JP2562579B2 - Single crystal manufacturing method - Google Patents

Single crystal manufacturing method

Info

Publication number
JP2562579B2
JP2562579B2 JP61067371A JP6737186A JP2562579B2 JP 2562579 B2 JP2562579 B2 JP 2562579B2 JP 61067371 A JP61067371 A JP 61067371A JP 6737186 A JP6737186 A JP 6737186A JP 2562579 B2 JP2562579 B2 JP 2562579B2
Authority
JP
Japan
Prior art keywords
single crystal
resistivity
type
silicon
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61067371A
Other languages
Japanese (ja)
Other versions
JPS62226897A (en
Inventor
蓮一 滝口
健次 薬師寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Techxiv Corp
Original Assignee
Komatsu Electronic Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Electronic Metals Co Ltd filed Critical Komatsu Electronic Metals Co Ltd
Priority to JP61067371A priority Critical patent/JP2562579B2/en
Publication of JPS62226897A publication Critical patent/JPS62226897A/en
Application granted granted Critical
Publication of JP2562579B2 publication Critical patent/JP2562579B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はシリコン単結晶において、半導体デバイス素
材として、特に長さ方向に極めて均一な実用範囲の抵抗
率を有するN型シリコンCZ単結晶の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial application] The present invention relates to the production of a silicon single crystal, as a semiconductor device material, an N-type silicon CZ single crystal having a resistivity in the practical range which is extremely uniform in the length direction. Regarding the method.

[従来の技術] 従来シリコン単結晶としては、浮遊帯域溶融法(以
下、FZ法という)によって得られるFZ単結晶とチョクラ
ルスキー法(以下、CZ法という)によって得られるCZ単
結晶が広く知られている。
[Prior Art] As conventional silicon single crystals, FZ single crystals obtained by the floating zone melting method (hereinafter referred to as FZ method) and CZ single crystals obtained by the Czochralski method (hereinafter referred to as CZ method) are widely known. Has been.

FZ法は、先ず上軸に所定の直径の多結晶棒を、下軸に
は種結晶を保持し接触部を高周波加熱コイルで溶融す
る。
In the FZ method, first, a polycrystalline rod having a predetermined diameter is held on the upper shaft and a seed crystal is held on the lower shaft, and the contact portion is melted by a high frequency heating coil.

溶融が終ったのち、種結晶を回転しながら上下軸を同
時に微速で下降させ溶融帯を多結晶棒の上端まで移動す
ることにより単結晶化する。
After the melting is completed, the seed crystal is rotated and the vertical axis is simultaneously lowered at a slow speed to move the melting zone to the upper end of the polycrystalline rod to form a single crystal.

CZ法は、原料多結晶を石英ルツボ中で溶解後、目的の
結晶方位の種結晶の先端を融液につけ、先端が僅かに溶
解し釣合が保たれるような温度に設定し、平衡に達した
のち種結晶を回転させながら単結晶の引上げを開始す
る。
In the CZ method, after melting the raw material polycrystal in a quartz crucible, the tip of the seed crystal with the desired crystal orientation is attached to the melt, and the temperature is set so that the tip is slightly melted and the balance is maintained, and equilibrium is achieved. After reaching, the single crystal is pulled up while rotating the seed crystal.

この場合、融液の温度を均一化するなどの目的で、た
とえば種結晶とルツボをそれぞれ逆方向に5〜20rpm程
度回転させながら、融液の温度と引上げ速度を制御して
所望の単結晶を育成する。
In this case, for the purpose of homogenizing the temperature of the melt, for example, while rotating the seed crystal and the crucible about 5 to 20 rpm in the opposite directions respectively, while controlling the temperature and pulling rate of the melt to obtain a desired single crystal. Cultivate.

FZ法は融体が雰囲気ガス以外の物質に触れないので汚
染がなく、高抵抗率で長さ方向に均一な結晶の製造がで
きる反面、大口径のものを得るには高度な技術が必要と
なる。
In the FZ method, since the melt does not come into contact with substances other than atmospheric gas, there is no contamination, and it is possible to manufacture crystals with high resistivity and uniform lengthwise, while advanced technology is required to obtain large diameter crystals. Become.

一方、CZ法は大口径化は比較的容易である反面、石英
ルツボと融体が接するため汚染を受けやすく高抵抗率お
よび長さ方向に均一な抵抗率を有する結晶は得られにく
い。
On the other hand, in the CZ method, it is relatively easy to increase the diameter, but since the quartz crucible and the melt are in contact with each other, contamination is likely to occur, and it is difficult to obtain a crystal having a high resistivity and a uniform resistivity in the length direction.

たとえば、現在市販されている高純度石英ルツボを使
用してN型で抵抗率約1000Ω・cmの原料の多結晶シリコ
ンを用いてノンドープで単結晶を育成した場合、石英ル
ツボ中に含まれる微量のボロン、アルミニウムなどが溶
融シリコン中に溶け込み第3図中曲線Cと同様に単結晶
は結晶トップ部からP型に変換し、しかもボトム部に行
くほど抵抗率は大幅に低下する。また、たとえば、同様
にN型で抵抗率130Ω・cm程度の原料多結晶シリコンを
用いてノンドープで引上げると、引上げ初期にはN型で
あるが、アクセプタ混入により次第に抵抗率が上昇に、
引上げ条件によっては、途中でP型に転換し、その後は
抵抗率が低下していく第3図中の曲線Dのような抵抗率
分布を示すようになる。
For example, when a high-purity quartz crucible currently on the market is used to grow a non-doped single crystal using N-type raw material polycrystalline silicon having a resistivity of about 1000 Ω · cm, the amount of trace amount contained in the quartz crucible is increased. Boron, aluminum, etc. are melted into the molten silicon, and the single crystal is converted from the crystal top portion to the P-type like the curve C in FIG. 3, and the resistivity is significantly lowered toward the bottom portion. Further, for example, when the source polycrystalline silicon having the same N type and a resistivity of about 130 Ω · cm is also used as a non-doped type, it is N type in the initial stage of the pulling, but the resistivity gradually increases due to the incorporation of acceptors.
Depending on the pulling condition, the resistivity is changed to the P type on the way, and thereafter the resistivity decreases and the resistivity distribution is shown as a curve D in FIG.

