JPS61158896A - Method for producing compound semiconductor single crystal and apparatus therefor - Google Patents

Method for producing compound semiconductor single crystal and apparatus therefor

Info

Publication number
JPS61158896A
JPS61158896A JP59281273A JP28127384A JPS61158896A JP S61158896 A JPS61158896 A JP S61158896A JP 59281273 A JP59281273 A JP 59281273A JP 28127384 A JP28127384 A JP 28127384A JP S61158896 A JPS61158896 A JP S61158896A
Authority
JP
Japan
Prior art keywords
crucible
melt
single crystal
raw material
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59281273A
Other languages
Japanese (ja)
Inventor
Sukehisa Kawasaki
河崎 亮久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP59281273A priority Critical patent/JPS61158896A/en
Publication of JPS61158896A publication Critical patent/JPS61158896A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/02Single-crystal growth by pulling from a melt, e.g. Czochralski method adding crystallising materials or reactants forming it in situ to the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi

Abstract

PURPOSE:To obtain a compound semiconductor single crystal having uniform impurity concentration, by adding the materials of the matrix compound separately and continuously to the molten raw material in the production of impurity-doped compound semi-conductor single crystal by liquid-encapsulated pulling up process. CONSTITUTION:A crucible 6 is placed in a pressure vessel 1, and a molten raw material 7 containing the raw material compound and impurity is put into the crucible 6 and covered with an encapsulant 10. A single crystal 8 can be grown by dipping a crystal 9 in the molten raw material 7, and pulling up the crystal. In the above process, a group V element vapor is introduced into the crucible 6 through a small hole opened at the bottom of the crucible 6, and a molten liquid of a group III element 15 is charged to the crucible from above to synthesize the raw material compound. A single crystal 8 having uniform impurity concentration can be produced by pulling up the single crystal 8 while controlling the feeding rate of the molten liquid of the group III element 15 in a manner to keep the impurity concentration in the molten raw material 7 to a constant level.

Description

【発明の詳細な説明】 (7)  技  術  分  野 この発明は、不純物濃度を均一にしたl−V族化合物半
導体単結晶の製造方法及び装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (7) Technical Field The present invention relates to a method and apparatus for manufacturing a l-V group compound semiconductor single crystal with uniform impurity concentration.

m−v族化合物半導体には、GaAs 、 GaP 、
 Ink。
The m-v group compound semiconductors include GaAs, GaP,
Ink.

GaSb、 InSbなどいろいろな組合わせがある。There are various combinations such as GaSb and InSb.

不純物をドープしない単結晶を製造する場合もあるが、
特定の性質を得るために不純物をドープする事もある。
In some cases, single crystals are manufactured without doping with impurities, but
Impurities are sometimes doped to obtain specific properties.

例、t、ハ、Si、S、Zn11n、Sb、B、Al。Examples, t, Ha, Si, S, Zn11n, Sb, B, Al.

Snなどの不純物をドープする、という事はよく行われ
る。
Doping with impurities such as Sn is often done.

不純物には、中性不純物と呼ばれるものと、p型、n型
不純物と呼ばれるものがある。p型、n型の不純物は、
その化合物半導体をp型半導体又はn型半導体にするだ
めのものである。中性不純物は、■族又はV族元素であ
って母体化合物元素でないものをいう。これは、転位密
度を減少するためにドープされる事が多い。
Impurities include those called neutral impurities, and those called p-type and n-type impurities. P-type and n-type impurities are
This is to convert the compound semiconductor into a p-type semiconductor or an n-type semiconductor. Neutral impurities refer to elements of group Ⅰ or group V that are not parent compound elements. It is often doped to reduce dislocation density.

GaAsの場合、対応する不純物は次のとおりである。For GaAs, the corresponding impurities are:

n型不純物・・・・・・・・・Si、S、Snn等量型
不純物・・・・・・・・Zn等 中性不純物・・・・・・・・・B SA#、 In、 
P、 Sb等その他の化合物に対しても、これらの不純
物の種類は既知である。
N-type impurity...Si, S, Snn equivalent type impurity...Neutral impurity such as Zn...B SA#, In,
The types of these impurities are also known for other compounds such as P and Sb.

(イ)従来技術とその問題点 化合物半導体の成長方法には、大別して、液体封止チョ
クラルスキー法(LEC法という)と、水平ブリッジマ
ン法(HB法と略す)がある。他にも実験室的な試みは
あるが、工業的に意味のあるのは、上記二方法だけであ
る。
(a) Prior art and its problems Methods for growing compound semiconductors can be roughly divided into the liquid confinement Czochralski method (referred to as the LEC method) and the horizontal Bridgman method (abbreviated as the HB method). Although there are other laboratory attempts, only the above two methods are of industrial significance.

