JPS61163187A - Process and device for preparing compound semiconductor single crystal - Google Patents

Process and device for preparing compound semiconductor single crystal

Info

Publication number
JPS61163187A
JPS61163187A JP94685A JP94685A JPS61163187A JP S61163187 A JPS61163187 A JP S61163187A JP 94685 A JP94685 A JP 94685A JP 94685 A JP94685 A JP 94685A JP S61163187 A JPS61163187 A JP S61163187A
Authority
JP
Japan
Prior art keywords
single crystal
crucible
feed
melt
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP94685A
Other languages
Japanese (ja)
Inventor
Sukehisa Kawasaki
河崎 亮久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP94685A priority Critical patent/JPS61163187A/en
Publication of JPS61163187A publication Critical patent/JPS61163187A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prepare a single crystal having long size and fixed concentration of impurity by supplying additional feed material to a space between a partition wall provided in a crucible and an inside wall of the crucible and pulling a single crystal from the melt of the feed contg. the impurity in the course of feeding of the additional material. CONSTITUTION:An escaping partition wall 11 made of Si3N4, etc. is floated preventing diffusion or mixing of melt or fixed keeping the center from causing no shift while providing holes on the partition wall 11 simultaneously, for additional feed material (undoped polycrystalline particles or undoped single crystal particles) in the inside of a quartz crucible 6 in a susceptor 5 provided with a feed heater 4 to the outside periphery, contained in a high pressure vessel 1. Melt of the feed 7 and a sealing material 10 are charged to the crucible 6, and a pulling single crystal 8 is pulled at a certain weight ds/dt weight of pulled single crystal per unit time) using an upper shaft 2 for pulling crystal, and a seed crystal 9. On one hand, an additional feed 15 having 0.5-5mm particle size in a sink 13 for the additional feed is supplied as feed material 16 to the melt 7 with (1-k)ds/dt feed rate (k is a segregation coefft.) through a feed pipe 12, and a feed shutter 14, and a weight sensor 20, etc.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はGaAs、 Gap、工nP 等のm−v族化
合物半導体単結晶胃酸方法及びその装置に関するもので
あり、育成した単結晶中の81. B、 Zn。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a gastric acid method and apparatus for m-v group compound semiconductor single crystals such as GaAs, Gap, and nP. .. B, Zn.

工n、 El’b 等の不純物濃度を一定にするために
、原料融液中の不純物濃度を一定に保持する方法及びそ
の装置を提供するものである。
The present invention provides a method and an apparatus for keeping the impurity concentration in a raw material melt constant in order to keep the concentration of impurities such as El'b and El'b constant.

〔従来の技術〕[Conventional technology]

従来知られている化合物半導体の成長方法は、液体封止
式チョクラルスキー法(IImc法)と水平ブリッジマ
ン法(HB法)K大別される。
Conventionally known methods for growing compound semiconductors are broadly classified into the liquid-filled Czochralski method (IImc method) and the horizontal Bridgman method (HB method).

TJ]!IC法は、液体カプセル剤(B*Os等)で覆
われた原料融液に1種結晶をつけて、種結晶及び原料融
液の入ったるつぼを回転させながら引上げることKより
結晶を成長させる方法である。
TJ]! In the IC method, a seed crystal is attached to a raw material melt covered with a liquid capsule (B*Os, etc.), and the crystal is grown by pulling up the crucible containing the seed crystal and raw material melt while rotating. This is the way to do it.

一方、HB法は、石英封管内の石英ボートに原料多結晶
をセットし、原料融液と平衡するV族元素の分圧をかけ
、石英1端にセットした種結晶よシ除々忙融液を固化し
、単結晶を作る方法である。
On the other hand, in the HB method, a raw material polycrystal is set in a quartz boat inside a quartz sealed tube, a partial pressure of group V elements that is in equilibrium with the raw material melt is applied, and the seed crystal set at one end of the quartz is gradually drawn into the heated melt. This is a method to solidify and create a single crystal.