磁場を用いたMCZ法(マグネティック アプライド
チョクラルスキー メソッド)においても、石英ルツボ
からの不純物汚染量は幾分減少するものの上記CZ法と同
様の現象が起こる。この様子は第3図に示した。
MCZ method using magnetic field (Magnetic Applied
Also in the Czochralski method), although the amount of impurity contamination from the quartz crucible is somewhat reduced, the same phenomenon as in the CZ method occurs. This state is shown in FIG.

また、通常ICやディスクリートデバイスに用いられる
抵抗率50Ω・cm以下のCZ単結晶においては、石英ルツボ
からのアクセプタ不純物の量をはるかに越えてドープさ
れた偏析係数の小さなリン、ヒ素、アンチモンなどのド
ナー不純物のために、第4図のように結晶のトップ部か
らボトム部にかけて急激に抵抗率が低下する。第4図中
Eはリン、Fはヒ素、Gはアンチモンをドープした場合
の結晶長さ方向の抵抗率分布を示す。
In CZ single crystals with a resistivity of 50 Ωcm or less, which are usually used in ICs and discrete devices, phosphorus, arsenic, antimony, etc. with a small segregation coefficient, which is doped far beyond the amount of acceptor impurities from the quartz crucible, are used. Due to the donor impurity, the resistivity sharply decreases from the top part to the bottom part of the crystal as shown in FIG. In FIG. 4, E is phosphorus, F is arsenic, and G is the resistivity distribution in the crystal length direction when doped with antimony.

単結晶の長さ方向の抵抗率分布を実用抵抗率範囲に均
一にすることはデバイスのニーズ及び結晶の取得率向上
の面から有益であることから、いくつかの改善方法が報
告されている。たとえば、1983年版「ソリッドステート
テクノロジー」8月号、121ページには2つのルツボ
を用い、一方のルツボで単結晶の引上げを行ないつつ、
他方のルツボより新たな原料融液を供給する方法が示さ
れている。
Since it is beneficial to make the resistivity distribution of the single crystal in the longitudinal direction uniform within the practical resistivity range from the viewpoint of device needs and improvement of the crystal acquisition rate, some improvement methods have been reported. For example, in the 1983 edition of "Solid State Technology" August issue, page 121, two crucibles were used, one of which was used to pull a single crystal.
A method of supplying a new raw material melt from the other crucible is shown.

しかし、これらの方法は装置の大型化、シリコン融液
の移送など、装置上及び技術上困難な問題が残されてお
り、工業的には実用化されていない。
However, these methods have not been put to practical use industrially because there are problems in terms of equipment and technology, such as enlargement of equipment and transfer of silicon melt.

このように、CZ単結晶に関しては、実用抵抗率範囲で
しかも結晶の長さ方向にわたって均一な抵抗率を有する
中性子ドープされたFZ単結晶のようなものは未だ実用的
な段階では存在しない。
As described above, as for the CZ single crystal, there is still no practical neutron-doped FZ single crystal having a practical resistivity range and a uniform resistivity over the length direction of the crystal.

[発明が解決しようとする問題点] FZ法による単結晶は、原料に高純度多結晶を用いれは
高い抵抗率のN型単結晶を得ることができるため、中性
子照射処理を施す素材として従来から広く行なわれてき
た。
[Problems to be Solved by the Invention] Since a single crystal produced by the FZ method can obtain an N-type single crystal having high resistivity when a high-purity polycrystal is used as a raw material, it has been conventionally used as a material to be subjected to neutron irradiation treatment. It has been widely practiced.

一方、CZ法による単結晶は、前記のごとく、ルツボ中
からの不純物のため、高い抵抗率のものは得難く、また
結晶の長さ方向に抵抗率分布に傾きをもっているため中
性子照射処理用の素材として用いられることはなかっ
た。
On the other hand, the single crystal by the CZ method, as described above, is an impurity from the crucible, it is difficult to obtain a high resistivity, and because the resistivity distribution has a gradient in the length direction of the crystal for neutron irradiation treatment It was never used as a material.

しかし、大口径のCZ単結晶を中性子照射処理用の素材
として用いることができるようになれば、一ウェーハ当
りから作られる素子数が増し生産性は向上する。今後、
ますますウェーハの大口径化が予想される中で、FZ法は
装置上の制約からこれができ難いため、CZ法による大口
径の単結晶の利用が望まれていた。
However, if a large-diameter CZ single crystal can be used as a material for neutron irradiation treatment, the number of elements produced from one wafer will increase and productivity will improve. from now on,
While it is expected that the diameter of wafers will become larger and larger, it is difficult for the FZ method to do so due to the limitations of the equipment. Therefore, the use of large diameter single crystals by the CZ method has been desired.

本発明は、以上のような技術的困難さから実現されな
かった、CZ法あるいはMCZ法による単結晶を結晶長さ方
向に傾きのない高い抵抗率で引上げることを可能にし、
さらに、この単結晶に中性子照射処理を施して、半導体
デバイス用素材として実用抵抗率範囲で結晶長さ方向に
抵抗率の均一なN型シリコンCZ単結晶を与えるものであ
る。
The present invention, which was not realized from the technical difficulties as described above, makes it possible to pull a single crystal by the CZ method or the MCZ method at a high resistivity without inclination in the crystal length direction,
Further, this single crystal is subjected to neutron irradiation treatment to give an N-type silicon CZ single crystal having a uniform resistivity in the crystal length direction within the practical resistivity range as a material for semiconductor devices.

[問題点を解決するための手段] 本発明は、以下に述べるように2つの大きな工程から
なる。
[Means for Solving Problems] The present invention is composed of two large steps as described below.