LEG法は、液体カプセル剤で覆われた原料融液に種結
晶を漬け、種結晶を相対回転させながら原料融液から引
上げる事により、単結晶を成長させる。
In the LEG method, a seed crystal is immersed in a raw material melt covered with a liquid capsule, and a single crystal is grown by pulling the seed crystal out of the raw material melt while rotating the seed crystal relative to the raw material melt.

HB法は、石英ボートに原料多結晶を充填し、ボートの
一端に種結晶を置いて、石英管の中に封入する。原料融
液と平衡するV族元素の分圧をかけながら、融液を種結
晶の側から降温してゆき、単結晶を作る方法である。
In the HB method, a quartz boat is filled with raw polycrystals, a seed crystal is placed at one end of the boat, and the seed crystal is sealed in a quartz tube. This is a method of forming a single crystal by lowering the temperature of the melt from the seed crystal side while applying a partial pressure of group V elements that is in equilibrium with the raw material melt.

不純物をドープする場合は、不純物元素又はこれを含む
化合物を、予め原料融液に入れておく。
When doping with impurities, the impurity element or a compound containing the impurity element is added to the raw material melt in advance.

不純物は単結晶の全長にわたって均一でない。Impurities are not uniform over the entire length of the single crystal.

このため、単結晶の電気的特性がバラついたり、多くの
欠陥が出現したりする。
As a result, the electrical properties of the single crystal vary and many defects appear.

固液界面に於て、固体側の不純物濃度Sと、液体側の不
純物濃度mの比を、偏析係数といいkで表わす。dis
tribution coef’f’1cient或は
sagreptioncoaf’f’1cientとい
う。
At the solid-liquid interface, the ratio of the impurity concentration S on the solid side to the impurity concentration m on the liquid side is called the segregation coefficient and is expressed by k. dis
It is called tribution coef'f'1cient or sagreption coef'f'1cient.

これが1であれば、単結晶育成中の不純物濃度は一定で
あるから、不純物濃度が一定である単結晶を製造できる
If this is 1, the impurity concentration during single crystal growth is constant, so a single crystal with a constant impurity concentration can be manufactured.

しかし、一般に偏析係数は1でない。偏析係数には1よ
り小さい事が多い。
However, the segregation coefficient is generally not 1. The segregation coefficient is often smaller than 1.

固化率gは、初期の原料融液重量で、結晶重量を割った
ものとして定義する。固化率がgである時、固液界面近
傍の固体側の不純物濃度Sはに−1 S  =kmo(1g)     (1)で与えられる
。moは融液中の初期濃度である。
The solidification rate g is defined as the crystal weight divided by the initial raw material melt weight. When the solidification rate is g, the impurity concentration S on the solid side near the solid-liquid interface is given by -1 S = kmo (1 g) (1). mo is the initial concentration in the melt.

kが1より小さい場合、gが1に接近すると、濃度Sは
発散する。つまりバック部で不純物濃度が異常に高くな
る。不純物による析出が起ったり、双晶が生じたり、も
はや良質の単結晶にならない。
When k is less than 1, the concentration S diverges as g approaches 1. In other words, the impurity concentration becomes abnormally high in the back portion. Precipitation due to impurities occurs, twin crystals occur, and it no longer becomes a high-quality single crystal.

kが1に等しい不純物はない。There are no impurities with k equal to 1.

kが1より大きい場合、バック部で、不純物濃度が稀薄
になり、所望の特性が得られなくなる。
When k is larger than 1, the impurity concentration becomes dilute in the back portion, making it impossible to obtain desired characteristics.

偏析係数は、母体化合物と不純物とによって定義される
値であるが、圧力によっても変動する。
The segregation coefficient is a value defined by the parent compound and impurities, but it also changes depending on the pressure.

濃度にも依存するが、多くの場合、圧力は一定にするし
、濃度依存性はあまり大きくない範囲で結晶成長する。
Although it depends on the concentration, in most cases the pressure is kept constant and crystal growth occurs within a range where the concentration dependence is not very large.

従って、偏析係数は定数とみなして良い。Therefore, the segregation coefficient can be regarded as a constant.

多くの場合、偏析係数は1より不さい。In many cases, the segregation coefficient is less than 1.

