the growth of the single crystal body. ボディ直径で所定長さの単結晶を育成すると、無転位の状態で単結晶を溶融液から切り離すためのテイル絞りを行う。 When a single crystal is grown in a predetermined length in the body diameter, it performs tailing for separating the single crystal from the melt at a dislocation-free state.

【0033】単結晶の成長速度Vは、単結晶の引き上げ速度である。 The growth rate V of the single crystal is a pulling rate of the single crystal. また、溶融液3の温度を変えることにより、単結晶の直径を一定に保持したまま、成長速度Vを変化させることができる。 Further, by changing the temperature of the melt 3, while maintaining the diameter of the single crystal constant, it is possible to vary the growth rate V.

【0034】また、温度勾配Gは、一般に引き上げ方向に平行な同一軸上のシリコン融点近傍の1400℃と1 Further, the temperature gradient G is typically 1400 ° C. of silicon near the melting point of the parallel same axis pulling direction and 1
300℃での結晶温度を計測し、その値の温度差と当該二点間の間隔との比である温度勾配Gとして算出する。 The crystal temperature at 300 ° C. is measured, calculated as a temperature gradient G which is the ratio between the distance between the temperature difference and the two points of the value.

【0035】この温度勾配Gは、炉内の熱的環境を変更することにより、変化させることができる。 [0035] The temperature gradient G by changing the thermal environment in the furnace can be varied.

【0036】次に、図1に示す結晶成長装置を用いて、 Next, using the crystal growth apparatus shown in FIG. 1,
シリコン単結晶の育成を行った実施例を示す。 It shows an embodiment of performing the growth of a silicon single crystal.

【0037】(実施例1)本例においては、結晶成長速度Vを0.4mm/min以下とすることにより、V/ [0037] Example 1 In this example, by a crystal growth rate V or less 0.4 mm / min, V /
G値は臨界値以下となる。 G value is below the critical value.

【0038】前記結晶成長速度V(0.4mm/mi In one embodiment of the invention, the crystal growth rate V (0.4mm / mi
n)で、水素を添加せずに単結晶を育成し、所定のサンプル加工を行った後、セコエッチングにより、結晶内の欠陥密度を測定した。 In n), a single crystal is grown without the addition of hydrogen, after the predetermined sample processing, by Secco etching, were measured the density of defects in the crystal.

【0039】水素無添加条件下において、育成した結晶には、10 4 cm -3程度の転位クラスタが検出された。 [0039] In the hydrogen additive-free conditions, the grown crystals, 10 4 cm -3 of about dislocation clusters are detected.

【0040】また、結晶成長速度Vを0.4mm/mi [0040] In addition, 0.4mm the crystal growth rate V / mi
n、アルゴン流量40リットル/分、水素流量0.4リットル/分の条件下において、結晶の育成を行い、所定のサンプル加工を行った後、セコエッチングにより、結晶内の欠陥密度を測定した。 n, argon flow rate 40 l / min, under the conditions of hydrogen flow rate 0.4 l / min, carried out the development of crystals, after the predetermined sample processing, by Secco etching, were measured the density of defects in the crystal.

【0041】前記水素添加条件下において育成した結晶には、転位クラスタは検出されなかった。 [0041] crystal grown in the hydrogenation conditions, dislocation clusters were detected. この水素条件下において育成した結晶中の水素濃度は、5×10 11 The hydrogen concentration in the crystal grown in the hydrogen conditions, 5 × 10 11 c
-3であった。 It was m -3.

【0042】このように結晶中の水素濃度が所定値となるように、不活性ガス中に水素を添加し、V/G値が臨界値以下となる条件で結晶育成を行うと、成長した結晶は、V/G値が臨界値以下のため、ボイドの発生がなく、転位クラスタの発生も確認されない、高品質なシリコン単結晶を得ることができる。 [0042] As the hydrogen concentration of the thus crystal becomes a predetermined value, the addition of hydrogen in the inert gas, when the crystal growth under the conditions V / G value is less than the critical value, the grown crystals since V / G value is less than the critical value, there is no occurrence of voids, also not confirmed the occurrence of dislocation clusters, it is possible to obtain a high-quality silicon single crystal.