すなわち、シリコン単結晶を原子炉内に放置して中性
子照射ドープを行なうシリコン単結晶の製造方法におい
て、第1工程としてCZ法またはMCZ法によるシリコン単
結晶の引上げを行なう際、導電型N型の多結晶シリコ
ン、たとえば抵抗率90Ω・cm以上のN型多結晶シリコン
を原料としてノンドープで引上げを行ない、この単結晶
のトップ側からボトム側にかけての抵抗率分布及びその
分布傾きから、ルツボ中からのアクセプタ不純物の混入
量を求め、次に、前記混入アクセプタ不純物を補償する
より僅かに多い量でしかも、前記アクセプタによる単結
晶の長さ方向への抵抗率の分布傾きを相殺するような偏
析係数をもつドナー不純物をドープして単結晶の引上げ
を行ない、長さ方向に極めて均一な抵抗率を有する高抵
抗率のN型シリコン単結晶を得、第2校工程として、こ
のN型シリコン単結晶に中性子照射処理を施すことによ
って、半導体デバイス用素材として実用抵抗率範囲であ
って、長さ方向にきわめて均一な抵抗率を有するN型シ
リコンCZ単結晶を得るものである。
That is, in the method for producing a silicon single crystal in which the silicon single crystal is left in a nuclear reactor and subjected to neutron irradiation doping, when the silicon single crystal is pulled up by the CZ method or the MCZ method as the first step, the conductivity type N type Polycrystalline silicon, for example, N-type polycrystalline silicon having a resistivity of 90 Ω · cm or more is used as a raw material and is pulled up without doping. From the resistivity distribution from the top side to the bottom side of this single crystal and its distribution slope, The amount of the acceptor impurities mixed is obtained, and then, a segregation coefficient that is slightly larger than that for compensating the mixed acceptor impurities and that offsets the distribution gradient of the resistivity distribution in the length direction of the single crystal by the acceptor. A high resistivity N-type silicon single crystal having a very uniform resistivity in the length direction by doping the donor impurity with Then, as a second step, by subjecting this N-type silicon single crystal to neutron irradiation treatment, N-type silicon having a very uniform resistivity in the length direction in the practical resistivity range as a material for semiconductor devices is obtained. CZ single crystal is obtained.

なお、本発明に用いられるN型ドーパントとしては、
リン、アンチモン、ヒ素等があげられる。
The N-type dopant used in the present invention includes
Examples include phosphorus, antimony, and arsenic.

しかし、アンチモン、ヒ素に関しては、中性子照射処
理すると、その同位体の半減期が長いため残留放射能に
よる安全性に問題があり、必ずしも実用的であるとは言
えない。
However, antimony and arsenic are not always practical when they are subjected to neutron irradiation treatment, because their isotopes have a long half-life, which poses a safety problem due to residual radioactivity.

[作用] 本発明により従来になく極めて均一な抵抗率を有する
実用抵抗率範囲のCZ単結晶が得られるところは次の作
用、原理に因る。
[Operation] The fact that a CZ single crystal having an extremely uniform resistivity in the practical resistivity range can be obtained by the present invention is due to the following action and principle.

すなわち、通常CZ法あるいはMCZ法により、一般に用
いられている石英ルツボに高純度N型多結晶シリコンを
溶融してノンドープで単結晶の引上げを行なうと、石英
ルツボに含まれるホウ素やアルミニウムが溶出してシリ
コンにいわゆるアクセプタ不純物として作用し、得られ
る単結晶は第3図に示したように、長さ方向に抵抗率に
傾きを持ったP型の単結晶になったり、あるいは、引上
げ初期はN型のままで、途中でP型に転換した単結晶に
なったりする。
That is, when high purity N-type polycrystalline silicon is melted in a commonly used quartz crucible and a single crystal is pulled up by non-doping by the usual CZ method or MCZ method, boron and aluminum contained in the quartz crucible are eluted. As a result, it acts as a so-called acceptor impurity on silicon, and the obtained single crystal becomes a P-type single crystal having a resistivity gradient in the longitudinal direction as shown in FIG. As it is in the form, it becomes a single crystal that is converted to P type on the way.

MCZ法を用いれば、石英ルツボから溶出する不純物量
は減少するが、結晶長さ方向に混入するこれらアクセプ
タが、結晶トップからボトムにかけて増大していく傾向
には変りはない。
When the MCZ method is used, the amount of impurities eluted from the quartz crucible is reduced, but there is no change in the tendency that these acceptors mixed in the crystal length direction increase from the crystal top to the bottom.

抵抗率分布に傾きが生ずるのは、不純物の石英ルツボ
からの溶出と偏析のためである。
The inclination of the resistivity distribution is caused by the elution and segregation of impurities from the quartz crucible.

よく知られるように、シリコンに対するホウ素の平衡
偏析係数は0.8、リンのそれは0.35であるから、通常IC
やディスクリート用の抵抗率範囲のN型の単結晶シリコ
ンを得るため、リンをドーパントとして用いると、ルツ
ボからのアクセプタ不純物の偏析とドーパントとしての
リンの偏析との差により、引上げた単結晶の長さ方向の
抵抗率分布は第4図中曲線Eのごとく傾斜したものとな
る。
As is well known, the equilibrium segregation coefficient of boron with respect to silicon is 0.8 and that of phosphorus is 0.35.
When phosphorus is used as a dopant in order to obtain N-type single crystal silicon in the resistivity range for discretes and discretes, the length of the pulled single crystal increases due to the difference between the segregation of acceptor impurities from the crucible and the segregation of phosphorus as the dopant. The resistivity distribution in the depth direction is inclined as shown by the curve E in FIG.

ルツボ中からの不純物の溶出については、本発明者ら
が更に詳しく検討したところ、引上げ初期から後期まで
常に起きているため、引上げ進行と共に、その偏析作用
と相まってルツボ中から単結晶にとり込まれるアクセプ
タ濃度が急激に上昇していくことが明らかになった。こ
の様子は第6図に示す。第6図はN型500Ω・cmの多結
晶原料シリコンを用いてノンドープで引上げた、単結晶
中の不純物量からドナー不純物量を差引いた結晶長さ方
向のアクセプタ不純物の濃度分布を示している。
As for the elution of impurities from the crucible, the inventors of the present invention have studied in more detail.Since it always occurs from the early stage of pulling to the latter stage, the acceptor incorporated into the single crystal from the crucible along with the progress of pulling is segregated. It became clear that the concentration increased rapidly. This state is shown in FIG. FIG. 6 shows the concentration distribution of acceptor impurities in the crystal length direction, which is obtained by subtracting the donor impurity amount from the impurity amount in a single crystal, which is pulled up undoped using N-type 500 Ω · cm polycrystalline silicon.

不純物の常時溶出が起きるため、初期濃度をもとに偏
析係数から算出したアクセプタの単結晶中における理論
的濃度上昇(第6図中曲線L)より、実測されたもの
(第6図中曲線K)の方が上回り、単結晶ボトム側すな
わち引上げ後期ほどその差が大きくなっている。
Since constant elution of impurities occurs, it was actually measured (curve K in FIG. 6) from the theoretical concentration increase (curve L in FIG. 6) in the acceptor single crystal calculated from the segregation coefficient based on the initial concentration. ) Is higher, and the difference is larger on the single crystal bottom side, that is, in the latter stage of pulling.