化合物半導体は各種の不純物を添加(ドーピング)し、
n型、P型等の電気的特性及び欠陥密度等の結晶性を制
御するととKより、各種のデバイスに適した用途に使用
される。
Compound semiconductors are made by adding various impurities (doping).
By controlling the electrical properties such as n-type and p-type and crystallinity such as defect density, K is used for applications suitable for various devices.

例えばGaAs  の場合の不純物としては、n型−8
1,S、 Sn等 P型・・・Zn等 中性不純物・B  、ムl、工n、 P、  8b等が
挙げられる。
For example, in the case of GaAs, the impurity is n-type
1, S, P-type such as Sn...neutral impurities such as Zn, B, Mul, N, P, 8b, etc.

各種のデバイスにとって、不純物濃度が一定であるほど
、その特性は安定し、かつ歩留シが向上する。
For various devices, the more constant the impurity concentration, the more stable the characteristics and the better the yield.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、従来法において上記した不純物の添加に
関しては、次に説明するごとく、大きな問題点がある。
However, as explained below, there are major problems with the addition of the above-mentioned impurities in the conventional method.

例えば、不純物を添加したGaAs  融液から、Ga
As  単結晶を引上げたとき、各不純物が融液から結
晶へ取込まれる割合は一定である。これを偏析係数にと
いう。
For example, from GaAs melt with added impurities, GaAs
When an As single crystal is pulled, the rate at which each impurity is taken into the crystal from the melt is constant. This is called the segregation coefficient.

融液中の不純物濃度 OL 結晶中の p   p  O8 融液中の初期 tri。Impurity concentration in melt OL p p O8 in crystal Initial tri in melt.

とすると、 k −Os/CT− 初期融液重量に対する結晶重量を固化率(2)と呼ぶ、
固化率がgKおける不純物濃度(Qは次式のようになる
Then, k -Os/CT- The crystal weight relative to the initial melt weight is called the solidification rate (2),
The impurity concentration when the solidification rate is gK (Q is as shown in the following equation).

0− kQo(1−g )k−’ ここで、kは各不純物によって大いに異なる。0-kQo(1-g)k-' Here, k varies greatly depending on each impurity.

k(1のとき:結晶のフロントfrontからバック’
back[向って、0が増加する。殆んどの不純物がこ
れに適合する。例えば8i、 B、 Zn。
k (When 1: From the front of the crystal to the back'
back [0 increases. Most impurities fit into this category. For example, 8i, B, Zn.

In、 Bb  等である。In, Bb, etc.

k、−1のとき:結晶のフロントからバックまでCが一
定。ただしこの種の不純物は知られていない。
When k, -1: C is constant from the front to the back of the crystal. However, this type of impurity is unknown.

k>1のとき:結晶のフロントからバックに向って、C
が減少する。A1等、ごく小数の不純物がこれ纜適合す
る。
When k>1: From the front of the crystal to the back, C
decreases. A very small number of impurities, such as A1, meet this requirement.

以上の関係を第7図にて示す。The above relationship is shown in FIG.

大多数の不純物についてはk<1であるが、この場合は
、融液中の不純物濃度CT−が増加してゆくので、結晶
中の不純物濃度Oθも増加し、その電気的蒔性、結晶性
(格子定数等)が変化し、結晶の途中部分までしか製品
として用いられないという問題があった。
For most impurities, k<1, but in this case, as the impurity concentration CT- in the melt increases, the impurity concentration Oθ in the crystal also increases, and its electrical solubility and crystallinity increase. There was a problem in that the crystal (lattice constant, etc.) changed and could only be used as a product up to the middle of the crystal.

そこで本発明は上記の問題点、すなわち結晶中の不純物
濃度の増加を解消し、該濃度を一定に保持する化合物半
導体単結晶の製造方法及び装置を提供せんとするもので
ある。
SUMMARY OF THE INVENTION Therefore, the present invention aims to solve the above-mentioned problem, that is, the increase in impurity concentration in the crystal, and to provide a method and apparatus for manufacturing a compound semiconductor single crystal in which the concentration is kept constant.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、結晶中の不純物濃度を一定にすべく、融液中
の不純物濃度を一定に保持するために、融液中に無添加
(アンドープ)原料多結晶粒もしくはアンドープ単結晶
粒を追加してゆく方法であり、その追加の方法及びその
装置に特徴をもつ。
In order to keep the impurity concentration in the crystal constant, the present invention adds non-additive (undoped) raw material polycrystal grains or undoped single crystal grains to the melt in order to keep the impurity concentration in the melt constant. It is characterized by the additional method and the apparatus.