例えばGaAsを母体化合物とすると、1より小さい偏
析係数を持つ不純物はSi、S、Zn、In、sbなど
である。反対に1より大きい偏析係数を持つ不純物はA
lなどで、数は少い。
For example, when GaAs is used as a host compound, impurities having a segregation coefficient of less than 1 include Si, S, Zn, In, and sb. On the other hand, impurities with a segregation coefficient greater than 1 are A
There are only a few, such as l.

偏析係数が1より小さい場合、LEC法でもHB法でも
、バック部で不純物濃度が大きくなる。
When the segregation coefficient is smaller than 1, the impurity concentration increases in the back portion in both the LEC method and the HB method.

(つ)   目     的 不純物をドープした化合物半導体単結晶を製造する際、
不純物濃度を均一にした単結晶を作り得るLEC装置及
びLEC法とを提供する事が本発明の目的である。
(1) Purpose: When manufacturing a compound semiconductor single crystal doped with impurities,
It is an object of the present invention to provide an LEC device and an LEC method that can produce a single crystal with a uniform impurity concentration.

不純物濃度が変動しなければ、電気的特性(キャリヤ濃
度、電子移動度)や転位密度も均一になるはずである。
If the impurity concentration does not vary, the electrical characteristics (carrier concentration, electron mobility) and dislocation density should also be uniform.

特性が均一であれば、単結晶の大部分が使用できる事に
なる。つまり歩留りが向上する。
If the properties are uniform, most single crystals can be used. In other words, the yield is improved.

に)  構   成 本発明に於ては、偏析係数が1より小さい不純物の濃度
が異常に高揚するのを抑制するために、原料融液に母体
化合物の材料を連続的に補給し、不純物濃度を一定にす
る。
In the present invention, in order to suppress the concentration of impurities with a segregation coefficient smaller than 1 from becoming abnormally high, the base compound material is continuously replenished to the raw material melt to keep the impurity concentration constant. Make it.

蒸気圧の高いV族元素は、るつぼの下から蒸気として融
液中へ与え、融点の低い■族元素は、るつぼの上方から
、融液の中へ滴下する。
Group V elements, which have a high vapor pressure, are fed into the melt as vapor from below the crucible, and Group I elements, which have a low melting point, are dropped into the melt from above the crucible.

融液の中には隔壁を浮かべ、■族液滴の落下が、単結晶
と融液の界面(固液界面)を擾乱する事のないように工
夫しである。
A partition wall is floated in the melt to prevent the falling of the group (III) droplets from disturbing the interface between the single crystal and the melt (solid-liquid interface).

このようにして、■族、V族元素を原料融液の中へ一定
速度で補給する。これらの原料の補給量をdQとすると
、単結晶をdSだけ引上げた時の補給量は、 dQ=(1−k)dS    (2) であれば良い。
In this way, group (I) and group V elements are replenished into the raw material melt at a constant rate. If the amount of supply of these raw materials is dQ, the amount of replenishment when the single crystal is pulled up by dS may be as follows: dQ=(1-k)dS (2).

以下図面によって説明する。This will be explained below with reference to the drawings.

第1図は本発明の化合物半導体単結晶の製造装置の全体
断面図である。第2図はるつぼの近傍のみの拡大断面図
である。
FIG. 1 is an overall cross-sectional view of the compound semiconductor single crystal manufacturing apparatus of the present invention. FIG. 2 is an enlarged sectional view of only the vicinity of the crucible.

高圧容器1は、密封可能な容器で、N2ガス又は不活性
ガスによって、数十atmの圧力を加える事ができるよ
うになっている。のぞき窓などは図示しない。
The high-pressure container 1 is a sealable container, and is capable of applying a pressure of several tens of atm using N2 gas or inert gas. Peepholes etc. are not shown.

上軸2と、下軸3が回転昇降自在に設けられている。An upper shaft 2 and a lower shaft 3 are provided so as to be rotatable and movable.

上軸2の下端には種結晶9を取付ける。A seed crystal 9 is attached to the lower end of the upper shaft 2.

下軸3の上端には、通常の場合、サセプタ5、るつぼ6
を取付けるのであるが、本発明に於ては、サセプタ5と
下軸3の間に、新たにV族原料22を収納するだめの下
収納庫18を介在させる。
In normal cases, a susceptor 5 and a crucible 6 are provided at the upper end of the lower shaft 3.
However, in the present invention, a lower storage chamber 18 for storing the group V raw material 22 is newly interposed between the susceptor 5 and the lower shaft 3.