【0043】次に、前記実施例1と同一の装置を用いて、また、実施例1と同一の温度勾配G値を有する条件下において、結晶育成を行った場合の実施例を示す。 Next, using the same apparatus as in Example 1, also under conditions with the same temperature gradient G value Example 1 shows an embodiment of a case of performing crystal growth.

【0044】(実施例2)本例においては、結晶成長速度Vを1.0mm/minとすることにより、V/G値は、臨界値以上となる。 [0044] In Example 2 This example, by a crystal growth rate V and 1.0 mm / min, V / G value is a threshold value or more.

【0045】前記結晶成長速度V(0.4mm/mi [0045] The crystal growth rate V (0.4mm / mi
n)で、水素を添加せずに単結晶を育成し、所定のサンプル加工を行った後、セコエッチングにより、結晶内の欠陥密度を測定した。 In n), a single crystal is grown without the addition of hydrogen, after the predetermined sample processing, by Secco etching, were measured the density of defects in the crystal.

【0046】水素無添加条件下において、育成した結晶には、10 6 cm -3程度のボイドが検出された。 [0046] In the hydrogen additive-free conditions, the grown crystals, voids of about 10 6 cm -3 was detected.

【0047】また、前記結晶成長速度Vを1.0mm/ [0047] In addition, 1.0mm the crystal growth rate V /
min、アルゴン流量40リットル/分、水素流量0. min, argon flow rate 40 l / min, hydrogen flow rate zero.
4リットル/分の条件下において、結晶の育成を行い、 Under the conditions of the four liters / minute, conducted the development of the crystal,
所定のサンプル加工を行った後、セコエッチングにより、結晶内の欠陥密度を測定した。 After a predetermined sample processing, by Secco etching, it was measured the density of defects in the crystal.

【0048】前記水素添加条件下において育成した結晶には、水素無添加条件下で育成した結晶と同様に、10 [0048] crystal grown in the hydrogenation conditions, similar to the crystal grown with hydrogen without addition conditions, 10
6 cm -3程度のボイドが検出された。 Voids of about 6 cm -3 was detected.

【0049】本例によって、V/G値を臨界値以上となるように、成長速度Vを設定して結晶成長を行うと、水素無添加条件下及び水素添加条件下においても同様に、 [0049] The present examples, the V / G value such that the critical value or more, the crystal growth is performed by setting the growth rate V, also in hydrogenated non-addition conditions and hydrogenation conditions,
ボイドの発生が確認された。 Generation of voids was confirmed.

【0050】このように、V/G値を臨界値以下に設定し、結晶中の水素濃度が5×10 11 〜1×10 15 atoms/ [0050] Thus, the V / G value set below the critical value, the hydrogen concentration in the crystal is 5 × 10 11 ~1 × 10 15 atoms /
cm 3となるように、不活性ガス中に水素ガスを添加した条件で結晶育成を行うと、成長した結晶中に、ボイド及び転位クラスタのない高品質なシリコン単結晶を得ることができる。 As a cm 3, when performing the crystal growth under the conditions the addition of hydrogen gas in the inert gas can be obtained during the grown crystals, voids and a high quality silicon single crystal free of dislocation clusters.

【0051】 [0051]

【発明の効果】以上説明したように、本発明は、チョクラルスキー法により結晶育成するシリコン単結晶の製造方法において、結晶の育成は、水素を含む不活性ガス雰囲気中で行うとともに、単結晶の成長速度Vと、単結晶成長時のシリコン融点から1300℃までの温度範囲における成長方向の結晶内温度勾配Gとの比V/Gは、リング状の酸化誘起積層欠陥が結晶中心で消滅する臨界値以下に設定し、結晶中の水素濃度が、5×10 11 〜1× As described in the foregoing, the present invention provides a method of manufacturing a silicon single crystal to be crystal grown by the Czochralski method, growing the crystal, as well as carried out in an inert gas atmosphere containing hydrogen, single-crystal and growth rate V of the ratio V / G of the crystal in the temperature gradient G in the growth direction in the temperature range from the melting point of silicon in the single crystal growth to 1300 ° C., the oxidation-induced stacking faults ring disappears at the center of the crystal set below the critical value, the hydrogen concentration in the crystal is, 5 × 10 11 ~1 ×
10 15 atoms/cm 3となるように水素を不活性ガス雰囲気中に添加することにより育成されたシリコン単結晶及び前記条件下において製造するシリコン単結晶の製造方法である。 10 is 15 atoms / cm 3 and made as a method for manufacturing a silicon single crystal to manufacture a silicon single crystal and the conditions that have been grown by the addition of hydrogen in an inert gas atmosphere.