すなわち、本発明は不純物を含んだ原料融液から単結晶
を引き上げる化合物半導体゛単結晶引き上げ方法におい
て、るつぼ内に設けられた隔壁とるつぼ内壁との間にア
ンドープ多結晶粒もしくはアンドープ単結晶粒を補給し
、それにより不純物濃度が一定の単結晶を得ることを特
徴とする化合物半導体単結晶の製造方法及び、ホットゾ
ーン中に設けられたるつぼ内の不純物を含んだ原料融液
から単結晶を引き上げて化合物半導体単結晶を製造する
装置であって、るつぼ内に設けられた隔壁及び該隔壁と
該るつぼ内壁との間にアンドープ多結晶粒もしくはアン
ドープ単結晶粒を補給する手段とを有してなり、それに
よシるつぼを含むホットゾーン部分が小型であっても長
径の単結晶を不純物濃度一定に得ることができる化合物
半導体単結晶の製造装置である。
That is, the present invention is a compound semiconductor single crystal pulling method for pulling a single crystal from a raw material melt containing impurities. A method for producing a compound semiconductor single crystal, which is characterized by replenishing the material and thereby obtaining a single crystal with a constant impurity concentration, and pulling the single crystal from a raw material melt containing impurities in a crucible provided in a hot zone. An apparatus for manufacturing a compound semiconductor single crystal using a crucible, comprising a partition wall provided in a crucible and a means for supplying undoped polycrystalline grains or undoped single crystal grains between the partition wall and the inner wall of the crucible. This is an apparatus for producing a compound semiconductor single crystal, thereby making it possible to obtain a long-axis single crystal with a constant impurity concentration even if the hot zone portion including the crucible is small.

以下図面に基き本発明の詳細な説明する。The present invention will be described in detail below based on the drawings.

第1図は本発明の1実施態様を示す概略図であって、1
は高圧容器、2は結晶を引上げるための上軸、3はるつ
ぼ回転及び昇降用下軸、4は原料加熱用ヒータ、5はサ
セプター、6Fiるつぼ(石英、PBN 、 AZN等
)、7は原料融液、8は引上単結晶、9は種結晶(シー
ド)、10は封止剤(BmOm等)、11は追加原料避
は隔壁(SiN、 BN、O製等)、12は追加原料投
下用パイプ(石英、BN製等)、13は追加原料留め(
石英、BN1ステンレス製等)、14は追加原料投下用
シャッター、15は追加原料(粒径5爛以下が良い)、
16は原料融液に投下された追加原料、17は高圧ガス
(N1ガス又は不活性ガス)、20は重量センサーであ
る。
FIG. 1 is a schematic diagram showing one embodiment of the present invention, 1
is a high-pressure container, 2 is an upper shaft for pulling the crystal, 3 is a lower shaft for rotating and lifting the crucible, 4 is a heater for heating the raw material, 5 is a susceptor, 6Fi crucible (quartz, PBN, AZN, etc.), 7 is the raw material Melt, 8 is a pulled single crystal, 9 is a seed crystal, 10 is a sealant (BmOm, etc.), 11 is an additional raw material escape partition (made of SiN, BN, O, etc.), 12 is an additional raw material drop pipe (made of quartz, BN, etc.), 13 is for additional raw material retainer (
quartz, BN1 stainless steel, etc.), 14 is a shutter for dropping additional raw materials, 15 is additional raw material (particle size of 5 or less is good),
Reference numeral 16 indicates an additional raw material dropped into the raw material melt, 17 indicates a high pressure gas (N1 gas or inert gas), and 20 indicates a weight sensor.