下収納庫18は、側方、下底は盲壁になっているが、上
面は、サセプタ5、るつぼ6を貫いて細孔21が穿孔さ
れている。細孔21はるつぼ下底の中心に設けても良い
が、るつぼ下底の周辺に設けた方が融液の擾乱が少なく
なる。
The lower storage 18 has blind walls on the sides and the lower bottom, but a pore 21 is bored through the susceptor 5 and the crucible 6 on the upper surface. The pore 21 may be provided at the center of the bottom of the crucible, but if it is provided around the bottom of the crucible, the disturbance of the melt will be reduced.

るつぼ6の中には原料融液7が収容されている。A raw material melt 7 is contained in the crucible 6 .

これはGaAs 、 GaSb、InPなどの■−v族
化合物の融液で、不純物を含んでいる。
This is a melt of group III-V compounds such as GaAs, GaSb, and InP, and contains impurities.

サセプタ5の周囲には、融液加熱用ヒータ4が設けられ
る。さらに、この外側には断熱筒があるが、図示を略す
A heater 4 for heating the melt is provided around the susceptor 5 . Furthermore, there is a heat insulating cylinder on the outside, but its illustration is omitted.

原料融液7の上には、液体の封止剤10があり、これに
は、N2ガス又は不活性ガス17による高圧がかかつて
いる。原料融液7からV族元素が揮散するのを防ぐため
である。
There is a liquid sealant 10 on top of the raw material melt 7, and a high pressure is applied to this by N2 gas or an inert gas 17. This is to prevent group V elements from volatilizing from the raw material melt 7.

種結晶9を原料融液7に漬け、回転しながら引上げると
、単結晶8が成長してゆく。
When the seed crystal 9 is immersed in the raw material melt 7 and pulled up while rotating, a single crystal 8 grows.

原料融液7と封止剤10の中には円筒状の隔壁11が浮
いており、封止剤10を内外に分けている。原料融液7
も内外に分けられているが、下方では連通している。従
って、内外での融液7のレベルはほぼ等しい。封止剤1
0の高さもほぼ等しい。
A cylindrical partition wall 11 is floating in the raw material melt 7 and the sealant 10, and separates the sealant 10 into inside and outside. Raw material melt 7
It is also divided into inside and outside, but it is connected at the bottom. Therefore, the levels of the melt 7 inside and outside are approximately equal. Sealant 1
The heights of 0 are also almost the same.

高圧容器1の内部上方には、■族融液(GζInなど)
を収容した上収納庫13がある。これらは、低融点金属
であるから、融液加熱用ヒータ4の熱をどを受けて、融
液状態になっている。
In the upper part of the high-pressure vessel 1, group II melt (GζIn, etc.)
There is an upper storage 13 that accommodates. Since these metals are low melting point metals, they receive heat from the melt heating heater 4 and turn into a melt state.

上収納庫13は、下底に、パイプ12の端に続く開口と
、これを開閉するシャッタ14を持っている。パイプ1
2の下端16は、るつぼ6の内側で、隔壁11の外側の
空間に開口しており、■族融液15は、シャッタ14を
通り、パイプ12の中を流れて、下端16から■族液滴
25となって原料融液7の中へ補給される。
The upper storage 13 has at its lower bottom an opening that continues to the end of the pipe 12 and a shutter 14 that opens and closes the opening. pipe 1
The lower end 16 of 2 is open to the space outside the partition wall 11 inside the crucible 6, and the group Ⅰ melt 15 passes through the shutter 14, flows through the pipe 12, and flows out from the lower end 16 into the group Ⅰ liquid. It is replenished into the raw material melt 7 in the form of drops 25.

一方、V族原料22は、固体の状態で下収納庫18に収
容されている。これを加熱するための特別なヒータ19
が、下収納庫18のまわりに設けられている。
On the other hand, the V group raw material 22 is stored in the lower storage 18 in a solid state. A special heater 19 to heat this
are provided around the lower storage 18.

下収納庫18はサセプタ5より直径の小さいものを示し
ている。しかし、下収納庫18をより大きくして、細孔
21をるつぼ6の下底の周縁に穿つようにする事もでき
る。こうするとV原ガスが原料融液7を乱す事が少い。
The lower storage 18 is shown having a smaller diameter than the susceptor 5. However, it is also possible to make the lower storage chamber 18 larger so that the pores 21 are bored at the periphery of the bottom of the crucible 6. In this way, the V raw gas is less likely to disturb the raw material melt 7.