【0052】このように、V/G値を臨界値以下とすることにより、ボイドの発生抑制するとともに、不活性ガス雰囲気中に添加された水素が育成された結晶中に取り込まれ、格子間シリコン原子の拡散を抑制し、格子間シリコン原子の凝集が起きずに、転位クラスタの発生をなくすことができる。 [0052] Thus, by less critical value of V / G value, thereby suppressing the occurrence of voids, hydrogen added to the inert gas atmosphere is taken into crystal grown, interstitial silicon suppresses diffusion of atoms, not occur agglomeration of interstitial silicon atoms, it is possible to eliminate the occurrence of dislocation clusters.

【0053】従って、本発明の方法によれば、ボイド及び転位クラスタの発生のない無欠陥結晶を育成することができ、シリコン単結晶の高品質化を図ることができる。 [0053] Therefore, according to the method of the present invention, it is possible to cultivate without generating defect-free crystals of voids and dislocation clusters, can improve the quality of the silicon single crystal.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本発明に係り、CZ法による単結晶の育成に用いられている単結晶育成装置の概略構成図である。 [1] relates to the present invention, it is a schematic diagram of a single crystal growing apparatus used in the single crystal growth by the CZ method.

【符号の説明】 DESCRIPTION OF SYMBOLS

1 ルツボ 1a 内層保持容器 1b 外層保持容器 1c 支持軸 2 ヒーター 3 溶融液 4 引き上げ軸 5 種結晶 6 単結晶 9 雰囲気ガスの供給口 10 雰囲気ガスの排出口 M モータ 1 crucible 1a inner holding vessel 1b outer holding vessel 1c support shaft 2 Heater 3 outlet of the supply port 10 atmospheric gas of the melt 4 pulling axis 5 seed crystal 6 monocrystal 9 atmospheric gas M motor