第2図は第1図のるつぼ6近傍の拡大図であり、符番の
意味するところは第1図と同様である。
FIG. 2 is an enlarged view of the vicinity of the crucible 6 in FIG. 1, and the meanings of the reference numbers are the same as in FIG. 1.

本発明の特徴は、原料融液7の不純物濃度を一定に保持
するために、追加原料留め13、追加原料投下用シャッ
ター14、追加原料15、追加原料投下用パイプ12、
追加原料避は隔壁11が設置される単結晶引上装置によ
り結晶を得る点にあり、追加原料15を投下用バイブ1
2を通して、原料融液7に追加しつつ、結゛晶を成長さ
せる。追加原料避は隔壁11は追加原料16が結晶成長
界面近傍に近づかないためのものであり、これにより不
純物添加単結晶の成長の安定化を計るものである。
The features of the present invention include, in order to keep the impurity concentration of the raw material melt 7 constant, an additional raw material retainer 13, an additional raw material dropping shutter 14, an additional raw material 15, an additional raw material dropping pipe 12,
The additional raw material avoidance is to obtain the crystal by a single crystal pulling device in which the partition wall 11 is installed, and the additional raw material 15 is transferred to the dropping vibe 1.
2, crystals are grown while being added to the raw material melt 7. The partition walls 11 are used to prevent the additional raw material 16 from coming close to the crystal growth interface, thereby stabilizing the growth of the impurity-doped single crystal.

本発明の原理・作用を次く説明する。The principle and operation of the present invention will be explained below.

単結晶をd8だけ引上げると、(1−k)asだけ原料
を追加すれば良い。
If the single crystal is pulled up by d8, it is only necessary to add the raw material by (1-k)as.

まず、その偏析係数がkである不純物を添加した原料融
液7に種結晶9を浸し、上軸2、下軸3を回転させなが
ら、上軸2を上昇させ、′単結晶8を引上げて行く。こ
の時、時間当シの結晶の成長重量dB/dtを上軸上部
にセットされた重量センサー20の信号を封止剤10 
(BmOm)による浮力を補正して検知し、その後、追
加原料−(アンドープ多結晶粒)15の(1−k)c1
g/at量を封止剤10上より融液中に補給する。Ba
1mは粘性係数が大きいため、補給された追加原料16
はIIItOs中を低速度で沈下し、融液中に浮く。
First, the seed crystal 9 is immersed in the raw material melt 7 containing impurities whose segregation coefficient is k, and while rotating the upper shaft 2 and lower shaft 3, the upper shaft 2 is raised, and the single crystal 8 is pulled up. go. At this time, the sealing agent 10 detects the growth weight dB/dt of the crystal per hour by transmitting the signal from the weight sensor 20 set above the upper axis.
The buoyancy due to (BmOm) is corrected and detected, and then additional raw material - (undoped polycrystalline grain) 15 (1-k) c1
g/at amount is replenished into the melt from above the sealant 10. Ba
1m has a large viscosity coefficient, so the additional raw material 16
sinks at low speed in IIItOs and floats in the melt.

GaAs 、工nP等のm−v族化合物半導体では、融
液の比重が結晶の比重より大きい。
In m-v group compound semiconductors such as GaAs and nP, the specific gravity of the melt is greater than the specific gravity of the crystal.

GaAsの密度i融液ではPl−−5,71flol 
e固体ではPs−5,L6〜5.31わ4−従って、浮
いている追加原料16が結晶付近に近づくと、成長が不
安定とな)、単結晶ができないので、隔壁11を設け、
浮いている追加原料16が結晶近傍に来ないようにする
。更に、融けた追加原料と結晶近傍の融液が充分に拡散
し、混じり合うように、隔壁11を融液中に浮かすか、
隔壁11に穴を設ける。又、隔壁11の中心がずれない
ようくいつばを取付けたり、又はるつぼ底に固定する。
In the GaAs density i melt, Pl--5,71fl
e In the solid state, Ps-5, L6 ~ 5.31 (4- Therefore, when the floating additional raw material 16 approaches the vicinity of the crystal, the growth becomes unstable), and a single crystal cannot be formed, so the partition wall 11 is provided,
Prevent the floating additional raw material 16 from coming near the crystal. Furthermore, the partition walls 11 are floated in the melt so that the additional melted raw material and the melt near the crystals are sufficiently diffused and mixed, or
A hole is provided in the partition wall 11. Also, a collar is attached or fixed to the bottom of the crucible so that the center of the partition wall 11 does not shift.