本発明は、先ず、第1工程で、この溶出アクセプタ不
純物、特にホウ素のルツボ中における濃度上昇割合が、
ドナー、特にリンの偏析による濃度上昇の割合に近いこ
とを利用する。
According to the present invention, first, in the first step, the concentration increase ratio of this eluted acceptor impurity, especially boron in the crucible, is
The fact that the rate of concentration increase due to segregation of donors, especially phosphorus, is used is utilized.

単に偏析作用によるだけならば、前記したごとくホウ
素の偏析係数は0.8、リンのそれは0.35であるから、互
いの濃度上昇割合は決して同等にはならない。ホウ素が
溶出され続けることにより結果的にリンの濃度上昇割合
と近いものになるのである。
If only due to the segregation effect, the segregation coefficient of boron is 0.8 and that of phosphorus is 0.35 as described above, so that the rate of increase in concentration with each other will never be equal. The continued elution of boron results in a rate close to the increase rate of phosphorus concentration.

そこで、N型のシリコン単結晶をCZ法またはMCZ法で
得る場合、予め掴んでおいたこのルツボ中から単結晶に
取り込まれるアクセプタ不純物量に対し、これを補償す
るより僅かに多いドナー不純物、たとえばリンを添加し
ておいて引上げれば、ルツボからのアクセプタ不純物の
常時溶出と偏析によって起こる濃度上昇に対し、添加ド
ナー不純物の偏席による濃度上昇が近いものになり、単
結晶長さ方向の抵抗率の分布傾きが互いに相殺されて、
最終的に極めて均一な抵抗率分布を有するN型シリコン
単結晶が先ず得られる。
Therefore, when an N-type silicon single crystal is obtained by the CZ method or the MCZ method, a slightly larger amount of donor impurities than the amount of acceptor impurities taken into the single crystal from the crucible that has been grasped in advance, for example, is used. If phosphorus is added and pulled up, the concentration increase due to the eccentricity of the added donor impurity becomes closer to the concentration increase caused by the constant elution and segregation of acceptor impurities from the crucible, and the resistance in the single crystal length direction The slopes of the distribution of the rates cancel each other out,
Finally, an N-type silicon single crystal having a very uniform resistivity distribution is first obtained.

ところで、このように石英ルツボからのアクセプタ不
純物を補償するより僅かに多いだけのドーパントを添加
する方法であると、通常広く行なわれているドナーをド
ープして実用抵抗率範囲のN型CZ単結晶を得る場合に較
べ、そのドープ量は少なくならざるをえない。引上げら
れた単結晶の抵抗率分布は均一でも半導体デバイス用素
材としての実用的な抵抗率より高くなる。そこで、こう
して得た単結晶に目的抵抗率を狙って中性子照射処理を
施せば、最終的に実用抵抗率範囲にきわめて均一なN型
のシリコン単結晶が得られることになる。
By the way, according to the method of adding a slightly larger amount of dopant than compensating for the acceptor impurities from the quartz crucible as described above, the N-type CZ single crystal in the practical resistivity range is doped by doping the donor which is generally widely used. The amount of doping must be smaller than that in the case of obtaining. Even if the resistivity distribution of the pulled single crystal is uniform, it becomes higher than the practical resistivity as a material for semiconductor devices. Therefore, if the single crystal thus obtained is subjected to neutron irradiation treatment aiming at the target resistivity, finally an N-type silicon single crystal having a very uniform practical resistivity range can be obtained.

次に、実施例を揚げながら本発明を詳説する。 Next, the present invention will be described in detail with reference to examples.

[実施例1] 本実施例は、本発明に係わる単結晶の引上げを行なう
に当り、ノンドープ引上げを行なった単結晶が石英ルツ
ボからの不純物混入により、導電型、不純物濃度分布等
においてどのような特性をもつかを把握するために行な
ったものである。
[Example 1] In the present example, when pulling a single crystal according to the present invention, the non-doped pulling single crystal was mixed with impurities from the quartz crucible, so that the conductivity type, the impurity concentration distribution, etc. This was done to understand whether or not it has characteristics.

T社製14インチ石英ルツボに抵抗率500Ω・cmN型の原
料多結晶シリコン25kgを装填し、5インチφ単結晶の引
上げを通常のMCZ法により実施した。
A 14-inch quartz crucible manufactured by T Co. was loaded with 25 kg of raw material polycrystalline silicon having a resistivity of 500 Ω · cm N, and a 5-inch φ single crystal was pulled by a normal MCZ method.

第3図中曲線Cに、本実施例により得られた単結晶の
導電型と、長さ方向の抵抗率分布を示す。
Curve C in FIG. 3 shows the conductivity type of the single crystal obtained in this example and the resistivity distribution in the length direction.

また、第5図には、実線で本実施例により得られた単
結晶の長さ方向の、フォトルミネッセンス法で定量分析
した不純物濃度分布を示し、破線で、引上げ初期濃度を
もとに自然凝固の理論から算出した不純物濃度分布を示
した。
Further, in FIG. 5, the solid line shows the impurity concentration distribution quantitatively analyzed by the photoluminescence method in the length direction of the single crystal obtained in this example, and the broken line shows spontaneous solidification based on the initial pulling concentration. The impurity concentration distribution calculated from the above theory is shown.

Hはホウ素、Iはアルミニウム、Jはリンを表す。 H represents boron, I represents aluminum, and J represents phosphorus.

本実施例から分かる様に、原料多結晶シリコンにN型
の抵抗率500Ω・cmのものを用いると、第3図中曲線C
のように、得られる単結晶はP型で、不純物偏析により
結晶長さ方向の抵抗率分布に傾きをもったものとなる。
このように、N型のものがP型に転換するのは、すでに
述べたように、ルツボ中からアクセプタ不純物が溶出さ
れて単結晶中にとり込まれるためである。第5図によれ
ば、ルツボ中から溶出し単結晶にとり込まれる不純物に
は、ホウ素、アルミニウムのようなアクセプタのみなら
ず、ドナーとしてのリンもあるが、第6図に示したよう
に、アクセプタ量がドナー量を上回るため、結果的に引
上げられた単結晶はP型になる。
As can be seen from this example, when the raw material polycrystalline silicon having N type resistivity of 500 Ω · cm is used, the curve C in FIG. 3 is used.
As described above, the obtained single crystal is P-type and has a gradient in the resistivity distribution in the crystal length direction due to the segregation of impurities.
As described above, the reason why the N-type compound is converted to the P-type compound is that the acceptor impurities are eluted from the crucible and taken into the single crystal. According to FIG. 5, not only acceptors such as boron and aluminum but also phosphorus as a donor is an impurity that is eluted from the crucible and taken into the single crystal. However, as shown in FIG. Since the amount exceeds the donor amount, the resulting single crystal becomes P-type.