Claims (4)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 チョクラルスキー法により結晶育成するシリコン単結晶の製造方法において、 結晶の育成は、水素を含む不活性ガス雰囲気中で行うとともに、 単結晶の成長速度Vと、単結晶成長時のシリコン融点から1300℃までの温度範囲における成長方向の結晶内温度勾配Gとの比V/Gを、リング状の酸化誘起積層欠陥が結晶中心で消滅する臨界値以下に設定することを特徴とするシリコン単結晶の製造方法。 1. A method for producing a silicon single crystal to be crystal grown by the Czochralski method, growing the crystal, as well as carried out in an inert gas atmosphere containing hydrogen, with a growth rate V of the single crystal, the single crystal growth from silicon melting the ratio V / G of the crystal growth direction in the temperature gradient G in the temperature range up to 1300 ° C., and wherein the setting below the critical value oxidation induced stacking faults ring disappears at the center of the crystal method for producing a silicon single crystal to be.
  2. 【請求項2】 前記条件下で行うシリコン単結晶の製造方法において、成長結晶中の水素濃度が5×10 11 〜1 2. A method for producing a silicon single crystal which performs in the conditions, the hydrogen concentration in the growing crystal is 5 × 10 11 to 1
    ×10 15 atoms/cm 3の濃度となるように、不活性ガス中に水素が添加されることを特徴とする前記請求項1記載のシリコン単結晶の製造方法。 × 10 15 so that the concentration of atoms / cm 3, claim 1 method for manufacturing a silicon single crystal, wherein the hydrogen in the inert gas is added.
  3. 【請求項3】 チョクラルスキー法により結晶が育成されるシリコン単結晶であって、 結晶の育成は、水素を含む不活性ガス雰囲気中で行われるとともに、単結晶の成長速度Vと、単結晶成長時のシリコン融点から1300℃までの温度範囲における成長方向の結晶内温度勾配Gとの比V/Gは、リング状の酸化誘起積層欠陥が結晶中心で消滅する臨界値以下の設定条件下で育成されることを特徴とするシリコン単結晶。 3. A silicon single crystal the crystal by the Czochralski method is grown, growth of crystals, with is performed in an inert gas atmosphere containing hydrogen, with a growth rate V of the single crystal, single crystal the ratio V / G of the crystal in the temperature gradient G in the growth direction in the temperature range from the melting point of silicon during growth up to 1300 ° C. is a critical value following settings conditions oxidation induced stacking faults ring disappears at the center of the crystal silicon, characterized in that it is grown single crystal.
  4. 【請求項4】 前記設定条件下で育成されるシリコン単結晶において、 結晶中の水素濃度が、5×10 11 〜1×10 15 atoms/cm 4. A silicon single crystal is grown by the setting conditions, the hydrogen concentration in the crystal is, 5 × 10 11 ~1 × 10 15 atoms / cm
    3となる濃度の水素が添加された条件下で育成されることを特徴とする前記請求項3記載のシリコン単結晶。 3 become silicon claim 3, wherein the hydrogen concentration is grown under the conditions added single crystal.
JP36121797A 1997-12-26 1997-12-26 A silicon single crystal and a fabrication method thereof Expired - Fee Related JP4147599B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36121797A JP4147599B2 (en) 1997-12-26 1997-12-26 A silicon single crystal and a fabrication method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36121797A JP4147599B2 (en) 1997-12-26 1997-12-26 A silicon single crystal and a fabrication method thereof

Publications (2)

Publication Number Publication Date
JPH11189495A true true JPH11189495A (en) 1999-07-13
JP4147599B2 JP4147599B2 (en) 2008-09-10

Family

ID=18472673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36121797A Expired - Fee Related JP4147599B2 (en) 1997-12-26 1997-12-26 A silicon single crystal and a fabrication method thereof

Country Status (1)