融液表面のるつぼ半径方向の温度分布は、るつぼ周辺に
向かって、温度が高くなっておシ、るつぼ中心に比して
、るつぼ周辺では3〜15℃高くなっている。従って、
追加原料16はるつぼ中心で結晶ゝ成長を続けながらも
、充分に融液にとける。追加原料16の粒が大き過ぎる
と、溶けにくく、小さ過ぎると(微粉体)粘性の大きい
BIO3中を沈下しくくいので、115〜5鰭径の追加
原料が最適である。
The temperature distribution on the surface of the melt in the radial direction of the crucible is such that the temperature increases toward the periphery of the crucible, and is 3 to 15° C. higher at the periphery of the crucible than at the center of the crucible. Therefore,
Although the additional raw material 16 continues to grow as a crystal at the center of the crucible, it is sufficiently dissolved in the melt. If the particles of the additional raw material 16 are too large, it will be difficult to dissolve, and if the particles are too small (fine powder), it will be difficult to sink in the highly viscous BIO3, so an additional raw material with a fin diameter of 115 to 5 is optimal.

このように単結晶をdsi/at引き上げつつ、追加原
料を(f −k) da/6を補給するととkよシ、不
純物の濃度が一定の単結晶が得られる。
When the single crystal is pulled up at dsi/at in this manner and the additional raw material (f - k) da/6 is supplied, a single crystal with a constant concentration of impurities can be obtained as k.

追加原料避は隔壁11の構成の実施態様例を第3図(a
)及び(1)j〜第5図(a)及びφ)に示す。各図に
おいて(a)は垂直方向一部所面の説明図、由)は水平
方向断面図である。
An example of an embodiment of the structure of the partition wall 11 for avoiding additional raw materials is shown in FIG. 3 (a).
) and (1)j to FIG. 5(a) and φ). In each figure, (a) is an explanatory view of a part in the vertical direction, and (a) is a cross-sectional view in the horizontal direction.

第5図(al及び争)は、円筒形でかつるつぼ6に対し
て偏心しないようKつば18が取付けられ、このつげ1
8によるるつぼ6と隔壁11との間に追加原料が入る。
Fig. 5 (al and 2) shows a cylindrical shape with a K collar 18 attached so as not to be eccentric with respect to the crucible 6, and this boxwood 1.
Additional raw material enters between the crucible 6 and the partition wall 11 according to 8.

この形では、結晶近傍の融液と追加原料が融けた融液と
が良く混じるように、隔壁11が原料融液7中に浮く必
要があシ、材質として、チツ化シリコン(81sN+)
又はチツ化ボロン(Bli)、カーボン(C)あるいは
これらKBNコーティングしたものを使用し、原料融液
に沈む量を制御すべく、上部に重りをつけるなどの工夫
をする。
In this form, the partition wall 11 needs to float in the raw material melt 7 so that the melt near the crystal and the melt containing the additional raw material mix well.The material is silicon nitride (81sN+).
Alternatively, use boron nitride (Bli), carbon (C), or KBN-coated materials, and devise measures such as attaching a weight to the top in order to control the amount that sinks into the raw material melt.

第4図(a)及び(′b)は、隔壁11の底部に架台1
9を取付けたものである。るつぼ底に固定すればつげ1
8はなくても良い。
4(a) and ('b) show that a frame 1 is attached to the bottom of the partition wall 11.
9 is attached. Boxwood 1 if fixed to the bottom of the crucible
8 is not necessary.