第6図中曲線Kは、本実施例で得られたシリコン単結
晶の長さ方向の、アクセプタ濃度からドナー濃度を差引
いた、フォトルミネッセンス法による実測の濃度分布曲
線で、曲線Lはこの初期濃度から理論的に描いた濃度分
布曲線である。
A curve K in FIG. 6 is a concentration distribution curve measured by a photoluminescence method in which the donor concentration is subtracted from the acceptor concentration in the length direction of the silicon single crystal obtained in this example, and the curve L is the initial concentration. It is a concentration distribution curve theoretically drawn from.

第1表には、結晶の長さ方向、すなわち各固化率にお
ける不純物濃度分布を示す。さらに、CZ法により同様に
引上げを行なったが、結晶長さ方向の不純物濃度分布
は、第2表に示した。
Table 1 shows the impurity concentration distribution in the length direction of the crystal, that is, in each solidification rate. Further, pulling was similarly performed by the CZ method, and the impurity concentration distribution in the crystal length direction is shown in Table 2.

なお、第1表、第2表及び図面に記載された「固化
率」とは、全原料融液重量に対し引上げられた単結晶重
量を%で表示したものである。
In addition, "solidification rate" described in Tables 1 and 2 and the drawings indicates the weight of the single crystal pulled up with respect to the total weight of the raw material melt in%.

[実施例2] T社製14インチ石英ルツボに、抵抗率130Ω・cmN型の
原料多結晶シリコン25kgを装填し、5インチφ単結晶の
引上げを通常のMCZ法により実施した。
Example 2 A 14-inch quartz crucible manufactured by T Co. was loaded with 25 kg of raw material polycrystalline silicon having a resistivity of 130 Ω · cm N, and a 5-inch φ single crystal was pulled by a normal MCZ method.

第3図中曲線Dに、本実施例により得られた単結晶の
導電型と、長さ方向の抵抗率分布を示す。
Curve D in FIG. 3 shows the conductivity type of the single crystal obtained in this example and the resistivity distribution in the length direction.

本実施例によれば、原料多結晶シリコンがN型130Ω
・cmのものでは、引上げ初期は暫くはN型のままで、抵
抗率が上昇してくるが、引上げ進行に伴いやがてP型に
転換し、そののち抵抗率は次第に低下する。
According to this embodiment, the raw material polycrystalline silicon is N type 130Ω.
・ For the cm type, the resistivity remains N type for a while in the early stage of pulling up, and the resistivity increases, but as the pulling progresses, it eventually changes to P type, and then the resistivity gradually decreases.

実施例1の場合と同様、これは、アクセプタが石英ル
ツボより溶出していることを示している。
As in Example 1, this indicates that the acceptor was eluted from the quartz crucible.

[実施例3] 次に、この結果から、実施例1における単結晶中の抵
抗率分布の傾きを相殺して、長さ方向に均一な500Ω・c
mのN型単結晶を与えるよう次のようにして、先ずリン
のドープ量を算出し、抵抗率500Ω・cmのN型原料多結
晶シリコン25kgにリン原子を3.12×1017atomドープした
ものについて、実施例1で用いた石英ルツボに装填しMC
Z法による引上げを行なった。
[Example 3] Next, from this result, the slope of the resistivity distribution in the single crystal in Example 1 was canceled to obtain a uniform 500 Ω · c in the length direction.
Regarding the amount of phosphorus doped, 25 kg of N-type polycrystalline silicon having a resistivity of 500 Ω · cm was doped with 3.12 × 10 17 atom of phosphorus atoms by calculating the doping amount of phosphorus as follows so as to give an N-type single crystal of m. MC loaded in the quartz crucible used in Example 1
It was pulled up by the Z method.

<ドープ量の算出> 第1表より、たとえば、固化率74.7%の点でノンドー
プの場合の不純物濃度は、それぞれ、 リン 4.64×1012atom/cm3 ホウ素 10.8×1012atom/cm3 アルミニウム14.5×1012atom/cm3 したがって、抵抗率に寄与するアクセプタは[ホウ素濃
度]+[アルミニウム濃度]−[リン濃度]すなわち、
2.07×1013atom/cm3
<Calculation of Dope Amount> From Table 1, for example, the impurity concentration in the case of non-doping at the solidification rate of 74.7% is phosphorus 4.64 × 10 12 atom / cm 3 boron 10.8 × 10 12 atom / cm 3 aluminum 14.5. × 10 12 atom / cm 3 Therefore, the acceptor that contributes to the resistivity is [boron concentration] + [aluminum concentration] − [phosphorus concentration], that is,
2.07 × 10 13 atom / cm 3 .

ここで、この2.07×1013atom/cm3のアクセプタを補償
して、N型500Ω・cmの抵抗率を与えるためには、アー
ビンの曲線から、さらに9×1012atom/cm3の量のリンが
必要となる。
Here, in order to compensate for this 2.07 × 10 13 atom / cm 3 acceptor and give a resistivity of N-type 500 Ω · cm, from the Irvin curve, an additional amount of 9 × 10 12 atom / cm 3 Phosphorus is needed.

そこで、固化率が、たとえば74.7%のところで、2.07
×1013+9×1012=2.97×1013atom/cm3となるようにす
るには、 初期リン濃度が、自然凝固の理論式、 ここで、Cg:固化率gのときの結晶にとり込まれる不純
物濃度(atom/cm3) Ko:平衡分配係数(リンゆえ、0.35) CLO:初期不純物濃度(atom/cm3) いま、Cg=2.97×1013,g=0.747,Ko=0.35であるから、 CLO=3.47×1013でなければならない。
Therefore, when the solidification rate is 74.7%, 2.07
In order to obtain × 10 13 + 9 × 10 12 = 2.97 × 10 13 atom / cm 3 , the initial phosphorus concentration is the theoretical formula of spontaneous solidification, Here, Cg: impurity concentration taken into the crystal when the solidification rate is g (atom / cm 3 ) Ko: equilibrium partition coefficient (0.35 because of phosphorus) C LO : initial impurity concentration (atom / cm 3 ) Now, Cg = Since 2.97 × 10 13 , g = 0.747, Ko = 0.35, C LO = 3.47 × 10 13 .