(3)  作   用 単結晶引上げとともに、引上げ重量の(1−k)倍に等
しい原料融液を補給する。引上げ重量S、又はその時間
微分dS / dtは、上軸2に設けたストレーンゲー
ジなどで測定できる。
(3) Function As the single crystal is pulled, a raw material melt equal to (1-k) times the pulling weight is replenished. The pulled weight S or its time differential dS/dt can be measured with a strain gauge or the like provided on the upper shaft 2.

V族元素22は、ヒータ19によって加熱されて、一定
温度に保持される。これに対応する蒸気圧で、■原ガス
は細孔21から、原料融液7の中へ入る。細孔21は、
■原ガスは通すが、融液は落下しないような、細い直径
の孔である。
Group V element 22 is heated by heater 19 and maintained at a constant temperature. At a vapor pressure corresponding to this, (1) the raw gas enters the raw material melt 7 through the pores 21; The pore 21 is
■Thin diameter holes that allow raw gas to pass through but prevent melt from falling.

V族元素ガスの、原料融液中への流入量は、融液内へ補
給される■族元素の量によって決まる。
The amount of group V element gas flowing into the raw material melt is determined by the amount of group (II) element supplied into the melt.

上収納庫13から■族融液15がるつぼ内へ滴下される
。これは■原ガスと直ちに反応する。V原ガスは一定の
蒸気圧を持っている。ようにヒーター9によって加熱さ
れるから、■原ガスは不足しない。
The Group 1 melt 15 is dripped into the crucible from the upper storage 13. This reacts immediately with the raw gas. V raw gas has a constant vapor pressure. Since the raw gas is heated by the heater 9, there is no shortage of raw gas.

■族融液15が不足する場合、■原ガスは化合できない
ので、そのまま上昇し、封止剤10を通って、るつぼの
外へ逃げてしまう。
When the Group (1) melt 15 is insufficient, the (1) raw gas cannot be combined, so it rises as it is, passes through the sealant 10, and escapes to the outside of the crucible.

■族融液は未反応でるつぼの中に存在する、という事が
ない。このため、■族融液の供給量dU/dtによって
、■−■化合物原料の補給量dQ / dtを正確に制
御できる。
There is no possibility that the Group molten liquid exists in the crucible unreacted. Therefore, the supply amount dQ/dt of the ■-■ compound raw material can be accurately controlled by the supply amount dU/dt of the group ■ melt.

■族元素の原子量をA、■族元素の原子量をBとする。Let A be the atomic weight of the group Ⅰ element, and B be the atomic weight of the group Ⅰ element.

dUとdQの間には という関係式が常に成立する。Between dU and dQ The following relational expression always holds true.

又原料補給dQと、結晶引上量dsの間には(2)式の
関係がある。そこで、■族融液の供給量dU/dtは、 dU(1−k)AdS となる。
Further, there is a relationship expressed by equation (2) between the raw material supply dQ and the crystal pulling amount ds. Therefore, the supply amount dU/dt of the group II melt is dU(1-k)AdS.

■族融液15の供給量dU/dtは、シャッタ14の開
閉比を変える事によって制御できる。又、シャッタ14
は、より正確な流量制御弁で置換えしても良い。
The supply amount dU/dt of the group (1) melt 15 can be controlled by changing the opening/closing ratio of the shutter 14. Also, shutter 14
may be replaced with a more accurate flow control valve.

dS/dtは、上軸に取付けた測定器によって検出でき
るから、dU/dtを計算し、これに合うよう、シャッ
クの流量を調整する。
Since dS/dt can be detected by a measuring device attached to the upper shaft, dU/dt is calculated and the flow rate of the shack is adjusted to match it.

(力)  実  施  例 第1図に示す装置によって、SiドープGaAs単結晶
を引上げだ。
(Force) Example A Si-doped GaAs single crystal was pulled using the apparatus shown in FIG.

るつぼ   PBN製  6インチ径 隔壁      カーボンにBNのコーティング上部に
適当な材質のおもりをのせて、 GaAs融液中に浮くようにしである。
Crucible PBN 6-inch diameter partition A weight made of a suitable material is placed on top of the BN coating on carbon so that it floats in the GaAs melt.

第3図に示すようにるつぼに対し傾か ないようにリプ20を付けである。Tilt the crucible as shown in Figure 3. I have added a reply 20 so that there is no problem.

チャージ量は、るつぼの中に、 7 ントー7’ GaAs多結晶 4000 gSi 
(不純物) 0.1428 g 下収納庫の中に As   1200 g 上収納庫の中に Ga   1000 g とした。
The charge amount is 7 tons 7' GaAs polycrystalline 4000 gSi in the crucible.
(Impurities) 0.1428 g As in the lower storage 1200 g Ga in the upper storage 1000 g.