第5図(a)及び(′b)は、円筒形の隔壁11をるつ
ぼ底に固定す゛る方法である。原料融液が混じり合うよ
うに隔壁11の底部に穴20が開いている。
FIGS. 5(a) and 5('b) show a method of fixing the cylindrical partition wall 11 to the bottom of the crucible. A hole 20 is provided at the bottom of the partition wall 11 so that the raw material melt can mix.

本発明は、以上の説明から明らかなように1原料を追加
して、ゆくので、るつぼを含むホットゾーンを小型化で
き、なおかつこの小型装置で長径のアンドープ単結晶イ
ンゴットを製造できる。ホットゾーン部が小さいので、
結晶固液界面付近の温度制御性よく(時定数が小さく応
答性が良いため)、シかも1回のチャージで長いものが
得られるのでチャージ時間のロスが少なく生産性が向上
する。
As is clear from the above description, the present invention adds one raw material to the process, so the hot zone including the crucible can be downsized, and a long-diameter undoped single crystal ingot can be manufactured with this compact device. Because the hot zone is small,
The temperature near the crystal solid-liquid interface is well controlled (because the time constant is small and responsiveness is good), and a long film can be obtained with one charge, so there is little loss in charging time and productivity is improved.

(実施例) 第1図に示すような装置で、日1を添加したGaAa 
単結晶の引き上げを実施した。
(Example) Using an apparatus as shown in FIG.
A single crystal was pulled.

アンドープGaム8多結晶   4000Fるつぼ(F
BI製)       6インチ径Room     
        60 C1f隔壁(カーボンにFBI
コート、上部Mo金萬の重シをのせる) 外径5インチ径、厚み3■ 2インチ(約501φ)径のS1ド一プGame  結
晶を引上げる。
Undoped Gamu 8 polycrystalline 4000F crucible (F
Made by BI) 6 inch diameter Room
60 C1f bulkhead (FBI on carbon
Coat, place a heavy layer of Mo gold on top) Pull up the S1 dope Game crystal with an outer diameter of 5 inches and a thickness of 3cm and 2 inches (about 501φ).

引上速度 8露/H 上軸回転数 7 rpm 1  下軸回転数 15 r
pm81の偏析係数にりQ、14 Gaム8融液1c!1?iを[L1428F添加する。
Pulling speed 8 dew/H Upper shaft rotation speed 7 rpm 1 Lower shaft rotation speed 15 r
Based on the segregation coefficient of pm81, Q, 14 Ga 8 melt 1c! 1? Add i to [L1428F.

GaAa結晶の初期濃度は5重量ppmとなる。The initial concentration of GaAa crystals is 5 ppm by weight.

追加原料(GaAa粒)を2000?(5vm径)を用
意し、毎分、1171Fの割合で補給した。S1ドープ
単結晶を約2kll引上げた。結晶中の81fi度は結
晶のフロントからパックまで均一で、5重量ppmであ
った。
2000 yen for additional raw materials (GaAa grains)? (5vm diameter) was prepared and replenished at a rate of 1171F per minute. The S1-doped single crystal was pulled up by about 2kll. The 81fi degree in the crystal was uniform from the front of the crystal to the pack, and was 5 ppm by weight.

第6図に本発明による場合(実線イ)と従来の方法によ
る場合(点線口)のGaAs  単結晶中の日1濃度分
布の比較を示す。
FIG. 6 shows a comparison of the daily concentration distribution in a GaAs single crystal in the case of the present invention (solid line A) and the case of the conventional method (dotted line).

〔発明の効果〕〔Effect of the invention〕

原料融液に原料(アンドープ多結晶)を補給することに
よシ原料融液中の不純物濃度を一定に保持し、従2て、
引き上げられた単結晶の不純物濃度が一定となる。るつ
ぼ内の隔壁によシ、原料(アンドープ多結晶粒)の補給
による悪影響はなく、同時に1結晶の安定成長が達成で
きる。かつ、るつぼ中心付近の融液と原料(アンドープ
多結晶)が溶けた融液とが隔壁の下を通過して良く混じ
シ合い、均一な融液ができる。
By replenishing the raw material melt with the raw material (undoped polycrystal), the impurity concentration in the raw material melt can be kept constant;
The impurity concentration of the pulled single crystal becomes constant. There is no adverse effect on the partition walls in the crucible and the supply of raw materials (undoped polycrystalline grains), and stable growth of one crystal can be achieved at the same time. In addition, the melt near the center of the crucible and the melt containing the raw material (undoped polycrystal) pass under the partition wall and mix well, forming a uniform melt.