Siの密度は2.33ゆえ、このCLOを2.33で除すると1.489
×1013(atom/cm3)が算出される。
Since the density of Si is 2.33, dividing this C LO by 2.33 gives 1.489.
× 10 13 (atom / cm 3 ) is calculated.

したがって、抵抗率500Ω・cmのN型原料多結晶シリ
コン25kg中に必要とされるリンは3.72×1017atomであ
る。なお、引上げ条件により、理論式より若干ずれるの
で、実験によりドープ量は微調整した(微調整後のドー
プ量は3.22×1017atomである。)。
Therefore, phosphorus required in 25 kg of N-type raw material polycrystalline silicon having a resistivity of 500 Ω · cm is 3.72 × 10 17 atoms. The doping amount was slightly adjusted from the theoretical formula depending on the pulling conditions, and thus the doping amount was finely adjusted by experiment (the doping amount after the fine adjustment is 3.22 × 10 17 atoms).

本実施例により得られたN型シリコン単結晶の長さ方
向の抵抗率分布は第2図の直線Aのようである。
The resistivity distribution in the length direction of the N-type silicon single crystal obtained in this example is as shown by a straight line A in FIG.

この単結晶の長さ方向の抵抗率分布はきわめて均一
で、ほぼ500Ω・cmに揃っており、通常実施されている
リンドープによった引上げ単結晶に較べ高抵抗率であっ
た。
The resistivity distribution in the length direction of this single crystal was extremely uniform, and was approximately 500 Ω · cm, which was higher than that of the pulling single crystal by phosphorus doping which is usually practiced.

同様に、CZ法によっても同様の引上げを行った。 Similarly, the CZ method was also used for similar pulling.

この場合は、ノンドープの結果は第2表をもちいた。 In this case, the results of non-doping are shown in Table 2.

たとえば、固化率73%のところで300Ω・cmとなるに
は、前記同様の計算を行なって、抵抗率500Ω・cmのN
型原料多結晶シリコン25kgにリン原子は7.04×1017atom
必要となる。
For example, in order to obtain 300 Ω · cm at a solidification rate of 73%, the same calculation as above is performed to obtain N of resistivity 500 Ω · cm.
The phosphorus atom is 7.04 × 10 17 atom in 25 kg of the mold raw material polycrystalline silicon
Will be needed.

前記同様、ドープ量の微調整は行なった。 The dope amount was finely adjusted in the same manner as described above.

この引上げ結果は第2図の直線Bに示すように、得ら
れたN型シリコン単結晶の長さ方向の抵抗率分布はきわ
めて均一でほぼ300Ω・cmに揃っている。
As a result of this pulling up, as shown by the straight line B in FIG. 2, the resistivity distribution in the length direction of the obtained N-type silicon single crystal is extremely uniform and approximately 300 Ω · cm.

[実施例4] 実施例3と同様にして、実施例2における単結晶の抵
抗率分布傾きを相殺して長さ方向に均一な抵抗率500Ω
・cmのN型単結晶を与えるように、リンドープ量を算出
すると、抵抗率130Ω・cmN型原料多結晶シリコン25kgに
リン原子が、1.08×1017atom必要となる。ドープ量の微
調整をして、実施例1で用いた石英ルツボに装填し、MC
Z法による引上げを行なった。
[Example 4] Similar to Example 3, the resistivity distribution gradient of the single crystal in Example 2 was canceled to obtain a uniform resistivity of 500Ω in the longitudinal direction.
When the phosphorus doping amount is calculated so as to give an N-type single crystal of cm, a resistivity of 130 Ω · cmN-type polycrystalline silicon of 25 kg requires 1.08 × 10 17 atoms of phosphorus atoms. After finely adjusting the dope amount, the quartz crucible used in Example 1 was loaded with MC
It was pulled up by the Z method.

引上げ結果は、第2図の直線Aとほとんど同一であっ
た。
The pulling result was almost the same as the straight line A in FIG.

[実施例5] MCZ法により実施例3、及び実施例4で得られた単結
晶を、熱中性子束密度6.65×1013n/cm2・sec,照射時間6
770secで中性子照射処理した。
Example 5 The single crystal obtained in Example 3 and Example 4 by the MCZ method was subjected to thermal neutron flux density of 6.65 × 10 13 n / cm 2 · sec and irradiation time of 6
The neutron irradiation treatment was performed for 770 seconds.

その結果、得られた単結晶は導電型N型で、抵抗率45
Ω・cmの長さ方向に実用抵抗率範囲できわめて均一なも
のであった。
As a result, the obtained single crystal has conductivity type N type and a resistivity of 45.
It was extremely uniform in the practical resistivity range along the length of Ω · cm.

この結果を第1図の直線Xに示す。 The result is shown by the straight line X in FIG.

実施例3においてCZ法により得られた単結晶について
は、熱中性子束密度6.65×1013n/cm2・sec,照射時間522
0secで中性子照射処理した。
Regarding the single crystal obtained by the CZ method in Example 3, the thermal neutron flux density was 6.65 × 10 13 n / cm 2 · sec, and the irradiation time was 522.
The neutron irradiation treatment was performed for 0 seconds.

その結果、得られた単結晶は導電型N型で、抵抗率40
Ω・cmの長さ方向に実用抵抗率範囲できわめて均一なも
のであった。
As a result, the obtained single crystal has conductivity type N type and a resistivity of 40
It was extremely uniform in the practical resistivity range along the length of Ω · cm.

この結果を第1図の直線Yに示す。 The result is shown by the straight line Y in FIG.

[発明の効果] 本発明によれば、引上げ装置には何ら新たな機構を付
加することなく引上げを行なうことができる。しかも、
その結果は、従来CZ法あるいはMCZ法による単結晶に比
較して、長さ方向にきわめて均一な高抵抗率の単結晶が
先ず得られるのである。
EFFECTS OF THE INVENTION According to the present invention, pulling can be performed without adding any new mechanism to the pulling device. Moreover,
The result is that a single crystal with a high resistivity, which is extremely uniform in the length direction, is first obtained as compared with the conventional single crystal by the CZ method or the MCZ method.