融液中のSiミノ期濃度は  85.7 ppm(wt
)である。これは結晶中の濃度を5 wtppmにする
ための濃度である。
The Si mino stage concentration in the melt was 85.7 ppm (wt
). This is the concentration to make the concentration in the crystal 5 wtppm.

引上条件は、 引  上  速  度     8nr / H上軸回
転数   6 rpm 下軸回転数   t2 rpm  。
The pulling conditions are: pulling speed: 8nr/H, upper shaft rotation speed: 6 rpm, lower shaft rotation speed: t2 rpm.

不純物濃度は(結晶中ン  5 wtppm単結晶の直
径    2インチ Ga榊液の滴下ffi: −0,56g/m1nAs温
度      617℃ 約24時間かかつて単結晶を引上げ、2 kgの単結晶
を得た。
The impurity concentration was (5 wtppm in the crystal).Diameter of single crystal: 2 inches.Dropped Ga Sakaki solution ffi: -0.56 g/m1nAsTemperature: 617°C.The single crystal was pulled for about 24 hours, and 2 kg of single crystal was obtained.

このGaAs単結晶のSiの濃度を、長手方向に測定し
た。第4図は、Si濃度の測定値の長手方向の分布を示
す。、横軸は結晶のフロント部からの長さを、フロント
部からの重量によって表現している。
The Si concentration of this GaAs single crystal was measured in the longitudinal direction. FIG. 4 shows the distribution of Si concentration measurements in the longitudinal direction. , the horizontal axis represents the length from the front part of the crystal in terms of the weight from the front part.

本発明によれば、単結晶の全長にわたって不純物濃度は
5 wtppmである。従来のり、EC法の場合、2k
gの結晶を上げた時、バックで9 wtppm近くにな
る。4 kgの原料から2 kgの単結晶を引上げたと
しても、このように、不純物濃度が上ってしまう。
According to the invention, the impurity concentration is 5 wtppm over the entire length of the single crystal. In the case of conventional glue and EC method, 2k
When the g crystal is raised, it becomes close to 9 wtppm in the back. Even if 2 kg of single crystal is pulled from 4 kg of raw material, the impurity concentration will increase in this way.

(1)  効   果 化合物半導体単結晶をLEC装置によって、引上げる場
合、偏析係数が1より小さい不純物をドープしても、不
純物濃度を結晶全体にわたって均一に保つ事ができる。
(1) Effect When pulling a compound semiconductor single crystal using an LEC device, even if doped with an impurity whose segregation coefficient is less than 1, the impurity concentration can be kept uniform throughout the crystal.

■族元素とV族元素とを別々に補給し、■族元素の補給
量によって、単結晶引上げ速度に対応する原料の補給量
を制御している。多結晶化合物を補給するのではなく、
■族元素が不足するという事はない。常にストイキオメ
トリツクな化合物融液の補給がなされる。
Group (2) elements and group V elements are supplied separately, and the amount of raw material supplied corresponding to the single crystal pulling rate is controlled by the amount of group (2) elements supplied. Rather than replenishing polycrystalline compounds,
■There is no shortage of group elements. A constant supply of stoichiometric compound melt is provided.