Country Link
JP (1) JP4147599B2 (en)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6236104B1 (en) 1998-09-02 2001-05-22 Memc Electronic Materials, Inc. Silicon on insulator structure from low defect density single crystal silicon
US6254672B1 (en) 1997-04-09 2001-07-03 Memc Electronic Materials, Inc. Low defect density self-interstitial dominated silicon
US6284039B1 (en) 1998-10-14 2001-09-04 Memc Electronic Materials, Inc. Epitaxial silicon wafers substantially free of grown-in defects
EP1136596A1 (en) * 2000-03-24 2001-09-26 Wacker-Siltronic Gesellschaft für Halbleitermaterialien Aktiengesellschaft Silicon wafer and its method of fabrication
US6312516B2 (en) 1998-10-14 2001-11-06 Memc Electronic Materials, Inc. Process for preparing defect free silicon crystals which allows for variability in process conditions
US6328795B2 (en) 1998-06-26 2001-12-11 Memc Electronic Materials, Inc. Process for growth of defect free silicon crystals of arbitrarily large diameters
US6379642B1 (en) 1997-04-09 2002-04-30 Memc Electronic Materials, Inc. Vacancy dominated, defect-free silicon
US6416836B1 (en) 1998-10-14 2002-07-09 Memc Electronic Materials, Inc. Thermally annealed, low defect density single crystal silicon
US6846539B2 (en) 2001-01-26 2005-01-25 Memc Electronic Materials, Inc. Low defect density silicon having a vacancy-dominated core substantially free of oxidation induced stacking faults
US6858307B2 (en) 2000-11-03 2005-02-22 Memc Electronic Materials, Inc. Method for the production of low defect density silicon
US6896728B2 (en) 1997-04-09 2005-05-24 Memc Electronic Materials, Inc. Process for producing low defect density, ideal oxygen precipitating silicon
EP1598452A1 (en) * 2003-02-25 2005-11-23 Sumitomo Mitsubishi Silicon Corporation Silicon wafer, process for producing the same and method of growing silicon single crystal
WO2006022296A1 (en) * 2004-08-25 2006-03-02 Sumco Corporation Silicon wafer, process for producing the same and method of growing silicon single crystal
US7105050B2 (en) 2000-11-03 2006-09-12 Memc Electronic Materials, Inc. Method for the production of low defect density silicon
WO2006112053A1 (en) * 2005-04-08 2006-10-26 Sumco Corporation Silicon single crystal growing method, silicon wafer and soi substrate using such silicon wafer
WO2006137174A1 (en) * 2005-06-20 2006-12-28 Sumco Corporation Method of growing silicon single crystal and silicon single crystal grown by the method
JP2006347857A (en) * 2005-06-20 2006-12-28 Sumco Corp Apparatus for manufacturing semiconductor single crystal
WO2006137180A1 (en) * 2005-06-20 2006-12-28 Sumco Corporation Apparatus for producing semiconductor single crystal
JP2006347853A (en) * 2005-06-20 2006-12-28 Sumco Corp Method for growing silicon single crystal
US7300517B2 (en) 2005-08-02 2007-11-27 Sumco Corporation Manufacturing method of hydrogen-doped silicon single crystal
JP2007314390A (en) * 2006-05-29 2007-12-06 Sumco Corp Manufacturing method of silicon single crystal
US7306676B2 (en) 2005-06-20 2007-12-11 Sumco Corporation Apparatus for manufacturing semiconductor single crystal
US7384480B2 (en) 2005-06-20 2008-06-10 Sumco Corporation Apparatus for manufacturing semiconductor single crystal
US7442251B2 (en) 2005-06-20 2008-10-28 Sumco Corporation Method for producing silicon single crystals and silicon single crystal produced thereby
US7473314B2 (en) 2005-06-20 2009-01-06 Sumco Corporation Method for growing silicon single crystal
KR100912703B1 (en) 2007-10-11 2009-08-19 세메스 주식회사 Appartus for treating substrate and method for treating substrate using the same
US8216362B2 (en) 2006-05-19 2012-07-10 Memc Electronic Materials, Inc. Controlling agglomerated point defect and oxygen cluster formation induced by the lateral surface of a silicon single crystal during CZ growth
CN106087044A (en) * 2016-08-19 2016-11-09 西安华晶电子技术股份有限公司 Method for melting of polycrystalline silicon ingot casting based on auxiliary heating
CN106087053A (en) * 2016-08-19 2016-11-09 西安华晶电子技术股份有限公司 Method for polycrystalline silicon ingot casting
CN106087046A (en) * 2016-08-19 2016-11-09 西安华晶电子技术股份有限公司 Method for polycrystalline silicon ingot casting capable of reducing grain size
CN106087047A (en) * 2016-08-19 2016-11-09 西安华晶电子技术股份有限公司 Preparation method of master alloy
CN106222740A (en) * 2016-08-19 2016-12-14 西安华晶电子技术股份有限公司 Polycrystalline silicon ingot casting method for lowering oxygen content at bottom of polycrystalline silicon ingot
CN106283182A (en) * 2016-08-19 2017-01-04 西安华晶电子技术股份有限公司 Polycrystalline silicon ingot casting technology
CN106283183A (en) * 2016-08-19 2017-01-04 西安华晶电子技术股份有限公司 Polycrystalline silicon ingot casting process based on boron nitride coating