CZ法においては、石英ルツボの純度、原料多結晶シリ
コン等の主材料、補助材料や原料多結晶シリコンの溶融
温度、溶融時間、装填量と石英ルツボの大きさ、形状、
引上速度、ルツボ回転数、その他、MCZ法によるシリコ
ン融液の熱対流の抑制などの結晶引上条件によって、単
結晶にとり込まれるアクセプタ不純物量をある程度コン
トロールできるため、アクセプタ不純物の混入を少なく
するような条件下で本発明を実施すると、中性子照射処
理前において数百Ω・cm〜1000Ω・cmという、長さ方向
に均一な高抵抗率の単結晶を得ることができる。
In the CZ method, the purity of the quartz crucible, the main material such as raw material polycrystalline silicon, the melting temperature of the auxiliary material and the raw material polycrystalline silicon, the melting time, the loading amount and the size and shape of the quartz crucible,
The pull-up speed, the number of rotations of the crucible, and other crystal pull-up conditions such as the suppression of thermal convection of the silicon melt by the MCZ method can control the amount of acceptor impurities taken into the single crystal to some extent, thus reducing the inclusion of acceptor impurities. When the present invention is carried out under such conditions, a single crystal having a high resistivity of several hundred Ω · cm to 1000 Ω · cm, which is uniform in the length direction, can be obtained before the neutron irradiation treatment.

したがって、半導体デバイス素材として利用するため
に、目的とする抵抗率に対応して中性子照射処理の程度
を変えれば、自由に狙い抵抗率に均一な単結晶を得るこ
とができる。
Therefore, for use as a semiconductor device material, if the degree of neutron irradiation treatment is changed in accordance with the target resistivity, a single crystal having a target resistivity can be freely obtained.

従来CZ法あるいはMCZ法のように、ドープ剤の多寡に
よって目的抵抗率のものを得る方法では、抵抗率の単結
晶長さ方向の分布が傾くことは避けることができない。
この結果、単結晶一本当り利用できる部分は限られたも
のとなる。
In the conventional method such as the CZ method or the MCZ method, in which the target resistivity is obtained by the amount of the dopant, it is inevitable that the distribution of the resistivity in the single crystal length direction is inclined.
As a result, the usable portion per single crystal is limited.

本発明によれば、たとえばリンをドーパントとして用
いたものは、中性子照射後の残留放射能の問題もないう
え、その抵抗率分布もきわめて均一であるから、デバイ
ス素材として利用できる部分が大幅に増し、歩留り、生
産性が向上する。
According to the present invention, for example, the one using phosphorus as a dopant has no problem of residual radioactivity after neutron irradiation, and its resistivity distribution is also extremely uniform, so that the portion usable as a device material is significantly increased. , Yield and productivity are improved.

また、一定条件で引上げて、中性子照射処理で狙い抵
抗率へ落とすのであるから、引上げ後の単結晶の適用範
囲が広がるとともに、引上げ工程の単一化が計られ効率
が向上する。
Further, since the target resistivity is lowered by the neutron irradiation treatment under a constant condition, the applicable range of the single crystal after the pulling is widened, and the pulling process is unified so that the efficiency is improved.

本発明は、始めの工程において、本来純粋であるべき
石英ルツボに極く?微量夾雑物として存在するアクセプ
タ不純物が、単結晶引上げ過程で溶出されてくる現象を
逆に利用するものであるから、ルツボの物性が異なれば
当然、それに対応してドーパント量も変えられる。
Is the present invention extremely suitable for a quartz crucible that should be pure in the first step? Since the acceptor impurities existing as trace impurities are used in reverse to the phenomenon of being eluted during the pulling process of the single crystal, if the physical properties of the crucible are different, the amount of dopant can be correspondingly changed.