偏析係数が1より小さい不純物は、単結晶の尾部で析出
したり、双晶を発生させたりするが、本発明によればそ
のような難点を克服する事ができる。
Impurities with a segregation coefficient of less than 1 precipitate at the tail of a single crystal or cause twin crystals, but the present invention can overcome such difficulties.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の化合物半導体単結晶の製造装置の縦断
面図。 第2図は第1図の装置のるつぼ近傍の拡大縦断面図。 第3図は隔壁の一例を示す斜視図。 第4図は単結晶を従来法と本発明の方法で引上げた場合
に於て、単結晶の長手方向にSi濃度がどのように変化
するかを測定した結果を示すグラフ。 1  ・・・・・・・・・  高  圧  容  器2
  ・・・・・・・・・  上   軸3  ・・・・
・・・・・  下   軸4 ・・・・・・・・・ 融
液加熱用ヒータ5  ・・・・・・・・・  サ  セ
  プ  タロ  ・・・・・・・・・  る  つ 
 ぼ7 ・・・・・・・・・ 原料融液 8  ・・・・・・・・・  単  結  晶9  ・
・・・・・・・・  種  結  晶10 ・・・・・
・・・・  封  止  剤11 ・・・・・・・・・
  隔   壁12 ・・・・・・・・・  パ  イ
  プ13・・・・・・・・・ 上収納庫 14・・・・・・・・・ シャッタ 15・・・・・・・・・ ■族融液 16 ・・・・・・・・・ パイプ下端11 ・・・・
・・・・・ 不活性ガス18・・・・・・・・・ 下収
納庫 19  ・・・ ・・・ ・・・   ヒ   −  
 タ20・・・・・・・・・リブ 21・・・・・・・・・細 孔 22・・・・・・・・・ V族原料 25・・・・・・・・・ V族液滴 発  明  者     河  崎  亮  久第3図 @ 4 図 U1上結晶!f−(iif
FIG. 1 is a longitudinal cross-sectional view of the compound semiconductor single crystal manufacturing apparatus of the present invention. FIG. 2 is an enlarged longitudinal cross-sectional view of the vicinity of the crucible of the apparatus shown in FIG. FIG. 3 is a perspective view showing an example of a partition wall. FIG. 4 is a graph showing the results of measuring how the Si concentration changes in the longitudinal direction of the single crystal when the single crystal is pulled by the conventional method and the method of the present invention. 1 ・・・・・・・・・ High pressure container 2
・・・・・・・・・ Upper axis 3 ・・・・・・
...... Lower shaft 4 ...... Heater 5 for heating melt liquid ......
Bo7 ・・・・・・・・・ Raw material melt 8 ・・・・・・・・・ Single crystal 9 ・
・・・・・・・・・ Seed crystal 10 ・・・・・・
・・・ Sealant 11 ・・・・・・・・・
Partition wall 12... Pipe 13... Upper storage 14... Shutter 15... ■ Group melt 16 ...... Lower end of pipe 11 ...
... Inert gas 18 ... ... Lower storage 19 ... ... ... H -
Ta 20... Rib 21... Pore 22... Group V raw material 25... Group V liquid Drop Inventor Ryo Hisashi Kawasaki Figure 3 @ 4 Figure U1 upper crystal! f-(iif

Claims (2)

【特許請求の範囲】[Claims] (1)るつぼ6の中に収容され融液加熱ヒータ4によつ
て加熱された化合物半導体の原料化合物と不純物とを含
む原料融液7を封止剤10で覆い、高圧容器1内に不活
性気体17を充填する事によつて封止剤10に高圧をか
け、上方から種結晶9を原料融液7に漬してこれを引上
げる事によつて原料融液7から単結晶8を製造する化合
物半導体単結晶の製造方法に於て、るつぼ6の下底に細
孔21を穿ち、V族元素ガスを細孔21からるつぼ6内
へ導入し、るつぼ6内に筒形の隔壁11を浮かべ、るつ
ぼ6の上方からIII族融液15をるつぼ6内でかつ隔壁
11の外側に導入して原料化合物を合成し原料融液7の
中で不純物濃度が一定になるようにIII族融液の補給量
を調整しながら単結晶引上げを行う事を特徴とする化合
物半導体単結晶の製造方法。
(1) The raw material melt 7 containing the compound semiconductor raw material compounds and impurities contained in the crucible 6 and heated by the melt heating heater 4 is covered with a sealant 10 and placed in an inert container 1. A single crystal 8 is produced from the raw material melt 7 by applying high pressure to the sealant 10 by filling it with gas 17, and by immersing the seed crystal 9 in the raw material melt 7 from above and pulling it up. In the method for manufacturing a compound semiconductor single crystal, a pore 21 is bored at the bottom of the crucible 6, a group V element gas is introduced into the crucible 6 through the pore 21, and a cylindrical partition wall 11 is formed in the crucible 6. The Group III melt 15 is introduced into the crucible 6 and outside the partition wall 11 from above the crucible 6 to synthesize the raw material compound, and the Group III melt is poured so that the impurity concentration in the raw material melt 7 is constant. A method for manufacturing a compound semiconductor single crystal, characterized by pulling the single crystal while adjusting the amount of replenishment.
(2)高圧容器1と、高圧容器1を貫いて昇降回転自在
に設けられ種結晶9を下端に取付けるべき上軸2と、高
圧容器1を貫いて昇降回転自在に設けられる下軸3と、
V族元素を収容するために下軸3の上に設けられる下収
納庫18と、下収納庫18の上に固定され下収納庫18
に連通しV族ガスのみを通す細孔21を下底に有するサ
セプタ5、るつぼ6と、サセプタ5の周囲に設けられる
融液加熱用ヒータ4と、るつぼの融液の中に浮き単結晶
を囲むように設けられる隔壁11と、るつぼ6の上方に
設けられIII族元素の融液15を収容する上収納庫13
と、上収納庫13のIII族融液15をるつぼ6の内部で
隔壁11の下側へ導くパイプ12と、パイプ12の中の
融液の流量を調節する流量調整機構とより構成される事
を特徴とする化合物半導体単結晶の製造装置。
(2) a high-pressure vessel 1; an upper shaft 2 which is provided so as to be rotatable up and down through the high-pressure vessel 1 and to which the seed crystal 9 is attached at its lower end; and a lower shaft 3 which is provided so as to be rotatable up and down through the high-pressure vessel 1;
A lower storage 18 provided on the lower shaft 3 to accommodate group V elements, and a lower storage 18 fixed on the lower storage 18.
A susceptor 5 having a pore 21 at the bottom that communicates with the group V gas and passes only group V gas, a crucible 6, a heater 4 for heating the melt provided around the susceptor 5, and a floating single crystal in the melt of the crucible. A partition wall 11 provided to surround the crucible 6 and an upper storage 13 provided above the crucible 6 and containing the melt 15 of the group III element.
, a pipe 12 that guides the group III melt 15 in the upper storage 13 to the lower side of the partition wall 11 inside the crucible 6, and a flow rate adjustment mechanism that adjusts the flow rate of the melt in the pipe 12. A compound semiconductor single crystal manufacturing device characterized by:
JP59281273A 1984-12-29 1984-12-29 Method for producing compound semiconductor single crystal and apparatus therefor Pending JPS61158896A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59281273A JPS61158896A (en) 1984-12-29 1984-12-29 Method for producing compound semiconductor single crystal and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59281273A JPS61158896A (en) 1984-12-29 1984-12-29 Method for producing compound semiconductor single crystal and apparatus therefor

