JPH0696480B2 - Crystal growth method - Google Patents

Crystal growth method

Info

Publication number
JPH0696480B2
JPH0696480B2 JP63037774A JP3777488A JPH0696480B2 JP H0696480 B2 JPH0696480 B2 JP H0696480B2 JP 63037774 A JP63037774 A JP 63037774A JP 3777488 A JP3777488 A JP 3777488A JP H0696480 B2 JPH0696480 B2 JP H0696480B2
Authority
JP
Japan
Prior art keywords
crucible
crystal
melt
solid material
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63037774A
Other languages
Japanese (ja)
Other versions
JPH01212293A (en
Inventor
俊幸 藤原
純夫 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP63037774A priority Critical patent/JPH0696480B2/en
Publication of JPH01212293A publication Critical patent/JPH01212293A/en
Publication of JPH0696480B2 publication Critical patent/JPH0696480B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えば半導体装置の材料等として使用される
シリコン,ゲルマニュームの単結晶を不純物成分の偏析
を招くことなく成長させる結晶成長方法に関する。
TECHNICAL FIELD The present invention relates to a crystal growth method for growing a single crystal of silicon or germanium used as a material for a semiconductor device, for example, without causing segregation of impurity components.

〔従来技術〕[Prior art]

単結晶の成長方法としては従来坩堝内に装入した原料を
全部溶融させ、この溶融液中に単結晶製の種結晶を漬け
た後、これを上方に引上げ、種結晶下端に単結晶を成長
せしめる、所謂チョクラルスキー法が広く知られてい
る。この方法では例えばシリコン単結晶を成長せしめる
場合結晶の電気抵抗率,電気伝導型等を調整するため単
結晶の引上げ開始に先立ってシリコン原料の溶融液中に
不純物を添加することが多いが、添加不純物は結晶の引
上げ方向に偏析しがちで均一な電気抵抗率を有する結晶
が得られないという欠点があった。
As a method for growing a single crystal, all the raw materials charged in a conventional crucible are melted, a single crystal seed crystal is immersed in this melt, and then it is pulled upward to grow the single crystal at the lower end of the seed crystal. The so-called Czochralski method is widely known. In this method, for example, when a silicon single crystal is grown, impurities are often added to the melt of the silicon raw material before the pulling of the single crystal is started in order to adjust the electrical resistivity, electric conductivity type, etc. of the crystal. Impurities tend to segregate in the pulling direction of the crystal, and a crystal having a uniform electric resistivity cannot be obtained.

この偏析は単結晶中のある点の凝固開始時の不純物濃度
と凝固終了時の不純物濃度との比、換言すれば結晶成長
の際に溶融液・単結晶界面において単結晶中の不純物濃
度Csと溶融液中の不純物濃度Clとの比Cs/Clである実効
偏析係数Keに関連する。例えばKe<1の場合には単結晶
が成長せしめられるに伴って溶融液中に不純物濃度が自
ずと高くなってゆき、単結晶に不純物の偏析が生じるの
である。なお上記実効偏析係数Keは溶融液が完全に静止
した状態ではKe=1となり、溶融液に熱対流又は誘導加
熱コイルによる磁界に基づく強制対流等が生じている場
合には不純物元素の溶融体元素に対する固有の平衡偏析
係数Koに近付く方向に変化する係数である。
This segregation is the ratio of the impurity concentration at the start of solidification and the impurity concentration at the end of solidification at a certain point in the single crystal, in other words, the impurity concentration Cs in the single crystal at the melt / single crystal interface during crystal growth. It is related to the effective segregation coefficient Ke, which is the ratio Cs / Cl to the impurity concentration Cl in the melt. For example, in the case of Ke <1, as the single crystal is grown, the impurity concentration in the melt naturally increases and segregation of impurities occurs in the single crystal. The effective segregation coefficient Ke is Ke = 1 when the melt is completely stationary, and when the melt is subject to thermal convection or forced convection due to the magnetic field from the induction heating coil, the melt element of the impurity element Is a coefficient that changes toward the intrinsic equilibrium segregation coefficient Ko.