また、本発明からはさらに、ルツボ製造時にルツボ中
に積極的にドーパント不純物を混入させておき、この溶
出現象を利用する方法も考えられる。
Further, from the present invention, a method is conceivable in which a dopant impurity is positively mixed in the crucible at the time of manufacturing the crucible and the elution phenomenon is utilized.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明により得られた単結晶の長さ方向の固
化率に対する抵抗率の分布図。 第2図は、本発明の第1工程後の単結晶の長さ方向の固
化率に対する抵抗率の分布図。 第3図は、MCZ法により、ノンドープで引上げた単結晶
の導電型と、長さ方向の固化率に対する抵抗率分布を示
す図。 第4図は、MCZ法により、リン、ホウ素、ヒ素をドープ
剤として引上げた従来の単結晶の長さ方向の固化率に対
する抵抗率の分布図。 第5図は、MCZ法により、ノンドープで引上げた単結晶
の長さ方向の固化率に対する、不純物の濃度分布とその
不純物の種類を示す図。 第6図は、MCZ法により、ノンドープで引上げた単結晶
の長さ方向の固化率に対する、アクセプタからドナーを
差し引いたアクセプタ不純物濃度分布を示す図。
FIG. 1 is a distribution diagram of resistivity with respect to solidification rate in the length direction of a single crystal obtained by the present invention. FIG. 2 is a distribution diagram of the resistivity with respect to the solidification rate in the length direction of the single crystal after the first step of the present invention. FIG. 3 is a diagram showing the conductivity type of a single crystal pulled up undoped by the MCZ method and the resistivity distribution with respect to the solidification rate in the length direction. FIG. 4 is a distribution diagram of resistivity with respect to solidification rate in the length direction of a conventional single crystal obtained by pulling phosphorus, boron, and arsenic as doping agents by the MCZ method. FIG. 5 is a diagram showing the concentration distribution of impurities and the types of the impurities with respect to the solidification rate in the length direction of a single crystal pulled undoped by the MCZ method. FIG. 6 is a diagram showing an acceptor impurity concentration distribution obtained by subtracting donors from acceptors with respect to the solidification rate in the length direction of a single crystal pulled up by the MCZ method.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】シリコン単結晶を原子炉内に放置して、中
性子照射ドープを行なうシリコン単結晶の製造方法にお
いて、CZ法、またはMCZ法によるシリコン単結晶の引上
げを行なう際、導電型N型の多結晶シリコンを原料とし
てノンドープで引上げを行ない、この単結晶のトップ側
からボトム側にかけての抵抗率分布及びその分布傾きか
ら、ルツボ中からのアクセプタ不純物の混入量を求め、
この混入量を補償するより僅かに多い量で、しかも、前
記アクセプタによる単結晶の長さ方向への抵抗率の分布
傾きを相殺するような偏析係数をもつドナー不純物をド
ープして単結晶の引上げを行ない、長さ方向に極めて均
一な抵抗率を有する高抵抗率のN型シリコン単結晶を
得、ついで、このN型シリコン単結晶に中性子照射処理
を施すことによって、半導体デバイス用素材として実用
抵抗率範囲であって、長さ方向に極めて均一な抵抗率を
有するN型シリコンCZ単結晶を得ることを特徴とするN
型シリコンCZ単結晶の製造方法。
1. In a method for producing a silicon single crystal in which a silicon single crystal is left in a nuclear reactor and subjected to neutron irradiation doping, when a silicon single crystal is pulled by the CZ method or the MCZ method, a conductivity type N type is used. Conducting non-doping with polycrystalline silicon as a raw material, and determining the amount of acceptor impurities mixed in the crucible from the resistivity distribution and the distribution gradient from the top side to the bottom side of this single crystal,
Doping with a donor impurity having a slightly larger amount than compensating for this mixed amount and having a segregation coefficient that cancels out the slope of the distribution of resistivity in the lengthwise direction of the single crystal by the acceptor is pulled up. To obtain a high-resistivity N-type silicon single crystal having extremely uniform resistivity in the length direction, and then subjecting this N-type silicon single crystal to neutron irradiation treatment, a practical resistance as a material for semiconductor devices is obtained. N-type silicon CZ single crystal having a resistivity range and an extremely uniform resistivity in the longitudinal direction is obtained.
-Type silicon CZ single crystal manufacturing method.
【請求項2】前記ドナー不純物はリンである特許請求の
範囲第1項記載のN型シリコンCZ単結晶製造方法。
2. The method for producing an N-type silicon CZ single crystal according to claim 1, wherein the donor impurity is phosphorus.
【請求項3】前記引上げに用いられる原料多結晶シリコ
ンはN型で、抵抗率90Ω・cm以上である特許請求の範囲
第1項記載のN型シリコンCZ単結晶製造方法。
3. The method for producing an N-type silicon CZ single crystal according to claim 1, wherein the raw material polycrystalline silicon used for the pulling is N-type and has a resistivity of 90 Ω · cm or more.
JP61067371A 1986-03-27 1986-03-27 Single crystal manufacturing method Expired - Lifetime JP2562579B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61067371A JP2562579B2 (en) 1986-03-27 1986-03-27 Single crystal manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61067371A JP2562579B2 (en) 1986-03-27 1986-03-27 Single crystal manufacturing method

Publications (2)

Publication Number Publication Date
JPS62226897A JPS62226897A (en) 1987-10-05
JP2562579B2 true JP2562579B2 (en) 1996-12-11

Family

ID=13343086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61067371A Expired - Lifetime JP2562579B2 (en) 1986-03-27 1986-03-27 Single crystal manufacturing method

Country Status (1)

Country Link
JP (1) JP2562579B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010043702A1 (en) * 2010-11-10 2012-05-10 Wacker Chemie Ag Method for the determination of impurities in silicon
JP6222013B2 (en) * 2014-08-29 2017-11-01 信越半導体株式会社 Resistivity control method
JP6299543B2 (en) * 2014-09-18 2018-03-28 信越半導体株式会社 Resistivity control method and additional dopant injection device
CN109554760A (en) * 2019-01-31 2019-04-02 内蒙古通威高纯晶硅有限公司 A kind of trace doped method of masterbatch for avoiding silicon core from making the transition

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2362320A1 (en) * 1973-12-14 1975-06-19 Siemens Ag Homogeneous doping of silicon monocrystals - by controlled irradiation with thermal neutrons to give desired position and intensity of doping
DE2362264B2 (en) * 1973-12-14 1977-11-03 Siemens AG, 1000 Berlin und 8000 München PROCESS FOR PRODUCING HOMOGENOUS N-DOPED SILICON CRYSTALS BY IRRADIATION WITH THERMAL NEUTRONS
DE2364015C3 (en) * 1973-12-21 1982-04-08 Siemens AG, 1000 Berlin und 8000 München Process for the production of n-doped silicon single crystals with an adjustable doping profile

Also Published As

Publication number Publication date
JPS62226897A (en) 1987-10-05

Similar Documents

Publication Publication Date Title
KR102312204B1 (en) Method for controlling resistivity and n-type silicon single crystal
US4417943A (en) Method for controlling the oxygen level of silicon rods pulled according to the Czochralski technique
TWI745520B (en) Methods for forming single crystal silicon ingots with improved resistivity control
JPS61163188A (en) Process for doping impurity in pulling method of silicon single crystal
US8840721B2 (en) Method of manufacturing silicon single crystal
JP2562579B2 (en) Single crystal manufacturing method
WO1986006764A1 (en) Continuously pulled single crystal silicon ingots
JPH085740B2 (en) Semiconductor crystal pulling method
JPS62226890A (en) Single crystal and its production
US5089082A (en) Process and apparatus for producing silicon ingots having high oxygen content by crucible-free zone pulling, silicon ingots obtainable thereby and silicon wafers produced therefrom
GB2120954A (en) Reducing impurity levels in pulled single crystals
WO1986003523A1 (en) Continuously pulled single crystal silicon ingots
TWI831613B (en) Method for producing single crystal silicon ingot
WO2004065667A1 (en) Process for producing single crystal
US11085128B2 (en) Dopant concentration control in silicon melt to enhance the ingot quality
US2841509A (en) Method of doping semi-conductive material
Matlock Advances in Single Crystal Growth of Silicon
JPS5938199B2 (en) Compound semiconductor crystal growth equipment
JPS62182190A (en) Production of compound semiconductor single crystal
JPS6296388A (en) Quartz glass crucible for pulling up silicon single crystal
JPS63260891A (en) Production of silicon single crystal
JPH04214091A (en) Method for growing crystal
JPH04349128A (en) Method for growing crystal
JPH046196A (en) Silicon wafer and production thereof
JPH0696480B2 (en) Crystal growth method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term