Publications (1)

Publication Number Publication Date
JPS61158896A true JPS61158896A (en) 1986-07-18

Family

ID=17636771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59281273A Pending JPS61158896A (en) 1984-12-29 1984-12-29 Method for producing compound semiconductor single crystal and apparatus therefor

Country Status (1)

Country Link
JP (1) JPS61158896A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02180791A (en) * 1989-01-05 1990-07-13 Kawasaki Steel Corp Single crystal pulling up device
EP0494312A1 (en) * 1990-07-26 1992-07-15 Sumitomo Electric Industries, Ltd. Method and apparatus for making single crystal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02180791A (en) * 1989-01-05 1990-07-13 Kawasaki Steel Corp Single crystal pulling up device
EP0494312A1 (en) * 1990-07-26 1992-07-15 Sumitomo Electric Industries, Ltd. Method and apparatus for making single crystal
EP0494312A4 (en) * 1990-07-26 1993-01-20 Sumitomo Electric Industries, Ltd. Method and apparatus for making single crystal

Similar Documents

Publication Publication Date Title
US4894206A (en) Crystal pulling apparatus
US4973454A (en) LEC method and apparatus for growing a single crystal of compound semiconductors
WO1992001826A1 (en) Method and apparatus for making single crystal
US5728212A (en) Method of preparing compound semiconductor crystal
US5078830A (en) Method for growing single crystal
US3305485A (en) Method and device for the manufacture of a bar by segregation from a melt
JPS61158896A (en) Method for producing compound semiconductor single crystal and apparatus therefor
US5021118A (en) Method of drawing-up a single crystal using a double-crucible apparatus and double-crucible apparatus and double-crucible apparatus therefor
CA1272106A (en) Double crucible for single crystal growth
JP2830411B2 (en) Method and apparatus for growing compound semiconductor single crystal
JPS61163187A (en) Process and device for preparing compound semiconductor single crystal
JPH03237088A (en) Method for growing single crystal
JP2010030868A (en) Production method of semiconductor single crystal
JP7359241B2 (en) Manufacturing method of silicon single crystal
JPS6058196B2 (en) Compound semiconductor single crystal pulling method and device
JPH07165488A (en) Apparatus for producing single crystal and method therefor
JPS61158897A (en) Method for pulling up compound semiconductor single crystal and apparatus therefor
JP2576239B2 (en) Compound semiconductor crystal growth equipment
JP2010030847A (en) Production method of semiconductor single crystal
JP4691909B2 (en) Manufacturing method of semiconductor crystal
JP2531875B2 (en) Method for producing compound semiconductor single crystal
JPH03193689A (en) Production of compound semiconductor crystal
JPH06345581A (en) Production of multielement compound mixed single crystal
JPH06128084A (en) Production of single crystal
JPH05310494A (en) Growth of single crystal