JPH09208360A - Growth of single crystal - Google Patents

Growth of single crystal

Info

Publication number
JPH09208360A
JPH09208360A JP1464196A JP1464196A JPH09208360A JP H09208360 A JPH09208360 A JP H09208360A JP 1464196 A JP1464196 A JP 1464196A JP 1464196 A JP1464196 A JP 1464196A JP H09208360 A JPH09208360 A JP H09208360A
Authority
JP
Japan
Prior art keywords
single crystal
layer
molten
crucible
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1464196A
Other languages
Japanese (ja)
Inventor
Hideki Fujiwara
秀樹 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Sitix Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Sitix Corp filed Critical Sumitomo Sitix Corp
Priority to JP1464196A priority Critical patent/JPH09208360A/en
Publication of JPH09208360A publication Critical patent/JPH09208360A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a single crystal having uniform resistivity in the length up to the top end of the pulled-up crystal according to the DLCZ process. SOLUTION: A large crucible 2 and a small crucible 3 are filled with polycrystalline silicon and dopant elements and the raw materials for the crystal is molten with the heater 4. As the solid layer 12 is molten in such a state that the molten layer 11 is allowed to coexist with the upper part of the solid layer, a seed crystal 14 is dipped at its bottom end in the molten layer 11 in the small crucible 3 and the lifting shaft 13 is pulled up to allow the single crystal 15 to grow. From the time when the solid layer 12 is judged to completely melt, the granular raw material 9 is fed at a constant rate to the molten layer 11 in the large crucible 2 and the single crystal 15 is continuously pulled up.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、例えば半導体材料
として用いられるシリコン単結晶のような単結晶を成長
させる方法に関する。
TECHNICAL FIELD The present invention relates to a method for growing a single crystal such as a silicon single crystal used as a semiconductor material.

【0002】[0002]

【従来の技術】一般にシリコン単結晶の製造方法として
チョクラルスキー法(CZ法)が広く用いられている。
CZ法は、有底円筒状の石英製の坩堝に結晶用原料の溶
融液を充填し、溶融液中に種結晶を浸してこれを引き上
げることにより種結晶の下端に溶融液を凝固させて単結
晶を成長させる方法である。坩堝の外側にはヒータが同
心円筒状に配設されて坩堝内の結晶用原料を溶融するよ
うになっている。
2. Description of the Related Art Generally, the Czochralski method (CZ method) is widely used as a method for producing a silicon single crystal.
In the CZ method, a quartz crucible having a bottomed cylindrical shape is filled with a melt of a crystal raw material, and a seed crystal is immersed in the melt and pulled up to solidify the melt at the lower end of the seed crystal to form a single crystal. This is a method of growing crystals. A heater is arranged in a concentric cylindrical shape outside the crucible so as to melt the raw material for crystallization in the crucible.

【0003】シリコン単結晶をこの方法で成長させる場
合、単結晶の電気抵抗率、電気伝導型を調整するため
に、通常、引上げ前に溶融液中に不純物元素を添加す
る。ところが添加した不純物は単結晶の結晶成長方向に
偏析し、その結果、結晶成長方向に均一な電気的特性を
有する単結晶が得られないという問題があった。この偏
析は、溶融液と単結晶との成長界面における単結晶中の
不純物濃度CS と溶融液中の不純物濃度CL との比CS
/CL 、即ち実効偏析係数Ke が1でないことに起因す
る。例えばKe <1の場合には単結晶が成長するに伴っ
て溶融液中の不純物濃度が高くなり、単結晶に偏析が生
じる。
When a silicon single crystal is grown by this method, an impurity element is usually added to the melt before pulling in order to adjust the electric resistivity and electric conductivity type of the single crystal. However, there is a problem that the added impurities segregate in the crystal growth direction of the single crystal, and as a result, a single crystal having uniform electric characteristics in the crystal growth direction cannot be obtained. The segregation ratio C S of the impurity concentration C L of the melt with impurity concentration C S in the single crystal in the growth interface between the melt and the single crystal
/ C L , that is, the effective segregation coefficient K e is not 1. For example, when K e <1, the impurity concentration in the melt increases as the single crystal grows, and segregation occurs in the single crystal.

【0004】このような偏析を抑制する方法として二層
式引上げ法(DLCZ法:Double Layered CZ )即ち溶
融層法が知られている(培風館発行‘バルク結晶成長’
P.115 )。溶融層法は、坩堝内の結晶用原料が下側に固
体層を上側に溶融層を共存するように溶融され、溶融層
中の不純物濃度を一定に保持した状態で種結晶を浸し、
これを引上げて単結晶を成長せしめる方法である。溶融
層法は、引上げに伴って固体層を溶融することにより溶
融層中の不純物の濃度の増加を防ぎ、単結晶の偏析を防
止する。
A double-layer pulling method (DLCZ method: Double Layered CZ), that is, a molten layer method is known as a method for suppressing such segregation (Baifukan'Bulk Crystal Growth ').
P.115). The melting layer method, the raw material for crystals in the crucible is melted so that the solid layer on the lower side coexists with the molten layer on the upper side, and the seed crystal is dipped in a state where the impurity concentration in the molten layer is kept constant,
This is a method of pulling this and growing a single crystal. The melt layer method melts the solid layer along with pulling to prevent an increase in the concentration of impurities in the melt layer and prevents the segregation of single crystals.

【0005】また、このような偏析を抑制する他の方法
として、連続チャージ法(CCZ法、Continuous Charg
ing CZ、丸善発行‘半導体シリコン結晶工学’p.73)が
知られている。この方法は分割式の二重坩堝を用いてC
Z法により実用化されており(培風館発行‘バルク結晶
長’p.94)、大坩堝に結晶用原料を充填して溶融した
後、小坩堝を大坩堝の中央に配設し、小坩堝の底面に設
けられた通流口から流入した溶融液の表面に種結晶を浸
して単結晶を引き上げる。そして小坩堝の外側にある溶
融液に結晶用原料を供給することにより、溶融液中の不
純物の濃度の増加を防ぎ、単結晶の偏析を防止する。
Further, as another method for suppressing such segregation, a continuous charge method (CCZ method, Continuous Charg method) is used.
ing CZ, published by Maruzen'Semiconductor Silicon Crystal Engineering 'p.73) is known. This method uses a split-type double crucible for C
It has been put to practical use by the Z method (Baifukan issue, 'Bulk crystal length' p.94). After filling the large crucible with the raw material for crystal and melting, the small crucible is placed in the center of the large crucible and The single crystal is pulled up by immersing the seed crystal in the surface of the melt that has flowed in from the flow opening provided on the bottom surface. Then, by supplying the raw material for crystallization to the melt located outside the small crucible, the concentration of impurities in the melt is prevented from increasing and the segregation of the single crystal is prevented.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、前述し
たDLCZ法にあっては、固体層が存在する間は単結晶
の抵抗率は成長方向に均一であるが、固体層の溶融が終
了した後はCZ法と同様であり、単結晶が成長するに伴
って溶融液中の不純物濃度が高くなり、単結晶に偏析が
生じて、引上げ末端の単結晶の抵抗率が引上げ初期の抵
抗率と異なるという問題があった。また、CCZ法にあ
っては、単結晶の引上げ初期に有転位化が生じた場合
に、単結晶を再溶解すると溶融液の不純物濃度が初期値
と異なってしまうという問題があった。
However, in the DLCZ method described above, the resistivity of the single crystal is uniform in the growth direction while the solid layer is present, but after the melting of the solid layer is completed. Similar to the CZ method, the impurity concentration in the melt increases as the single crystal grows, segregation occurs in the single crystal, and the resistivity of the single crystal at the pulling terminal is different from the resistivity at the initial stage of pulling. There was a problem. Further, the CCZ method has a problem that when dislocations occur in the initial stage of pulling a single crystal and the single crystal is redissolved, the impurity concentration of the melt differs from the initial value.

【0007】一方、DLCZ法を用いて引上げた単結晶
には、溶融層と直接接触している石英製の坩堝から溶け
出した酸素が供給される。坩堝から溶け出した酸素の一
部が溶融液の対流により結晶成長界面まで運搬されて単
結晶に取り込まれる。DLCZ法では、固体層の影響に
より溶融層の下部温度がCZ法の溶融液と比較して低温
であり、溶融層の熱対流が抑制される。これによりDL
CZ法ではCZ法と比較して低酸素濃度(6×1017〜12
×1017atoms/cm3 )の単結晶を得ることができる。
On the other hand, the single crystal pulled by the DLCZ method is supplied with oxygen dissolved from the quartz crucible which is in direct contact with the molten layer. Part of the oxygen dissolved from the crucible is carried to the crystal growth interface by the convection of the melt, and taken into the single crystal. In the DLCZ method, the lower temperature of the molten layer is lower than that of the molten liquid of the CZ method due to the influence of the solid layer, and thermal convection in the molten layer is suppressed. This makes DL
Compared with the CZ method, the CZ method has a lower oxygen concentration (6 × 10 17 to 12
A single crystal of × 10 17 atoms / cm 3 ) can be obtained.

【0008】しかしながら、DLCZ法において固体層
の溶融が終了した後は熱対流抑制効果が得られず、成長
した単結晶はCZ法と同様の中酸素濃度(14×1017〜18
×10 17atoms/cm3 )を有する。このため、単結晶の酸素
濃度は成長方向に不均一となり、低酸素濃度の単結晶の
歩留りが低いという問題があった。
However, in the DLCZ method, the solid layer
After the melting of the
The obtained single crystal has the same medium oxygen concentration (14 × 1017~ 18
× 10 17atoms / cmThree). Therefore, single crystal oxygen
The concentration becomes non-uniform in the growth direction, and
There was a problem of low yield.

【0009】低酸素濃度の単結晶を得る他の方法とし
て、磁場印加CZ法(MCZ法、Magnetic-field-appli
ed CZ 、丸善発行‘半導体シリコン結晶工学’p.68)が
知られており、溶融液に磁場を印加する方法として特開
昭56-104791 号公報及び特開昭56-45589号公報等に提案
されている。この方法により、磁力線に直交する方向の
溶融液対流が抑制され、熱対流抑制効果が得られる。し
かしながら、この方法は坩堝内に充填された結晶用原料
を全て溶融した溶融液、即ちCZ法の溶融液に磁場を印
加するために、上述したような不純物の偏析に伴う抵抗
率の成長方向不均一性が生じるという問題があった。
As another method for obtaining a low oxygen concentration single crystal, a magnetic field applied CZ method (MCZ method, Magnetic-field-appli method) is used.
ed CZ, published by Maruzen, 'Semiconductor Silicon Crystal Engineering', p.68), is proposed as a method of applying a magnetic field to a molten liquid in Japanese Patent Laid-Open Nos. 56-104791 and 56-45589. Has been done. By this method, the melt convection in the direction orthogonal to the lines of magnetic force is suppressed, and the effect of suppressing thermal convection is obtained. However, in this method, since a magnetic field is applied to a melt obtained by melting all of the raw materials for crystallization filled in the crucible, that is, a melt of the CZ method, the growth direction of the resistivity due to the segregation of impurities as described above is unbalanced. There is a problem that uniformity occurs.

【0010】また本願出願人は、DLCZ法にて、単結
晶引上げ初期から溶融層に磁場を印加することにより、
単結晶の径方向の酸素濃度の均一化を図り得る方法を提
案している(特開平7−267776号公報)が、これには単
結晶の引上げ末端までの成長方向酸素濃度については言
及していない。
In addition, the applicant of the present application applies a magnetic field to the molten layer from the initial stage of pulling a single crystal by the DLCZ method,
A method has been proposed for achieving uniform oxygen concentration in the radial direction of a single crystal (Japanese Patent Laid-Open No. 7-267776), but it mentions the oxygen concentration in the growing direction up to the pulling end of the single crystal. Absent.

【0011】本発明は、かかる事情に鑑みてなされたも
のであり、DLCZ法において、単結晶を引上げる途中
から溶融層に結晶用原料を供給することにより、引上げ
末端まで、溶融層から取り込まれる不純物元素量が制御
された単結晶を成長させる方法を提供することを目的と
する。
The present invention has been made in view of the above circumstances, and in the DLCZ method, the raw material for crystallization is supplied to the molten layer from the middle of pulling the single crystal so that it is taken up from the molten layer to the pulling end. An object is to provide a method for growing a single crystal in which the amount of impurity elements is controlled.