Cited By (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6379642B1 (en) 1997-04-09 2002-04-30 Memc Electronic Materials, Inc. Vacancy dominated, defect-free silicon
US6254672B1 (en) 1997-04-09 2001-07-03 Memc Electronic Materials, Inc. Low defect density self-interstitial dominated silicon
US6896728B2 (en) 1997-04-09 2005-05-24 Memc Electronic Materials, Inc. Process for producing low defect density, ideal oxygen precipitating silicon
US6287380B1 (en) 1997-04-09 2001-09-11 Memc Electronic Materials, Inc. Low defect density silicon
US6605150B2 (en) 1997-04-09 2003-08-12 Memc Electronic Materials, Inc. Low defect density regions of self-interstitial dominated silicon
US6409827B2 (en) 1997-04-09 2002-06-25 Memc Electronic Materials, Inc. Low defect density silicon and a process for producing low defect density silicon wherein V/G0 is controlled by controlling heat transfer at the melt/solid interface
US6409826B2 (en) 1997-04-09 2002-06-25 Memc Electronic Materials, Inc. Low defect density, self-interstitial dominated silicon
US6632278B2 (en) 1997-04-09 2003-10-14 Memc Electronic Materials, Inc. Low defect density epitaxial wafer and a process for the preparation thereof
US6913647B2 (en) 1998-06-26 2005-07-05 Memc Electronic Materials, Inc. Process for cooling a silicon ingot having a vacancy dominated region to produce defect free silicon
US6328795B2 (en) 1998-06-26 2001-12-11 Memc Electronic Materials, Inc. Process for growth of defect free silicon crystals of arbitrarily large diameters
US6562123B2 (en) 1998-06-26 2003-05-13 Memc Electronic Materials, Inc. Process for growing defect-free silicon wherein the grown silicon is cooled in a separate chamber
US6849901B2 (en) 1998-09-02 2005-02-01 Memc Electronic Materials, Inc. Device layer of a silicon-on-insulator structure having vacancy dominated and substantially free of agglomerated vacancy-type defects
US6342725B2 (en) 1998-09-02 2002-01-29 Memc Electronic Materials, Inc. Silicon on insulator structure having a low defect density handler wafer and process for the preparation thereof
US6236104B1 (en) 1998-09-02 2001-05-22 Memc Electronic Materials, Inc. Silicon on insulator structure from low defect density single crystal silicon
US6284039B1 (en) 1998-10-14 2001-09-04 Memc Electronic Materials, Inc. Epitaxial silicon wafers substantially free of grown-in defects
US6565649B2 (en) 1998-10-14 2003-05-20 Memc Electronic Materials, Inc. Epitaxial wafer substantially free of grown-in defects
US7097718B2 (en) 1998-10-14 2006-08-29 Memc Electronic Materials, Inc. Single crystal silicon wafer having an epitaxial layer substantially free from grown-in defects
US6652646B2 (en) 1998-10-14 2003-11-25 Memc Electronic Materials, Inc. Process for growing a silicon crystal segment substantially free from agglomerated intrinsic point defects which allows for variability in the process conditions
US6743289B2 (en) 1998-10-14 2004-06-01 Memc Electronic Materials, Inc. Thermal annealing process for producing low defect density single crystal silicon
US6416836B1 (en) 1998-10-14 2002-07-09 Memc Electronic Materials, Inc. Thermally annealed, low defect density single crystal silicon
US6500255B2 (en) 1998-10-14 2002-12-31 Memc Electronic Materials, Inc. Process for growing silicon crystals which allows for variability in the process conditions while suppressing the formation of agglomerated intrinsic point defects
US6312516B2 (en) 1998-10-14 2001-11-06 Memc Electronic Materials, Inc. Process for preparing defect free silicon crystals which allows for variability in process conditions
EP1136596A1 (en) * 2000-03-24 2001-09-26 Wacker-Siltronic Gesellschaft für Halbleitermaterialien Aktiengesellschaft Silicon wafer and its method of fabrication
US6843848B2 (en) 2000-03-24 2005-01-18 Siltronic Ag Semiconductor wafer made from silicon and method for producing the semiconductor wafer
US6858307B2 (en) 2000-11-03 2005-02-22 Memc Electronic Materials, Inc. Method for the production of low defect density silicon
US7105050B2 (en) 2000-11-03 2006-09-12 Memc Electronic Materials, Inc. Method for the production of low defect density silicon
US6846539B2 (en) 2001-01-26 2005-01-25 Memc Electronic Materials, Inc. Low defect density silicon having a vacancy-dominated core substantially free of oxidation induced stacking faults
US7217320B2 (en) 2001-01-26 2007-05-15 Memc Electronics Materials, Inc. Low defect density silicon having a vacancy-dominated core substantially free of oxidation induced stacking faults
JP2011088818A (en) * 2003-02-25 2011-05-06 Sumco Corp Method for growing silicon single crystal, method for producing silicon wafer, and method for producing silicon-on-insulator (soi) substrate