本発明は、fii、 B、 Zn、In、 Eib等(
GaAg中)のように、kく1なる不純物を含んだ単結
晶引上に適用できる。
The present invention relates to fii, B, Zn, In, Eib, etc.
This method can be applied to pulling a single crystal containing as many as 1,000 impurities, such as GaAg (in GaAg).

また本発明の装置は小型で長径のアンドープ単結晶イン
ゴットの製造が安定に実施でき、さらに生産性も良い。
Further, the apparatus of the present invention can stably manufacture small-sized, long-diameter undoped single crystal ingots, and has good productivity.

東回面の簡単な説明 第1図は、本発明の一実施態様を説明する図、第2図は
、第1図のるつぼ5近傍の拡大図、第3図(a)及び巾
)、第4図(−及び(1))並びに第5図(a)及び山
)は隔壁11の構成例を示す図、第6図は実施例におけ
る、本発明と従来の方法によるGaAs 単結晶中の8
1g度の比較を示す図、 第7図はGaAa 単結晶の各部分における不純物濃度
と、k値、及び固化率−の関係を模式的に示した図であ
る。
Brief Explanation of the East Surface Figure 1 is a diagram illustrating one embodiment of the present invention, Figure 2 is an enlarged view of the vicinity of the crucible 5 in Figure 1, Figure 3 (a) and width), 4 (- and (1)) and FIG. 5 (a) and the peaks are diagrams showing examples of the structure of the partition wall 11, and FIG.
FIG. 7 is a diagram schematically showing the relationship between impurity concentration, k value, and solidification rate in each part of a GaAa single crystal.

Claims (3)

【特許請求の範囲】[Claims] (1)不純物を含んだ原料融液から単結晶を引き上げる
化合物半導体単結晶引き上げ方法において、るつぼ内に
設けられた隔壁とるつぼ内壁との間にアンドープ多結晶
粒もしくはアンドープ単結晶粒を補給し、それにより不
純物濃度が一定の単結晶を得ることを特徴とする化合物
半導体単結晶の製造方法。
(1) In a compound semiconductor single crystal pulling method for pulling a single crystal from a raw material melt containing impurities, undoped polycrystal grains or undoped single crystal grains are supplied between a partition wall provided in a crucible and an inner wall of the crucible, A method for producing a compound semiconductor single crystal, characterized in that a single crystal with a constant impurity concentration is thereby obtained.
(2)アンドープ多結晶粒もしくはアンドープ単結晶粒
の補給は、単位時間当りの引き上げられた単結晶重量d
s/dtに対し、単位時間当り(1−k)ds/dtと
する特許請求の範囲第(1)項記載の化合物半導体単結
晶の製造方法。
(2) Replenishment of undoped polycrystalline grains or undoped single crystal grains is based on the pulled single crystal weight d per unit time.
s/dt, the method for manufacturing a compound semiconductor single crystal according to claim (1), wherein (1-k) ds/dt per unit time.
(3)ホットゾーン中に設けられたるつぼ内の不純物を
含んだ原料融液から単結晶を引き上げて化合物半導体単
結晶を製造する装置であつて、るつぼ内に設けられた隔
壁及び該隔壁と該るつぼ内壁との間にアンドープ多結晶
粒もしくはアンドープ単結晶粒を補給する手段とを有し
てなり、それによりるつぼを含むホットゾーン部分が小
型であつても長径の単結晶を不純物濃度一定に得ること
ができる化合物半導体単結晶の製造装置。
(3) A device for producing a compound semiconductor single crystal by pulling a single crystal from a raw material melt containing impurities in a crucible provided in a hot zone, comprising a partition wall provided in the crucible and a connection between the partition wall and the A means for supplying undoped polycrystalline grains or undoped single crystal grains between the inner wall of the crucible, thereby obtaining a long-axis single crystal with a constant impurity concentration even if the hot zone portion including the crucible is small. Compound semiconductor single crystal manufacturing equipment.
JP94685A 1985-01-09 1985-01-09 Process and device for preparing compound semiconductor single crystal Pending JPS61163187A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP94685A JPS61163187A (en) 1985-01-09 1985-01-09 Process and device for preparing compound semiconductor single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP94685A JPS61163187A (en) 1985-01-09 1985-01-09 Process and device for preparing compound semiconductor single crystal

Publications (1)

Publication Number Publication Date
JPS61163187A true JPS61163187A (en) 1986-07-23

Family

ID=11487839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP94685A Pending JPS61163187A (en) 1985-01-09 1985-01-09 Process and device for preparing compound semiconductor single crystal

Country Status (1)

Country Link
JP (1) JPS61163187A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01212293A (en) * 1988-02-19 1989-08-25 Sumitomo Metal Ind Ltd Crystal growth method
EP0350305A2 (en) * 1988-07-07 1990-01-10 Nkk Corporation Method and apparatus for manufacturing silicon single crystals
US4936949A (en) * 1987-06-01 1990-06-26 Mitsubishi Kinzoku Kabushiki Kaisha Czochraski process for growing crystals using double wall crucible
US5493985A (en) * 1993-02-26 1996-02-27 The United States Of America As Represented By The Secretary Of The Air Force Process and apparatus for controlled synthesis and in-situ single crystal growth of phosphorus compounds and the crystals therefrom

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4936949A (en) * 1987-06-01 1990-06-26 Mitsubishi Kinzoku Kabushiki Kaisha Czochraski process for growing crystals using double wall crucible
JPH01212293A (en) * 1988-02-19 1989-08-25 Sumitomo Metal Ind Ltd Crystal growth method
EP0350305A2 (en) * 1988-07-07 1990-01-10 Nkk Corporation Method and apparatus for manufacturing silicon single crystals
US5493985A (en) * 1993-02-26 1996-02-27 The United States Of America As Represented By The Secretary Of The Air Force Process and apparatus for controlled synthesis and in-situ single crystal growth of phosphorus compounds and the crystals therefrom

Similar Documents

Publication Publication Date Title
EP0494312A1 (en) Method and apparatus for making single crystal
EP0388503A1 (en) Method for pulling single crystals
JP2755588B2 (en) Crystal pulling method
JPH0525836B2 (en)
JP2000143397A (en) Gallium arsenic single crystal
JP2006306723A (en) Gallium arsenide single crystal
JPS61163187A (en) Process and device for preparing compound semiconductor single crystal
EP0186213A2 (en) Method for synthesizing compound semiconductor polycrystals and apparatus therefor
JPH10167898A (en) Production of semi-insulative gaas single crystal
JPS58130195A (en) Pulling apparatus for single crystalline silicon
JP2830411B2 (en) Method and apparatus for growing compound semiconductor single crystal
JPH06128096A (en) Production of compound semiconductor polycrystal
JP3885245B2 (en) Single crystal pulling method
JPS598695A (en) Crystal growth apparatus
JPS62501497A (en) Single crystal silicon ingot drawn continuously
TW399108B (en) Method for pulling-up a single crystal
JPS6058196B2 (en) Compound semiconductor single crystal pulling method and device
JPS61266389A (en) Double crucible for making impurity in crystal uniform
JPH07330482A (en) Method and apparatus for growing single crystal
JPH0543384A (en) Method for crystal growth
JPS6389497A (en) Production of silicon-added gallium arsenic single crystal
JPS61158896A (en) Method for producing compound semiconductor single crystal and apparatus therefor
JPS61158897A (en) Method for pulling up compound semiconductor single crystal and apparatus therefor
JPS58172291A (en) Production of single crystal of compound semiconductor
KR100194363B1 (en) Method and apparatus for manufacturing single crystal silicon