【0012】また本発明は、DLCZ法において、単結
晶を引上げる途中から、溶融層に結晶用原料を供給し、
溶融層に磁場を印加することにより、引上げ末端まで、
溶融層から取り込まれる不純物元素量及び酸素量が制御
された単結晶を成長させる方法を提供することを目的と
する。
Further, in the present invention, in the DLCZ method, the crystal raw material is supplied to the molten layer during the pulling of the single crystal,
By applying a magnetic field to the molten layer, up to the pulling end,
It is an object of the present invention to provide a method for growing a single crystal in which the amount of impurity elements and the amount of oxygen taken in from a molten layer are controlled.

【0013】[0013]

【課題を解決するための手段】第1発明に係る単結晶の
成長方法は、坩堝内に、不純物元素を含む結晶用原料を
充填して溶融し、溶融液を凝固させた固体層とその上の
溶融層とを共存させ、前記坩堝周囲に設置されたヒータ
の加熱により前記固体層を溶融しつつ、前記溶融層から
結晶を引き上げて前記溶融層中の不純物元素を取り込み
ながら成長させる単結晶の成長方法において、前記溶融
層から前記単結晶に取り込まれる不純物元素量を制御す
べく、前記単結晶の引上げ途中から、前記溶融層に前記
結晶用原料を供給することを特徴とする。
A method for growing a single crystal according to a first aspect of the present invention is a solid layer in which a raw material for crystal containing an impurity element is filled and melted in a crucible and the melt is solidified, and a solid layer above the solid layer. Coexisting with the molten layer, while melting the solid layer by heating the heater installed around the crucible, while pulling the crystal from the molten layer to grow while incorporating the impurity element in the molten layer In the growth method, the raw material for crystallization is supplied to the molten layer during the pulling of the single crystal in order to control the amount of the impurity element taken into the single crystal from the molten layer.

【0014】第2発明に係る単結晶の成長方法は、第1
発明において、前記固体層の溶融終了後に、前記溶融層
に前記結晶用原料を供給することを特徴とする。
The method for growing a single crystal according to the second aspect of the present invention is the first aspect.
In the invention, after the melting of the solid layer, the crystallization raw material is supplied to the molten layer.

【0015】DLCZ法において、単結晶の引上げ途
中、例えば下層の固体層が実質的に全量溶融して溶融液
中の不純物の濃度が増加されるときに、溶融層に結晶用
原料を供給する。これにより、溶融層の不純物濃度の増
加を防ぎ、単結晶の偏析を防止して成長方向の抵抗率が
単結晶の引上げ末端まで均一化される。
In the DLCZ method, while pulling a single crystal, for example, when substantially all of the lower solid layer is melted and the concentration of impurities in the melt is increased, a crystal raw material is supplied to the melt layer. This prevents an increase in the impurity concentration of the molten layer, prevents segregation of the single crystal, and makes the resistivity in the growth direction uniform up to the pulling end of the single crystal.

【0016】第3発明に係る単結晶の成長方法は、坩堝
内に、不純物元素を含む結晶用原料を充填して溶融し、
溶融液を凝固させた固体層とその上の溶融層とを共存さ
せ、前記坩堝周囲に設置されたヒータの加熱により前記
固体層を溶融し、前記溶融層に磁場を印加しつつ、前記
溶融層から結晶を引き上げて前記溶融層中の酸素を取り
込みながら成長させる単結晶の成長方法であって、前記
溶融層から前記単結晶に取り込まれる不純物元素量及び
酸素量を制御すべく、前記単結晶の引上げ途中から、前
記溶融層に前記結晶用原料を供給し、前記溶融層に磁場
を印加することを特徴とする。
In the method for growing a single crystal according to the third aspect of the invention, a crucible is filled with a crystal raw material containing an impurity element and melted.
A solid layer obtained by solidifying a melt and a molten layer thereabove coexist, and the solid layer is melted by heating a heater installed around the crucible, and the molten layer is applied while applying a magnetic field to the molten layer. A method for growing a single crystal in which a crystal is pulled up from the melted layer to grow while taking in oxygen in the melted layer, in order to control the amount of impurity elements and the amount of oxygen incorporated in the single crystal from the melted layer, The crystal raw material is supplied to the molten layer and a magnetic field is applied to the molten layer during the pulling process.

【0017】第4発明に係る単結晶の成長方法は、第3
発明において、前記固体層の溶融終了後に、前記溶融層
に前記結晶用原料を供給し、前記溶融層に磁場を印加す
ることを特徴とする。
The method for growing a single crystal according to the fourth aspect of the present invention is the third aspect.
In the invention, after the melting of the solid layer is completed, the raw material for crystallization is supplied to the molten layer, and a magnetic field is applied to the molten layer.

【0018】DLCZ法において、単結晶の引上げ途
中、例えば、下層の固体層が実質的に全量溶融して溶融
液中の不純物の濃度が増加したり、熱対流抑制効果が消
失するときに、溶融層に結晶用原料を供給し、磁場を印
加して、溶融層の不純物濃度の増加を防ぎ、磁力線によ
る熱対流抑制効果を得る。これにより、固体層の溶融が
終了した後の単結晶の偏析が防止され、単結晶に取り込
まれる酸素量の増加が防止されて成長方向の抵抗率及び
酸素濃度が単結晶の引上げ末端まで均一化される。
In the DLCZ method, during the pulling of a single crystal, for example, when the entire solid layer of the lower layer is melted to increase the concentration of impurities in the melt or when the effect of suppressing thermal convection disappears, the melting occurs. A crystal raw material is supplied to the layer and a magnetic field is applied to prevent an increase in the impurity concentration of the molten layer, thereby obtaining an effect of suppressing thermal convection by lines of magnetic force. This prevents the segregation of the single crystal after the solid layer is melted, prevents the increase in the amount of oxygen taken into the single crystal, and makes the resistivity in the growth direction and the oxygen concentration uniform up to the pulling end of the single crystal. To be done.

【0019】[0019]

【発明の実施の形態】以下、本発明を第1の実施の形態
を示す図面に基づき具体的に説明する。図1は、本発明
方法の実施に用いる単結晶成長装置の構造を示す模式的
断面図である。図中1はチャンバである。チャンバ1は
略円筒形状の真空容器であり、チャンバ1の略中央位置
には大坩堝2が配設されている。大坩堝2は有底円筒形
状の石英製の内層保持容器2aと該内層保持容器2aの外側
に嵌合された有底円筒形状の黒鉛製の外層保持容器2bと
から構成されている。内層保持容器2aの内側底面略中央
には無底円筒形状の石英製の小坩堝3が配設されてい
る。小坩堝3の周面下部には円形状の通流口3aが開口さ
れており、小坩堝3の周面には石英製のパイプ3bが一重
に巻回され、その一端は通流口3aに連結され、他端は内
層保持容器2a底面にて開放されている。パイプ3bによ
り、大坩堝2及び小坩堝3の内容物が相互に通流可能に
なっている。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be specifically described below with reference to the drawings showing a first embodiment. FIG. 1 is a schematic cross-sectional view showing the structure of a single crystal growth apparatus used for carrying out the method of the present invention. In the figure, 1 is a chamber. The chamber 1 is a vacuum container having a substantially cylindrical shape, and a large crucible 2 is arranged at a substantially central position of the chamber 1. The large crucible 2 is composed of a bottomed cylindrical quartz inner layer holding container 2a and a bottomed cylindrical outer layer holding container 2b made of graphite and fitted outside the inner layer holding container 2a. A quartz crucible 3 made of quartz and having a bottomless cylindrical shape is arranged substantially in the center of the inner bottom surface of the inner layer holding container 2a. A circular flow passage 3a is opened in the lower part of the peripheral surface of the small crucible 3, and a quartz pipe 3b is wound around the peripheral surface of the small crucible 3 in a single layer. They are connected and the other end is open at the bottom of the inner layer holding container 2a. The pipe 3b allows the contents of the large crucible 2 and the small crucible 3 to flow through each other.

【0020】外層保持容器2bの下面には大坩堝2を回転
及び昇降させる軸7が着設されており、大坩堝2の外周
には、例えば抵抗加熱式のヒータ4が昇降可能に配設さ
れている。ヒータ4は、大坩堝2に同心円筒状で大坩堝
2の上側の上側ヒータ4aと下側の下側ヒータ4bとで構成
されている。ヒータ4の外部及び大坩堝2の下方には保
温筒5が固設されている。大坩堝2とヒータ4との相対
的な上下方向位置調節により大坩堝2内に溶融層11及び
固体層12を夫々の厚みを相対的に調節して形成し得るよ
うになっている。
A shaft 7 for rotating and raising and lowering the large crucible 2 is attached to the lower surface of the outer layer holding container 2b, and a resistance heating type heater 4 is vertically movable around the outer periphery of the large crucible 2. ing. The heater 4 has a cylindrical shape concentric with the large crucible 2 and is composed of an upper heater 4a on the upper side of the large crucible 2 and a lower heater 4b on the lower side. A heat insulating cylinder 5 is fixedly provided outside the heater 4 and below the large crucible 2. By adjusting the relative positions of the large crucible 2 and the heater 4 in the vertical direction, the molten layer 11 and the solid layer 12 can be formed in the large crucible 2 by adjusting their respective thicknesses.

【0021】一方、大坩堝2の上方にはチャンバ1の外
側に原料供給装置8が配されている。原料供給装置8は
顆粒状原料9を充填するようになっており、チャンバ1
を貫通する供給パイプを備え、顆粒状原料9を大坩堝2
内で小坩堝3外側の溶融層11に供給するようになってい
る。また、大坩堝2の上方には、チャンバ1の上部に小
形の略円筒形状のプルチャンバ6が連設形成されてお
り、プルチャンバ6を貫通して引上げ軸13が回転及び昇
降可能に垂設されており、引上げ軸13の下端には種結晶
14が装着されるようになっている。そして種結晶14の下
端を小坩堝3内の溶融層11に浸漬させた後、種結晶14を
回転させつつ上昇させることにより、種結晶14の下端か
ら単結晶15を成長せしめるようになっている。
On the other hand, a raw material supply device 8 is arranged outside the chamber 1 above the large crucible 2. The raw material supply device 8 is adapted to fill the granular raw material 9 and
Equipped with a supply pipe that penetrates through the
It is adapted to supply the molten layer 11 outside the small crucible 3 therein. A small cylindrical pull chamber 6 is continuously formed above the chamber 1 above the large crucible 2, and a pulling shaft 13 is pierced through the pull chamber 6 so as to be rotatable and vertically movable. And a seed crystal at the lower end of the pulling shaft 13.
14 is to be installed. Then, the lower end of the seed crystal 14 is immersed in the molten layer 11 in the small crucible 3, and then the single crystal 15 is grown from the lower end of the seed crystal 14 by rotating and raising the seed crystal 14. .

【0022】以上の如く構成された装置を用いてシリコ
ン単結晶を成長させる手順について説明する。まず大坩
堝2及び小坩堝3内に結晶用原料として多結晶シリコン
及び不純物元素を充填し、上側ヒータ4a及び下側ヒータ
4bにより結晶用原料を溶融する。そして、上側ヒータ4
a、下側ヒータ4b及び大坩堝2の位置制御並びに上側ヒ
ータ4a及び下側ヒータ4bの電力制御を行うことにより、
大坩堝2及び小坩堝3の底部から溶融液を凝固させて固
体層12を形成し、固体層12の上部に溶融層11を共存させ
た状態にする。次に大坩堝2及び小坩堝3を回転せし
め、固体層12を溶融しながら小坩堝3内の溶融層11に種
結晶14の下端を浸漬する。引上げ軸13を回転させつつ引
上げ、その下端に単結晶15を成長させてシリコン単結晶
を製造する。
A procedure for growing a silicon single crystal using the apparatus configured as described above will be described. First, the large crucible 2 and the small crucible 3 are filled with polycrystalline silicon and an impurity element as a crystallization raw material, and the upper heater 4a and the lower heater 4a.
The raw material for crystallization is melted by 4b. And the upper heater 4
a, by controlling the positions of the lower heater 4b and the large crucible 2 and controlling the power of the upper heater 4a and the lower heater 4b,
The molten liquid is solidified from the bottoms of the large crucible 2 and the small crucible 3 to form a solid layer 12, and the molten layer 11 coexists on the solid layer 12. Next, the large crucible 2 and the small crucible 3 are rotated, and the lower end of the seed crystal 14 is immersed in the molten layer 11 in the small crucible 3 while melting the solid layer 12. The pulling shaft 13 is pulled while rotating, and the single crystal 15 is grown on the lower end of the pulling shaft 13 to manufacture a silicon single crystal.

【0023】そして、固体層12の溶融終了が判断された
時点で、原料供給装置8から顆粒状原料9を大坩堝2の
溶融層11に供給しつつ、引き続き溶融層11から単結晶15
を引き上げてシリコン単結晶を製造する。このとき、顆
粒状原料9は大坩堝2の溶融層11内で溶解し、パイプ3b
及び通流口3aを経て小坩堝3内へ流入されて、小坩堝3
の溶融層11の不純物濃度の増大が抑制される。なお、溶
融終了の判断後の原料供給装置8の供給量、供給速度及
び供給タイミングは通常のCCZ法に準じて行なわれ、
ここでは説明を省略する。
When it is determined that the solid layer 12 has melted, the raw material supply device 8 supplies the granular raw material 9 to the molten layer 11 of the crucible 2 and then the single crystal 15 from the molten layer 11 continues.
To produce a silicon single crystal. At this time, the granular raw material 9 is melted in the molten layer 11 of the large crucible 2 and the pipe 3b
And the small crucible 3 through the passage port 3a and into the small crucible 3.
The increase in the impurity concentration of the molten layer 11 is suppressed. The supply amount, the supply speed, and the supply timing of the raw material supply device 8 after the completion of melting is determined according to the normal CCZ method,
Here, the description is omitted.

【0024】固体層12の溶融終了の判断は、同様の成長
系による過去の経験則(成長方向の抵抗率により判定さ
れた、固体層12の溶融が終了するまでの時間)に基づい
て行なわれるが、これにより実質的に溶融が終了した時
点が判断される。また、固体層12の溶融終了は、例えば
石英製の棒を溶融層11内に浸漬して一端を固体層12の上
面に着床させ、前記一端から坩堝壁上面までの深さを測
定することによっても判断できるし、溶融層11に超音波
又はマイクロ波を伝播させて溶融層11の厚みを測定する
こと等によっても判断できる。
The determination of the completion of melting of the solid layer 12 is made based on a past empirical rule (a time until the melting of the solid layer 12 is judged, which is determined by the resistivity in the growth direction) by the same growth system. However, this determines the time when the melting is substantially completed. Further, when the melting of the solid layer 12 is completed, for example, a rod made of quartz is immersed in the molten layer 11 so that one end is landed on the upper surface of the solid layer 12, and the depth from the one end to the upper surface of the crucible wall is measured. It can also be determined by measuring the thickness of the melted layer 11 by propagating ultrasonic waves or microwaves to the melted layer 11.

【0025】表1に示す条件で、上述した手順に従い、
固体層12の溶融終了が判断された時点から顆粒状原料9
を43.4g/min の一定速度で供給しつつ、シリコン単結晶
を成長させ、得られたシリコン単結晶の抵抗率を測定し
た。結果を図2に示す。なお、単結晶15の引上げ速度は
1.0mm/min であり、このとき、φ6インチ単結晶は1分
間に43.4g が引き上がる。顆粒状原料9は以下の数式1
に従う量の不純物元素を含有している。固体層12の溶融
終了が判断された時点での結晶長は700 mmであった。
Under the conditions shown in Table 1, according to the procedure described above,
From the time when it is determined that the solid layer 12 has melted, the granular raw material 9
Was supplied at a constant rate of 43.4 g / min, a silicon single crystal was grown, and the resistivity of the obtained silicon single crystal was measured. The results are shown in FIG. The pulling rate of the single crystal 15 is
1.0 mm / min. At this time, the φ6 inch single crystal pulls up 43.4 g per minute. The granular raw material 9 is the following formula 1
The impurity element is contained in an amount according to. The crystal length at the time when the melting of the solid layer 12 was determined to be 700 mm.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【数1】 [Equation 1]

【0028】図2は、引上げられた単結晶の成長方向の
抵抗率を示すグラフである。グラフ中、‘○’は第1の
実施の形態にて得られたシリコン単結晶を示し、‘□’
は結晶用原料を追加供給しないDLCZ法で得られた従
来例のシリコン単結晶を示している。グラフから明らか
なように、従来例では結晶長が200 mm〜700 mmまでは抵
抗率が略9Ωcmで均一であるが、700 mm以上で抵抗率が
略6Ωcmまで低下している。これに対して第1の実施の
形態では、結晶長が200 mmから引上げ末端の1000mmまで
抵抗率が略9Ωcmで均一なシリコン単結晶を得ることが
できた。
FIG. 2 is a graph showing the resistivity of the pulled single crystal in the growth direction. In the graph, "○" indicates the silicon single crystal obtained in the first embodiment, and "□"
Shows a conventional silicon single crystal obtained by the DLCZ method without additionally supplying a crystal raw material. As is clear from the graph, in the conventional example, the resistivity is approximately 9 Ωcm and uniform when the crystal length is 200 mm to 700 mm, but the resistivity decreases to approximately 6 Ωcm at 700 mm or more. On the other hand, in the first embodiment, it was possible to obtain a uniform silicon single crystal having a crystal length of 200 mm to 1000 mm at the pulling end and a resistivity of about 9 Ωcm.

【0029】以上の如く、固体層12の溶融が終了した後
に溶融層11に結晶用原料を供給することにより、固体層
12の溶融が終了した後も抵抗率が成長方向に均一なシリ
コン単結晶を得ることができる。また、引上げ初期には
結晶用原料を供給しないので、引上げ初期に単結晶が有
転位化した場合でも溶融層11の不純物元素濃度は不変で
あり、再溶解できる。
As described above, after the melting of the solid layer 12 is completed, the raw material for crystallization is supplied to the molten layer 11 to obtain the solid layer.
Even after the melting of 12 is completed, a silicon single crystal having a uniform resistivity in the growth direction can be obtained. Further, since the crystal raw material is not supplied in the initial stage of pulling, the impurity element concentration of the molten layer 11 does not change and can be redissolved even when the single crystal has dislocations in the early stage of pulling.

【0030】次に、本発明の第2の実施の形態をこれを
示す図面に基づいて以下に説明する。図3は、本発明方
法の実施に用いる単結晶成長装置の構造を示す模式的断
面図である。保温筒5の外部の、大坩堝2が上下移動可
能な範囲の高さ位置に、磁石10S,10N が異極側を対向せ
しめて配設されており、磁石10S,10N を備える磁場印加
装置により、溶融層11に水平方向の磁場が印加されるよ
うになっている。その他の構成は、図1に示した単結晶
成長装置と同様であり、同部分に同符号を付して説明を
省略する。
Next, a second embodiment of the present invention will be described below with reference to the drawings showing the same. FIG. 3 is a schematic cross-sectional view showing the structure of a single crystal growth apparatus used for carrying out the method of the present invention. The magnets 10S, 10N are arranged outside the heat insulating cylinder 5 at a height position where the large crucible 2 can move up and down with the opposite poles facing each other. A horizontal magnetic field is applied to the molten layer 11. Other configurations are the same as those of the single crystal growth apparatus shown in FIG. 1, and the same parts are designated by the same reference numerals and the description thereof will be omitted.

【0031】このような装置を用いて単結晶を成長させ
る手順について説明する。固体層12の溶融終了が判断さ
れるまでは、第1の実施の形態と同様である。固体層12
の溶融終了が判断された時点で、磁場印加装置により溶
融層11に水平方向の磁場を印加し、且つ、原料供給装置
8から顆粒状原料9を大坩堝2の溶融層11に供給しつ
つ、引き続き溶融層11から単結晶15を引き上げてシリコ
ン単結晶を製造する。このとき、顆粒状原料9は大坩堝
2の溶融層11内で溶解し、パイプ3b及び通流口3aを経て
小坩堝3内へ流入されて、小坩堝3の溶融層11の不純物
濃度の増大が抑制される。また、溶融層11内では水平方
向の磁力線によりこれに直交する方向の熱対流が抑制さ
れ、単結晶に取り込まれる酸素量の増量が抑制される。
なお、溶融終了の判断後の原料供給装置8の供給量、供
給速度及び供給タイミング並びに磁場発生強度は通常の
CCZ法及びMCZ法に準じて行なわれ、ここでは説明
を省略する。また、固体層12の溶融終了の判断は第1の
実施の形態と同様に行なう。
A procedure for growing a single crystal using such an apparatus will be described. Until the completion of melting of the solid layer 12 is determined, it is the same as in the first embodiment. Solid layer 12
When it is determined that the melting has been completed, a horizontal magnetic field is applied to the molten layer 11 by the magnetic field application device, and while the granular raw material 9 is supplied from the raw material supply device 8 to the molten layer 11 of the large crucible 2, Subsequently, the single crystal 15 is pulled up from the molten layer 11 to manufacture a silicon single crystal. At this time, the granular raw material 9 is melted in the molten layer 11 of the large crucible 2 and flows into the small crucible 3 through the pipe 3b and the flow port 3a to increase the impurity concentration of the molten layer 11 of the small crucible 3. Is suppressed. Further, in the molten layer 11, the horizontal magnetic force lines suppress thermal convection in a direction orthogonal to the lines of magnetic force, thereby suppressing an increase in the amount of oxygen taken into the single crystal.
The supply amount, the supply speed, the supply timing, and the magnetic field generation intensity of the raw material supply device 8 after the completion of melting is determined according to the usual CCZ method and MCZ method, and the description thereof is omitted here. The determination of the completion of melting of the solid layer 12 is made in the same manner as in the first embodiment.

【0032】表2に示す条件で、上述した手順に従い、
固体層12の溶融終了が判断された時点で3000Gの水平磁
場を溶融層11に印加し、顆粒状原料9を43.4g/min の一
定速度で供給しつつ、シリコン単結晶を成長させ、得ら
れたシリコン単結晶の抵抗率及び酸素濃度を測定した。
結果を図3及び図4に示す。なお、単結晶15の引上げ速
度は1.0mm/min であり、顆粒状原料9には上述した数式
1に従う量の不純物元素を含有してある。また、固体層
12の溶融終了が判断されたときに結晶長は700mmであっ
た。
Under the conditions shown in Table 2, according to the procedure described above,
When the completion of melting of the solid layer 12 was determined, a horizontal magnetic field of 3000 G was applied to the melting layer 11 to grow the silicon single crystal while supplying the granular raw material 9 at a constant rate of 43.4 g / min. The resistivity and oxygen concentration of the silicon single crystal were measured.
The results are shown in FIGS. The pulling rate of the single crystal 15 was 1.0 mm / min, and the granular raw material 9 contained the impurity element in an amount according to the above-mentioned numerical formula 1. Also a solid layer
The crystal length was 700 mm when the completion of melting of 12 was judged.

【0033】[0033]

【表2】 [Table 2]

【0034】図4は、引上げられた単結晶の成長方向の
抵抗率を示すグラフである。グラフ中、‘○’は第2の
実施の形態にて得られたシリコン単結晶を示し、‘□’
は結晶用原料の追加供給及び磁場の印加を行なわないD
LCZ法で得られた従来例のシリコン単結晶を示してい
る。グラフから明らかなように、従来例では結晶長が20
0 mm〜700 mmまでは抵抗率が略9Ωcmで均一であるが、
700 mm以上で抵抗率が略6Ωcmまで低下している。これ
に対して第2の実施の形態では、結晶長が200mmから引
上げ末端の1000mmまで抵抗率が略9Ωcmで均一なシリコ
ン単結晶を得ることができた。
FIG. 4 is a graph showing the resistivity of the pulled single crystal in the growth direction. In the graph, "○" indicates the silicon single crystal obtained in the second embodiment, and "□"
Does not perform additional supply of crystal raw material and application of magnetic field D
The conventional silicon single crystal obtained by the LCZ method is shown. As is clear from the graph, the crystal length is 20 in the conventional example.
From 0 mm to 700 mm, the resistivity is uniform at about 9 Ωcm,
At 700 mm or more, the resistivity drops to about 6 Ωcm. On the other hand, in the second embodiment, it was possible to obtain a uniform silicon single crystal having a crystal length of 200 mm to 1000 mm at the pulling end and a resistivity of about 9 Ωcm.

【0035】図5は、引上げられた単結晶の成長方向の
酸素濃度を示すグラフである。グラフ中、‘○’は第2
の実施の形態にて得られたシリコン単結晶を示し、
‘△’は単結晶の引上げ初期から磁場を印加して得られ
た比較例のシリコン単結晶を示し、‘□’は結晶用原料
の追加供給及び磁場の印加を行なわないDLCZ法で得
られた従来例のシリコン単結晶を示している。グラフか
ら明らかなように、従来例では結晶長が700 mmまでは酸
素濃度が略7×1017atoms/cm3 (低酸素濃度)で均一で
あるが、700 mm以上で酸素濃度が大きく増加している。
比較例では、結晶長が700 mmまでは酸素濃度が略3×10
17atoms/cm3 (極低酸素濃度)で均一であるが、700 mm
以上で酸素濃度が低酸素濃度程度まで増加している。こ
れに対して第2の実施の形態では、引上げ末端の結晶長
2000mmまで酸素濃度が略7×1017atoms/cm3 (低酸素濃
度)で均一なシリコン単結晶を得ることができた。
FIG. 5 is a graph showing the oxygen concentration in the growth direction of the pulled single crystal. "○" is the second in the graph
The silicon single crystal obtained in the embodiment of
“Δ” represents a silicon single crystal of a comparative example obtained by applying a magnetic field from the initial stage of pulling the single crystal, and “□” was obtained by the DLCZ method in which additional supply of the crystal raw material and application of the magnetic field were not performed. The conventional silicon single crystal is shown. As can be seen from the graph, in the conventional example, the oxygen concentration is approximately 7 × 10 17 atoms / cm 3 (low oxygen concentration) and is uniform up to a crystal length of 700 mm, but the oxygen concentration increases significantly above 700 mm. ing.
In the comparative example, the oxygen concentration is approximately 3 × 10 5 up to the crystal length of 700 mm.
17 atoms / cm 3 (very low oxygen concentration), uniform but 700 mm
As a result, the oxygen concentration has increased to a low oxygen concentration. On the other hand, in the second embodiment, the crystal length of the pulling end is
It was possible to obtain a uniform silicon single crystal with an oxygen concentration of approximately 7 × 10 17 atoms / cm 3 (low oxygen concentration) up to 2000 mm.

【0036】以上の如く、固体層12の溶融が終了した後
に溶融層11に結晶用原料を供給し、且つ、水平磁場を印
加することにより、固体層12の溶融が終了した後も抵抗
率及び酸素濃度が成長方向に均一なシリコン単結晶を得
ることができる。また、引上げ初期には結晶用原料を供
給しないので、引上げ初期に単結晶が有転位化した場合
でも再溶解できる。さらに、引上げ途中から磁場を印加
するので、引上げ初期から印加する場合よりも製造コス
トを下げることができる。
As described above, after the melting of the solid layer 12 is completed, the raw material for crystallization is supplied to the molten layer 11 and the horizontal magnetic field is applied, so that the resistivity and A silicon single crystal having a uniform oxygen concentration in the growth direction can be obtained. Further, since the crystal raw material is not supplied in the early stage of pulling, even if the single crystal has dislocations in the early stage of pulling, it can be redissolved. Further, since the magnetic field is applied during the pulling, the manufacturing cost can be reduced as compared with the case where the magnetic field is applied from the initial stage of pulling.

【0037】なお、第2の実施の形態では、磁場印加装
置に水平印加方式即ち横型印加方式のものを用いた場合
を説明しているが、これに限るものではなく、垂直印加
方式即ち縦型印加方式、カスプ型印加方式等の磁場印加
装置を用いても熱対流抑制効果を得ることができ、本発
明に適用できる。
In the second embodiment, the case of using the horizontal application system, that is, the horizontal application system as the magnetic field application device has been described, but the present invention is not limited to this, and the vertical application system, that is, the vertical application system. The effect of suppressing thermal convection can be obtained even by using a magnetic field application device such as an application system or a cusp type application system, and the present invention can be applied.

【0038】[0038]

【発明の効果】以上のように、本発明においては、DL
CZ法において、単結晶の引上げ途中から、例えば固体
層の溶融終了後に溶融層に前記結晶用原料を供給するこ
とにより、溶融液中の不純物の濃度の増加を防ぎ、単結
晶の偏析を防止して成長方向の抵抗率が引上げ末端まで
均一な単結晶を得ることができ、歩留りが向上する。
As described above, in the present invention, DL
In the CZ method, the concentration of impurities in the melt is prevented from increasing and the segregation of the single crystal is prevented by supplying the raw material for crystallization to the molten layer from the middle of pulling the single crystal, for example, after the melting of the solid layer is completed. As a result, a single crystal in which the resistivity in the growth direction is raised and even up to the end can be obtained, and the yield is improved.

【0039】また、DLCZ法において、単結晶の引上
げ途中から、例えば固体層の溶融終了後に溶融層に前記
結晶用原料を供給し、溶融層に磁場を印加することによ
り、溶融液中の不純物の濃度の増加を防ぎ、且つ固体層
の消失に起因する溶融層の熱対流の増大を抑制して成長
方向の抵抗率及び酸素濃度が引上げ末端まで均一な単結
晶を得ることができ、歩留りが向上する等、本発明は優
れた効果を奏する。
In the DLCZ method, the raw material for crystallization is supplied to the molten layer from the middle of pulling a single crystal, for example, after the melting of the solid layer is completed, and a magnetic field is applied to the molten layer to remove impurities in the molten liquid. The yield can be improved by preventing the increase of the concentration and suppressing the increase of the thermal convection in the molten layer due to the disappearance of the solid layer, and obtaining the single crystal in which the resistivity in the growth direction and the oxygen concentration increase and the end is uniform. Thus, the present invention has excellent effects.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の実施の形態の単結晶成長装置の構造を示
す模式的断面図である。
FIG. 1 is a schematic cross-sectional view showing the structure of a single crystal growth apparatus according to a first embodiment.

【図2】第1の実施の形態で引上げられた単結晶の成長
方向の抵抗率を示すグラフである。
FIG. 2 is a graph showing the resistivity in the growth direction of the single crystal pulled up in the first embodiment.

【図3】第2の実施の形態の単結晶成長装置の構造を示
す模式的断面図である。
FIG. 3 is a schematic cross-sectional view showing the structure of the single crystal growth apparatus of the second embodiment.

【図4】第2の実施の形態で引上げられた単結晶の成長
方向の抵抗率を示すグラフである。
FIG. 4 is a graph showing the resistivity in the growth direction of the single crystal pulled in the second embodiment.

【図5】第2の実施の形態で引上げられた単結晶の成長
方向の酸素濃度を示すグラフである。
FIG. 5 is a graph showing the oxygen concentration in the growth direction of the single crystal pulled up in the second embodiment.

【符号の説明】[Explanation of symbols]

1 チャンバ 2 大坩堝 3 小坩堝 4 ヒータ 8 原料供給装置 9 顆粒状原料 10S,10N 磁石 11 溶融層 12 固体層 15 単結晶 1 chamber 2 large crucible 3 small crucible 4 heater 8 raw material supply device 9 granular raw material 10S, 10N magnet 11 molten layer 12 solid layer 15 single crystal

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 坩堝内に、不純物元素を含む結晶用原料
を充填して溶融し、溶融液を凝固させた固体層とその上
の溶融層とを共存させ、前記坩堝周囲に設置されたヒー
タの加熱により前記固体層を溶融しつつ、前記溶融層か
ら結晶を引き上げて前記溶融層中の不純物元素を取り込
みながら成長させる単結晶の成長方法において、 前記溶融層から前記単結晶に取り込まれる不純物元素量
を制御すべく、前記単結晶の引上げ途中から、前記溶融
層に前記結晶用原料を供給することを特徴とする単結晶
の成長方法。
1. A heater installed around the crucible, in which a raw material for crystallization containing an impurity element is filled in the crucible and melted, and a solid layer obtained by solidifying the molten liquid and a molten layer above the coexisting layer coexist. While melting the solid layer by heating, a method for growing a single crystal in which a crystal is pulled up from the molten layer to grow while incorporating an impurity element in the molten layer, wherein an impurity element incorporated in the single crystal from the molten layer A method for growing a single crystal, wherein the raw material for crystallization is supplied to the molten layer from the middle of pulling the single crystal in order to control the amount.
【請求項2】 前記固体層の溶融終了後に、前記溶融層
に前記結晶用原料を供給する請求項1記載の単結晶の成
長方法。
2. The method for growing a single crystal according to claim 1, wherein the raw material for crystallization is supplied to the molten layer after completion of melting of the solid layer.
【請求項3】 坩堝内に、不純物元素を含む結晶用原料
を充填して溶融し、溶融液を凝固させた固体層とその上
の溶融層とを共存させ、前記坩堝周囲に設置されたヒー
タの加熱により前記固体層を溶融し、前記溶融層に磁場
を印加しつつ、前記溶融層から結晶を引き上げて前記溶
融層中の酸素を取り込みながら成長させる単結晶の成長
方法であって、 前記溶融層から前記単結晶に取り込まれる不純物元素量
及び酸素量を制御すべく、前記単結晶の引上げ途中か
ら、前記溶融層に前記結晶用原料を供給し、前記溶融層
に磁場を印加することを特徴とする単結晶の成長方法。
3. A heater installed around the crucible, in which a raw material for crystallization containing an impurity element is filled in the crucible and melted, and a solid layer obtained by solidifying the molten liquid and a molten layer above the solid layer coexist. Is a method for growing a single crystal in which the solid layer is melted by heating and a magnetic field is applied to the molten layer, and a crystal is pulled up from the molten layer to grow while taking in oxygen in the molten layer, In order to control the amount of impurity elements and the amount of oxygen taken into the single crystal from the layer, the raw material for crystallization is supplied to the molten layer and a magnetic field is applied to the molten layer during the pulling of the single crystal. And a method for growing a single crystal.
【請求項4】 前記固体層の溶融終了後に、前記溶融層
に前記結晶用原料を供給し、前記溶融層に磁場を印加す
る請求項3記載の単結晶の成長方法。
4. The method for growing a single crystal according to claim 3, wherein after the melting of the solid layer, the raw material for crystallization is supplied to the molten layer and a magnetic field is applied to the molten layer.
JP1464196A 1996-01-30 1996-01-30 Growth of single crystal Pending JPH09208360A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1464196A JPH09208360A (en) 1996-01-30 1996-01-30 Growth of single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1464196A JPH09208360A (en) 1996-01-30 1996-01-30 Growth of single crystal

Publications (1)

Publication Number Publication Date
JPH09208360A true JPH09208360A (en) 1997-08-12

Family

ID=11866835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1464196A Pending JPH09208360A (en) 1996-01-30 1996-01-30 Growth of single crystal

Country Status (1)

Country Link
JP (1) JPH09208360A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000351690A (en) * 1999-06-08 2000-12-19 Nippon Steel Corp Silicon single crystal wafer and its production
JP2016153352A (en) * 2015-02-20 2016-08-25 信越半導体株式会社 Crystal growth method
CN106400106A (en) * 2016-08-31 2017-02-15 内蒙古中环光伏材料有限公司 Method and device for improving uniformity of axial resistivity of czochralski monocrystalline silicon

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000351690A (en) * 1999-06-08 2000-12-19 Nippon Steel Corp Silicon single crystal wafer and its production
JP2016153352A (en) * 2015-02-20 2016-08-25 信越半導体株式会社 Crystal growth method
CN106400106A (en) * 2016-08-31 2017-02-15 内蒙古中环光伏材料有限公司 Method and device for improving uniformity of axial resistivity of czochralski monocrystalline silicon

Similar Documents

Publication Publication Date Title
JP2755588B2 (en) Crystal pulling method
JP3598972B2 (en) Method for producing silicon single crystal
JPH09208360A (en) Growth of single crystal
JPH0524969A (en) Crystal growing device
JPH01317189A (en) Production of single crystal of silicon and device therefor
CN105887187B (en) Method for stably controlling concentration of dopant for silicon single crystal growth
JP3564830B2 (en) Method for controlling oxygen concentration in silicon single crystal
JPH07277875A (en) Method for growing crystal
JP2640315B2 (en) Method for producing silicon single crystal
JP2837903B2 (en) Method for producing silicon single crystal
JPH03265593A (en) Crystal growing device
JPH07277870A (en) Method and device for growing single crystal
JPH09208373A (en) Growth of single crystal
JP2600944B2 (en) Crystal growth method
JPH0259494A (en) Production of silicon single crystal and apparatus
JP2000072587A (en) Device for pulling single silicon crystal and pulling of the crystal
JPH08310891A (en) Method for growing crystal
JPH03215384A (en) Crystal-growing device
JPH03228893A (en) Method for growing crystal
JPH09263479A (en) Method for growing single crystal and apparatus for growing single crystal
JPH09235181A (en) Pulling of single crystal and single crystal pull apparatus
JPH09208374A (en) Growth of single crystal and apparatus used for practicing the same
JPH05270970A (en) Method for crystal growth
JPH0524972A (en) Method for growing crystal
JP3584497B2 (en) Crystal growth method