US7704318B2 (en) 2003-02-25 2010-04-27 Sumco Corporation Silicon wafer, SOI substrate, method for growing silicon single crystal, method for manufacturing silicon wafer, and method for manufacturing SOI substrate
EP1598452A4 (en) * 2003-02-25 2007-02-21 Sumco Corp Silicon wafer, process for producing the same and method of growing silicon single crystal
EP1598452A1 (en) * 2003-02-25 2005-11-23 Sumitomo Mitsubishi Silicon Corporation Silicon wafer, process for producing the same and method of growing silicon single crystal
US7364618B2 (en) 2004-08-25 2008-04-29 Sumco Corporation Silicon wafer, method for manufacturing the same and method for growing silicon single crystals
WO2006022296A1 (en) * 2004-08-25 2006-03-02 Sumco Corporation Silicon wafer, process for producing the same and method of growing silicon single crystal
JP2007008795A (en) * 2004-08-25 2007-01-18 Sumco Corp Silicon wafer, its production method, and method of growing silicon single crystal
KR100916055B1 (en) * 2005-04-08 2009-09-08 가부시키가이샤 섬코 Silicon single crystal growing method, silicon wafer and soi substrate using such silicon wafer
EP2194168A1 (en) * 2005-04-08 2010-06-09 SUMCO Corporation Silicon single crystal growing method, silicon wafer and soi substrate using such silicon wafer
WO2006112053A1 (en) * 2005-04-08 2006-10-26 Sumco Corporation Silicon single crystal growing method, silicon wafer and soi substrate using such silicon wafer
JP2006312575A (en) * 2005-04-08 2006-11-16 Sumco Corp Silicon wafer and its production method
WO2006137174A1 (en) * 2005-06-20 2006-12-28 Sumco Corporation Method of growing silicon single crystal and silicon single crystal grown by the method
KR100912219B1 (en) * 2005-06-20 2009-08-14 가부시키가이샤 섬코 Apparatus for producing semiconductor single crystal
JP4710429B2 (en) * 2005-06-20 2011-06-29 株式会社Sumco Semiconductor single crystal manufacturing apparatus
US7306676B2 (en) 2005-06-20 2007-12-11 Sumco Corporation Apparatus for manufacturing semiconductor single crystal
KR100921175B1 (en) * 2005-06-20 2009-10-13 가부시키가이샤 사무코 Method of growing silicon single crystal and silicon single crystal grown by the method
JP2006347854A (en) * 2005-06-20 2006-12-28 Sumco Corp Method for growing silicon single crystal
US7442251B2 (en) 2005-06-20 2008-10-28 Sumco Corporation Method for producing silicon single crystals and silicon single crystal produced thereby
US7473314B2 (en) 2005-06-20 2009-01-06 Sumco Corporation Method for growing silicon single crystal
JP2006347853A (en) * 2005-06-20 2006-12-28 Sumco Corp Method for growing silicon single crystal
JP2006347856A (en) * 2005-06-20 2006-12-28 Sumco Corp Apparatus for manufacturing semiconductor single crystal
WO2006137180A1 (en) * 2005-06-20 2006-12-28 Sumco Corporation Apparatus for producing semiconductor single crystal
US7384480B2 (en) 2005-06-20 2008-06-10 Sumco Corporation Apparatus for manufacturing semiconductor single crystal
JP2006347857A (en) * 2005-06-20 2006-12-28 Sumco Corp Apparatus for manufacturing semiconductor single crystal
US7300517B2 (en) 2005-08-02 2007-11-27 Sumco Corporation Manufacturing method of hydrogen-doped silicon single crystal
US8673248B2 (en) 2006-05-19 2014-03-18 Memc Electronic Materials, Inc. Silicon material with controlled agglomerated point defects and oxygen clusters induced by the lateral surface
US8216362B2 (en) 2006-05-19 2012-07-10 Memc Electronic Materials, Inc. Controlling agglomerated point defect and oxygen cluster formation induced by the lateral surface of a silicon single crystal during CZ growth
JP2007314390A (en) * 2006-05-29 2007-12-06 Sumco Corp Manufacturing method of silicon single crystal
KR100912703B1 (en) 2007-10-11 2009-08-19 세메스 주식회사 Appartus for treating substrate and method for treating substrate using the same
CN106283183A (en) * 2016-08-19 2017-01-04 西安华晶电子技术股份有限公司 Polycrystalline silicon ingot casting process based on boron nitride coating
CN106087053A (en) * 2016-08-19 2016-11-09 西安华晶电子技术股份有限公司 Method for polycrystalline silicon ingot casting
CN106087046A (en) * 2016-08-19 2016-11-09 西安华晶电子技术股份有限公司 Method for polycrystalline silicon ingot casting capable of reducing grain size
CN106087047A (en) * 2016-08-19 2016-11-09 西安华晶电子技术股份有限公司 Preparation method of master alloy
CN106222740A (en) * 2016-08-19 2016-12-14 西安华晶电子技术股份有限公司 Polycrystalline silicon ingot casting method for lowering oxygen content at bottom of polycrystalline silicon ingot
CN106283182A (en) * 2016-08-19 2017-01-04 西安华晶电子技术股份有限公司 Polycrystalline silicon ingot casting technology
CN106087044A (en) * 2016-08-19 2016-11-09 西安华晶电子技术股份有限公司 Method for melting of polycrystalline silicon ingot casting based on auxiliary heating