このような不純物の偏析の発生を抑制して単結晶を成長
させる方法として溶融層法がある。第2図はこの溶融層
法の実施状態を示す模式図であり、坩堝1内に装入した
固体材料を昇降可能に設けた誘導加熱コイル2により上
側から下側へ向けて溶融してゆき、坩堝1内に溶融液層
4と固体層5とを上,下に位置させ、溶融液層4から前
記チョクラルスキー法と同様に種結晶6の下端に単結晶
7を成長させつつ引上げる方法である〔Journal of the
electro chemical society. Vol.105,No.7 393〜395
頁〕。
A melt layer method is a method for growing a single crystal while suppressing the occurrence of such segregation of impurities. FIG. 2 is a schematic view showing an implementation state of this melting layer method, in which the solid material charged in the crucible 1 is melted from the upper side to the lower side by the induction heating coil 2 provided so as to be able to move up and down, A method in which a melt layer 4 and a solid layer 5 are located above and below in a crucible 1 and a single crystal 7 is pulled up from the melt layer 4 while growing a single crystal 7 on the lower end of a seed crystal 6 as in the Czochralski method. [Journal of the
electro chemical society. Vol.105, No.7 393 ~ 395
page〕.

この方法による場合には、実効偏析係数Keの値の如何に
拘わらず、単結晶7の成長に伴って誘導加熱コイル2を
下方に移動して溶融液層4の体積を一定に維持する一
方、新たに生成された溶融液による不純物濃度の低減に
応じて坩堝1内の溶融液中での不純物濃度変化を抑制す
べく、一般に坩堝1内の溶融液量に応じて不純物を連続
的に添加し、或いは逆に意図的に溶融液層4の体積を変
化させて不純物濃度を一定に維持することにより偏析を
抑制できることとなる。
According to this method, regardless of the value of the effective segregation coefficient Ke, the induction heating coil 2 is moved downward along with the growth of the single crystal 7 to maintain the volume of the melt layer 4 constant, In order to suppress the impurity concentration change in the melt in the crucible 1 according to the reduction of the impurity concentration due to the newly generated melt, impurities are generally continuously added according to the amount of the melt in the crucible 1. Or, conversely, segregation can be suppressed by intentionally changing the volume of the melt layer 4 to maintain a constant impurity concentration.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

ところでこの溶融層法では最初に坩堝1内に装入する結
晶用の固体材料としては充填率を高める必要上坩堝内形
状と同じ形状の一体化多結晶シリコンを用いるのが望ま
しいが、このような多結晶シリコンの製造は望み難いた
め通常は塊粒状の多結晶シリコンを用いるのが普通であ
る。
By the way, in this melting layer method, as the solid material for the crystal initially charged in the crucible 1, it is desirable to use integrated polycrystalline silicon having the same shape as the inner shape of the crucible because it is necessary to increase the filling rate. Since it is difficult to manufacture polycrystalline silicon, it is usual to use agglomerate polycrystalline silicon.

このため坩堝1内に固体材料を装入したときその充填率
は40〜70%程度であって多量の空隙が存在することとな
り、結晶成長中に固体層5を溶融したとき大きな空隙に
達するとこの空隙内への溶融液の落ち込みのため溶融液
層4が揺動し、また急激なレベル変動を生じて結晶欠陥
を招く等の不都合が発生することがある。
Therefore, when the solid material is charged into the crucible 1, the filling rate is about 40 to 70%, and a large amount of voids are present. When the solid layer 5 is melted during crystal growth, a large void is reached. Due to the drop of the melt in the void, the melt layer 4 may oscillate, and abrupt level fluctuation may occur, resulting in crystal defects.

更に得ようとする単結晶体積から必要とされる量の固体
材料を坩堝1内に装入すると空隙相当分だけ体積が大き
くなるため、坩堝1の大きさをそれだけ大きくする必要
がある。
Furthermore, when the amount of solid material required from the volume of a single crystal to be obtained is charged into the crucible 1, the volume increases by the amount corresponding to the voids, so it is necessary to increase the size of the crucible 1 accordingly.

この対策として固体材料の装入時にその充填率を高め、
また坩堝1の深さを大きくして空隙による体積減少比率
を低くすることが試みられているが、固体材料の充填率
の向上には限界があり、また坩堝1及びその周辺設備の
大型化を避けられない等の問題があった。
As a countermeasure, increase the filling rate when charging solid materials,
Also, it has been attempted to increase the depth of the crucible 1 to reduce the volume reduction ratio due to the voids, but there is a limit to the improvement of the filling rate of the solid material, and the crucible 1 and its peripheral equipment must be upsized. There were some problems that could not be avoided.

本発明はかかる事情に鑑みなされたものであって、その
目的とするところは坩堝内に最初に装入する固体材料間
に形成される空隙に起因して生じる溶融液の振動,溶融
液のレベル変動を抑制すると共に、坩堝の小型化を図れ
るようにした結晶成長方法を提供するにある。
The present invention has been made in view of such circumstances, and an object of the present invention is to vibrate the melt and the level of the melt caused by the voids formed between the solid materials initially charged in the crucible. Another object of the present invention is to provide a crystal growth method capable of suppressing fluctuations and reducing the size of the crucible.

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明に係る結晶成長方法は、坩堝内に装入した結晶用
の固体材料を溶融して坩堝内の下部に固体層を、その上
部に溶融液層を位置させた状態で前記溶融液層から結晶
を成長させる方法において、前記結晶成長の開始に先立
って、予め定めた所定量よりも少ない固体材料を坩堝内
に装入し、装入された坩堝内の固体材料間に空隙が残存
しないよう固体材料をその上側から少なくとも一部を溶
融した後、坩堝内上部の溶融液層に前記所定量となるよ
う残りの固体材料を補充することを特徴とする。
The crystal growth method according to the present invention, the solid layer for melting the solid material for the crystal charged in the crucible is a solid layer in the lower part of the crucible, the melt layer in the state where the melt layer is positioned above the melt layer In the method for growing a crystal, prior to the start of the crystal growth, a solid material less than a predetermined amount is charged into the crucible so that voids do not remain between the solid materials in the charged crucible. At least a part of the solid material is melted from the upper side, and then the remaining solid material is replenished to the molten liquid layer in the upper part of the crucible so as to have the predetermined amount.

〔作用〕[Action]

本発明方法にあっては、所要量よりも少ない固体材料を
坩堝に装入して少なくとも一部を溶融した後、残りの固
体材料を補給することとすることで、固体材料間の空隙
が溶融液で満たされて空隙内のガスも排出され、結晶成
長時における空隙に起因する溶融液の振動が防止される
と共に、坩堝内の材料の充填率が高められ、残りの固体
材料の補給が容易となり、坩堝の小型化を図れる。
In the method of the present invention, a solid material less than the required amount is charged into the crucible to melt at least a part of the crucible, and then the remaining solid material is replenished to melt the voids between the solid materials. It is filled with liquid and the gas in the voids is also discharged, preventing vibration of the melt due to the voids during crystal growth and increasing the filling rate of the material in the crucible, making it easy to replenish the remaining solid material. Therefore, the crucible can be downsized.

〔実施例〕〔Example〕

第1図は本発明方法の実施状態を示す模式図であり、図
中1は坩堝、2はヒータ、3は保温筒、4はシリコンの
溶融液層、5はシリコンの固体層、6は種結晶、7は単
結晶、8はチャンバを示している。
FIG. 1 is a schematic diagram showing an implementation state of the method of the present invention, in which 1 is a crucible, 2 is a heater, 3 is a heat retaining cylinder, 4 is a molten layer of silicon, 5 is a solid layer of silicon, and 6 is a seed. Crystal, 7 is a single crystal, and 8 is a chamber.

坩堝1はチャンバ8内の中央にあって、その外周にはこ
れを囲んで誘導加熱コイル等で構成される昇降可能に配
設されたヒータ2、更にその外側に保温筒3が配設され
ており、坩堝1とヒータ2との相対的な上,下方向位置
調節によって坩堝1内の溶融液層4の深さ,固体層5の
厚さを相対的に調節し得るようになっている。
The crucible 1 is located in the center of the chamber 8, the outer periphery of which is provided with a heater 2 which is arranged up and down and is composed of an induction heating coil and the like, and a heat insulating cylinder 3 is provided outside thereof. The depth of the melt layer 4 and the thickness of the solid layer 5 in the crucible 1 can be relatively adjusted by adjusting the relative upper and lower positions of the crucible 1 and the heater 2.

坩堝1は黒鉛製の容器1aの内側に石英製の容器1bを配し
た二重構造に構成され、黒鉛製の容器1aの底部には坩堝
1を回転、並びに昇降させる軸1cが設けられており、該
軸1cによって坩堝1を回転及び/又は昇降せしめられる
ようになっている。
The crucible 1 has a double structure in which a quartz container 1b is arranged inside a graphite container 1a, and a shaft 1c for rotating and ascending / descending the crucible 1 is provided at the bottom of the graphite container 1a. The shaft 1c allows the crucible 1 to be rotated and / or moved up and down.

坩堝1の上方にはチャンバ8の上部に設けたプルチャン
バ9を通して引上げ軸6aが回転、並びに昇降可能に垂設
され、その下端にはチャック6bにて種結晶6が着脱可能
に装着されており、種結晶6の下端を溶融液層4中に浸
漬した後、これを回転させつつ上昇させることにより、
種結晶6の下端に単結晶7を成長せしめてゆくようにな
っている。
A pulling shaft 6a is provided above the crucible 1 through a pull chamber 9 provided in an upper portion of a chamber 8 so as to rotate and ascend and descend, and a seed crystal 6 is detachably attached to a lower end thereof by a chuck 6b. By immersing the lower end of the seed crystal 6 in the melt layer 4 and then raising it while rotating it,
The single crystal 7 is grown on the lower end of the seed crystal 6.

またチャンバ8の上部には坩堝1に対する結晶用の固体
原料を供給する供給装置10が設置されている。供給装置
10はホッパ10a、秤量器付きフィーダ10b及びフィーダ10
bの排出端から坩堝1に材料を供給する投入管10cを備え
ており、ホッパ10a内に供給された固体材料はフィーダ1
0b上に落下され、フィーダ10bにて移送されつつ秤量さ
れて投入管10cにて坩堝1内に供給されるようになって
いる。
Further, a supply device 10 for supplying a solid crystal raw material to the crucible 1 is installed above the chamber 8. Supply device
10 is a hopper 10a, a feeder 10b with a weighing machine, and a feeder 10
It is equipped with a charging pipe 10c for supplying the material from the discharge end of b to the crucible 1, and the solid material supplied into the hopper 10a is fed by the feeder 1
It is dropped on 0b, transferred by a feeder 10b, weighed, and supplied into the crucible 1 by a charging pipe 10c.

而してこのような本発明方法にあっては先ず坩堝1内に
は当初固体材料として塊状、又は顆粒状をなす多結晶シ
リコンを、引き上げるべき単結晶の体積から求められる
必要量よりも若干少なく装入した後、この固体材料を上
側から溶融せしめつつヒータ2を下降し、固体材料の空
隙内に溶融液が浸入して空隙の略全てが溶融液で充填さ
れるよう溶融制御を行う。この状態では固体材料間の空
隙が溶融液で満たされ、空隙内のガスも外部に排出され
ることとなって、結晶成長過程で溶融液が空隙内に落ち
込み、また空隙内のガスが外部に噴出することによる溶
融液の振動,溶融液のレベルの変動を低減して多結晶化
等の結晶欠陥の発生を防止出来る。そしてこの状態では
坩堝1内の上部には溶融液層4が、またその下部には固
体層5が存在する状態となる。なおこの際坩堝1内に投
入した固体材料の全部を溶融してもよい。
Thus, in such a method of the present invention, first, in the crucible 1, polycrystalline silicon in the form of lumps or granules as a solid material is slightly smaller than the required amount obtained from the volume of the single crystal to be pulled. After charging, the heater 2 is lowered while melting the solid material from the upper side, and melting control is performed so that the molten liquid enters the voids of the solid material and almost all of the voids are filled with the molten liquid. In this state, the voids between the solid materials are filled with the molten liquid, and the gas in the voids is also discharged to the outside, which causes the molten liquid to fall into the voids during the crystal growth process, and the gas in the voids to the outside. It is possible to prevent the occurrence of crystal defects such as polycrystallization by reducing the vibration of the melt and the fluctuation of the melt level due to the jetting. In this state, the molten liquid layer 4 is present in the upper part of the crucible 1 and the solid layer 5 is present in the lower part thereof. At this time, all of the solid material charged into crucible 1 may be melted.

次いで供給装置10から予め定めた必要量に達するまで固
体材料を補充する。補充した固体材料は溶融液層4表面
に浮遊する場合もあるからヒータ2をこの位置に設定し
てこれを溶融する。
The solid material is then replenished from the feeder 10 until the predetermined required amount is reached. The replenished solid material may float on the surface of the melt layer 4, so the heater 2 is set at this position to melt it.

その後はヒータ2の温度制御及び/又はその位置制御に
よって坩堝1内の上部に溶融液層4を、またその下部に
固体層5を夫々所要深さ、又は厚さに存在させた状態で
溶融液層4に種結晶6を漬した後、これを回転させつつ
引上げその下端に単結晶7を成長せしめてゆく。
After that, by controlling the temperature of the heater 2 and / or its position, the molten liquid layer 4 is present in the upper part of the crucible 1 and the solid layer 5 is present in the lower part thereof at a required depth or thickness, respectively. After immersing the seed crystal 6 in the layer 4, the seed crystal 6 is pulled while rotating, and the single crystal 7 is grown at the lower end thereof.

このように固体材料を、少なくともその一部を上端から
溶融する過程をはさんでその前後に分けて坩堝1内に装
入することで固体材料を一度に坩堝1内に装入する場合
に比較して、坩堝内における固体材料の充填率が高めら
れて坩堝1内への実質的な固体材料の装入量が増大し、
坩堝1の小型化が図れることとなる。
Compared with the case where the solid material is charged into the crucible 1 at a time by charging the solid material into the crucible 1 separately before and after the process of melting at least a part of the solid material from the upper end, Then, the filling rate of the solid material in the crucible is increased, and the substantial amount of the solid material charged into the crucible 1 is increased.
The crucible 1 can be downsized.

なお、当初坩堝1内に装入した固体材料を全部溶融した
場合にはその後のヒータ2の温度制御及び/又は位置制
御によって坩堝1の底部の溶融液を凝固させ、ここに所
定厚さの固体層が形成されるようにする。
When all the solid material initially charged in the crucible 1 is melted, the temperature control and / or the position control of the heater 2 thereafter solidifies the molten liquid at the bottom of the crucible 1 to solidify the solid material having a predetermined thickness. Allow the layers to form.

なお、溶融液の加熱に誘導加熱コイルを用いたが、抵抗
加熱式ヒータであっても本発明が可能な事はもちろんで
ある。
Although the induction heating coil is used for heating the molten liquid, the present invention can be applied to a resistance heating type heater.

〔発明の効果〕〔The invention's effect〕

以上の如く本発明方法にあっては坩堝内に最初に装入し
た固体材料をその上端から少なくとも一部を溶融するこ
とで固体材料間の空隙内が溶融液で充填され、また空隙
内のガスが排出されて、後の結晶成長過程で溶融液が空
隙内に落ち込み、また空隙内のガスが排出される際の溶
融液の振動,溶融液レベルの変動を低減し得て、結晶欠
陥の発生が防止出来ると共に、坩堝内への材料の充填率
が大幅に高められることで、残りの固体材料の充填が容
易に行なうことが出来て坩堝の小型化が可能となってそ
の周辺設備の小型化も図れ、しかも生産性が低下するこ
ともないほど本発明は優れた効果を奏するものである。
As described above, in the method of the present invention, the solid material initially charged in the crucible is melted at least partly from the upper end to fill the voids between the solid materials with the molten liquid, and the gas in the voids. Is discharged, the molten liquid falls into the voids during the subsequent crystal growth process, and vibration of the molten liquid when the gas in the voids is discharged and fluctuations in the molten liquid level can be reduced, and crystal defects are generated. In addition, the filling rate of the material into the crucible can be greatly increased, and the remaining solid material can be easily filled, and the crucible can be downsized, and the peripheral equipment can be downsized. The present invention has excellent effects so that the productivity can be improved and the productivity is not reduced.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明方法の実施状態を示す模式的縦断面図、
第2図は従来方法の実施状態を示す模式的縦断面図であ
る。 1……坩堝、2……ヒータ、3……保温筒 4……溶融液層、5……固体層、6……種結晶 7……単結晶、8……チャンバ 9……プルチャンバ、10……供給装置
FIG. 1 is a schematic vertical sectional view showing an implementation state of the method of the present invention,
FIG. 2 is a schematic vertical sectional view showing a state of implementation of the conventional method. 1 ... crucible, 2 ... heater, 3 ... heat insulation cylinder 4 ... melt layer, 5 ... solid layer, 6 ... seed crystal, 7 ... single crystal, 8 ... chamber, 9 ... pull chamber, 10 ... ... Supply device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】坩堝内に装入した結晶用の固体材料を溶融
して坩堝内の下部に固体層を、その上部に溶融液層を位
置させた状態で前記溶融液層から結晶を成長させる方法
において、 前記結晶成長の開始に先立って、予め定めた所定量より
も少ない固定材料を坩堝内に装入し、装入された坩堝内
の固体材料間に空隙が残存しないよう固体材料をその上
側から少なくとも一部を溶融した後、坩堝内上部の溶融
液層に前記所定量となるよう残りの固体材料を補充する
ことを特徴とする結晶成長方法。
Claim: What is claimed is: 1. A solid material for a crystal charged in a crucible is melted to grow a crystal from the melt layer in a state where a solid layer is located in the lower part of the crucible and a melt layer is located in the upper part. In the method, prior to the start of the crystal growth, a fixed material less than a predetermined amount set in advance is charged into the crucible, and the solid material is formed so that voids do not remain between the solid materials in the charged crucible. A method for growing a crystal, characterized in that after melting at least a part from the upper side, the remaining solid material is replenished to the molten liquid layer in the upper part of the crucible in the predetermined amount.
JP63037774A 1988-02-19 1988-02-19 Crystal growth method Expired - Lifetime JPH0696480B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63037774A JPH0696480B2 (en) 1988-02-19 1988-02-19 Crystal growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63037774A JPH0696480B2 (en) 1988-02-19 1988-02-19 Crystal growth method

Publications (2)

Publication Number Publication Date
JPH01212293A JPH01212293A (en) 1989-08-25
JPH0696480B2 true JPH0696480B2 (en) 1994-11-30

Family

ID=12506826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63037774A Expired - Lifetime JPH0696480B2 (en) 1988-02-19 1988-02-19 Crystal growth method

Country Status (1)

Country Link
JP (1) JPH0696480B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61163187A (en) * 1985-01-09 1986-07-23 Sumitomo Electric Ind Ltd Process and device for preparing compound semiconductor single crystal
JPS61215285A (en) * 1985-03-20 1986-09-25 Sumitomo Metal Ind Ltd Method of growing crystal
JPH0743419B2 (en) * 1985-06-27 1995-05-15 防衛庁技術研究本部長 Radio wave / optical system composite seeker
JPS6236096A (en) * 1985-08-07 1987-02-17 Kawasaki Steel Corp Production of single crystal and device therefor

Also Published As

Publication number Publication date
JPH01212293A (en) 1989-08-25

Similar Documents

Publication Publication Date Title
KR20010015768A (en) Process for preparing a silicon melt from a polysilicon charge
JPH02133389A (en) Production device of silicon single crystal
KR930003044B1 (en) Method and apparatus for manufacturing silicon single crystal
JP2006219366A (en) Manufacturing process of silicon single crystal with controlled carbon content
JPH0696480B2 (en) Crystal growth method
JPH0524969A (en) Crystal growing device
JPH01317189A (en) Production of single crystal of silicon and device therefor
JP2562579B2 (en) Single crystal manufacturing method
JPH09208360A (en) Growth of single crystal
JPH06271383A (en) Production of silicon single crystal
JP2600944B2 (en) Crystal growth method
JPH0259494A (en) Production of silicon single crystal and apparatus
JPH07110798B2 (en) Single crystal manufacturing equipment
JPH03215384A (en) Crystal-growing device
JPH05319978A (en) Pull method for single crystal by molten layer method
JPH0316989A (en) Production device of silicon single crystal
JPH089169Y2 (en) Single crystal manufacturing equipment
JPH03131592A (en) Device for growing crystal
JPH075429B2 (en) Crystal growth equipment
JPH0524972A (en) Method for growing crystal
JPH06227890A (en) Apparatus for growing single crystal and method for growing single crystal using the same
JPH04285095A (en) Method for continuously casting silicon by electromagnetic induction
TW202328513A (en) Method for producing single crystal silicon ingot
JPH08310891A (en) Method for growing crystal
JPH08259371A (en) Method for growing single crystal excellent in sr uniformization