Also Published As

Publication number Publication date Type
JP4147599B2 (en) 2008-09-10 grant

Similar Documents

Publication Publication Date Title
US5968264A (en) Method and apparatus for manufacturing a silicon single crystal having few crystal defects, and a silicon single crystal and silicon wafers manufactured by the same
US6045610A (en) Methods of manufacturing monocrystalline silicon ingots and wafers by controlling pull rate profiles in a hot zone furnance
US5089082A (en) Process and apparatus for producing silicon ingots having high oxygen content by crucible-free zone pulling, silicon ingots obtainable thereby and silicon wafers produced therefrom
EP0962556A1 (en) Nitrogen doped single crystal silicon wafer with few defects and method for its production
EP0962557A1 (en) Silicon single crystal wafer and method for producing silicon single crystal wafer
US20060156969A1 (en) Silicon wafer, process for producing the same and method of growing silicon single crystal
US6048395A (en) Method for producing a silicon single crystal having few crystal defects
US6190452B1 (en) Silicon single crystal wafer and method for producing it
US4040895A (en) Control of oxygen in silicon crystals
JPH11199387A (en) Production of silicon single crystal and silicon single crystal wafer
JPH08330316A (en) Silicon single crystal wafer and its production
WO1997026393A1 (en) Silicon single crystal with no crystal defect in peripheral part of wafer and process for producing the same
US20020081440A1 (en) Silicon wafer and epitaxial silicon wafer utilizing same
JPH11199386A (en) Production of silicon single crystal and silicon single crystal wafer
JP2007314374A (en) Manufacturing method of fz single crystal silicon using silicon crystal rod manufactured by cz method as raw material
JP2000053497A (en) Low defect density silicon single crystal wafer doped with nitrogen and its production
US20030106484A1 (en) Silicon single crystal wafer and method for manufacturing the same
JPH11147786A (en) Silicon single crystal wafer with low content of crystal defect and its production
JPH11180800A (en) Production of silicon single crystal having low crystal defect and silicon single crystal wafer produced therewith
JP2005306653A (en) Method for manufacturing silicon single crystal
JP2002201093A (en) Method of manufacturing silicon single crystal
US20060266278A1 (en) Silicon wafer, method for producing silicon wafer and method for growing silicon single crystal
US20040040491A1 (en) Silicon single crystal wafer for particle monitor
JPH0812493A (en) Production of silicon single crystal
JPH10208987A (en) Silicon wafer for hydrogen thermal treatment and manufacture thereof

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20040806

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071009

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080327

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080603

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080616

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees