WO2004065667A1 - Process for producing single crystal - Google Patents

Process for producing single crystal Download PDF

Info

Publication number
WO2004065667A1
WO2004065667A1 PCT/JP2003/016795 JP0316795W WO2004065667A1 WO 2004065667 A1 WO2004065667 A1 WO 2004065667A1 JP 0316795 W JP0316795 W JP 0316795W WO 2004065667 A1 WO2004065667 A1 WO 2004065667A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
crystal
resistivity
raw material
nitrogen
Prior art date
Application number
PCT/JP2003/016795
Other languages
French (fr)
Japanese (ja)
Inventor
Ryoji Hoshi
Hiromi Watanabe
Izumi Fusegawa
Original Assignee
Shin-Etsu Handotai Co.,Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin-Etsu Handotai Co.,Ltd. filed Critical Shin-Etsu Handotai Co.,Ltd.
Publication of WO2004065667A1 publication Critical patent/WO2004065667A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/02Single-crystal growth by pulling from a melt, e.g. Czochralski method adding crystallising materials or reactants forming it in situ to the melt
    • C30B15/04Single-crystal growth by pulling from a melt, e.g. Czochralski method adding crystallising materials or reactants forming it in situ to the melt adding doping materials, e.g. for n-p-junction

Definitions

  • the present invention relates to a method for producing a low resistivity crystal and a low resistivity nitrogen-doped crystal which are often used as a substrate for an epitaxy wafer which is manufactured as a high quality single crystal wafer.
  • Epitaxy wafers are widely used for individual semiconductors and bipolar
  • MOSLSI is also widely used in microphone-port processor units and flash memory devices because of its excellent soft error and latch-up characteristics.
  • One example of the excellent properties of epitaxial wafers is that there is virtually no so-called row-in defect, which is introduced during the production of single crystals, thus reducing defects such as DRAM reliability. Demand is growing.
  • a low resistivity wafer for epitaxy growth in which the resistivity of the wafer that is the substrate of the epitaxy wafer is 0.1 ⁇ cm or less, has excellent latch-up characteristics and the substrate The importance of gettering capabilities is increasing. Further, it has been proposed to dope with nitrogen to enhance the gettering ability (see, for example, JP-A-2001-139396).
  • the wafer When the resistivity was not so low as described above, the wafer could be reused as a wafer for particle monitors and an wafer for solar cells.
  • low-resistivity crystals of 0.1 Qcm or less and crystals further doped with nitrogen are crystals used for specific applications and contain many dopant impurities.
  • the electrical and defect characteristics change, which makes it difficult to reuse and has to be disposed of.
  • the present invention has been made in view of such a problem, and is intended to reuse an unnecessary portion of a low-resistance crystal containing a large amount of dopant impurities, which had to be discarded in the past, and to grow a low-resistance crystal.
  • the main purpose is to provide a technology that can reduce the cost of producing these crystals and also provide an environment-friendly crystal production method by providing technologies that can save the necessary expensive metal elements. .
  • the present invention for solving the above-mentioned problems is directed to a method for producing a single crystal, which comprises at least a single crystal having a resistivity of 0.1 ⁇ cm or less pulled by the Cjochralski method.
  • This is a method for producing a single crystal, characterized by melting a raw material containing an unnecessary portion derived from an ingot with a crucible and again producing a single crystal having a resistivity of 0.1 ⁇ cm or less by the Czochralski method.
  • the unnecessary portion is a portion having a cone portion, a tail portion, a slip dislocation, a portion having an OSF or a crystal defect, or a resistivity standard out of a single crystal ingot pulled up by the Czochralski method. At least one part, which does not satisfy the oxygen concentration standard, can be used.
  • low-resistivity crystals can be reused by reusing low-resistivity crystal cones, etc., which were conventionally difficult to recycle and had to be disposed of, as raw materials for low-resistivity crystals.
  • the cost of crystal production can be reduced.
  • the unnecessary portion when the unnecessary portion is melted with a crucible as a raw material, it can be used alone or mixed with an unused polycrystalline raw material to reduce the amount of depant used to control the resistivity. It can be.
  • the resistivity of the single crystal to be manufactured again is controlled, A single crystal having a desired resistivity can be obtained, and the amount of expensive dopant can be reduced.
  • the single crystal ingot pulled up by the Czochralski method from which the unnecessary portion is derived is preferably a single crystal doped with polon.
  • the single crystal ingot from which the unnecessary portion is derived is doped with boron
  • boron has a large segregation coefficient of about 0.8, so that most of the boron in the raw material that melts this unnecessary portion Will be re-introduced into the low resistivity crystal to be remanufactured. Therefore, it is possible to save expensive boron elements.
  • the single-crystal ingot pulled up by the Czochralski method from which the unnecessary portion is derived can be a single crystal doped with nitrogen.
  • an unnecessary portion derived from the crystal can be used again as a raw material for a low resistivity nitrogen doped crystal.
  • the segregation coefficient is very small, 0.0007, so even if an unnecessary portion of the nitrogen-doped crystal is used again as a raw material for the nitrogen-doped crystal, it hardly affects the target nitrogen doping concentration. This has the advantage that no adjustment is required for the nitrogen concentration.
  • the single crystal ingot pulled up by the Czochralski method from which the unnecessary portion is derived has a nitrogen concentration of 1 ⁇ 10 10 to 5 ⁇ 10 15 / cm 3 .
  • the nitrogen-doped crystal often has such a nitrogen concentration, and such a concentration does not adversely affect the crystal to be manufactured again.
  • the single-crystal ingot or the polycrystalline raw material drawn by the Czochralski method from which the unnecessary portion is derived is silicon. If the single crystal ingot from which the unnecessary portion is derived and the polycrystalline raw material mixed with the single crystal ingot are silicon, for example, a silicon single crystal produced from the unnecessary portion may be used as a substrate for an epitaxial wafer or a high gettering substrate. Thus, it can be used as a substrate for a semiconductor integrated circuit.
  • the method for producing a single crystal of the present invention is intended to reuse an unnecessary portion of a crystal which had to be discarded because it contains a lot of impurities, and to grow a low resistivity crystal.
  • FIG. 1 is a flowchart showing the manufacturing method of the present invention.
  • FIG. 2 schematically shows a single crystal growing apparatus and HZ that can be used in the method of the present invention.
  • FIG. 3 is a diagram showing the results of measuring the resistivity axial distribution of a single crystal in the case of an unused raw material and in the case of a recycled raw material.
  • Fig. 4 is a diagram showing the required amount of metal polon elements with respect to the resistivity of the raw material and the target resistivity.
  • FIG. 5 is a diagram showing a calculated nitrogen concentration axial distribution.
  • FIG. 6 is a diagram showing the measurement results of nitrogen concentration by SIMS in the case of an unused raw material and in the case of a recycled raw material.
  • Figure 7 is a diagram comparing the calculated values of nitrogen concentration in the case of unused raw materials and the case of recycled raw materials.
  • the present inventors have for the first time conceived the idea of reusing the unnecessary portion of a crystal containing a large amount of dopant impurities as a raw material for a low resistivity crystal containing a large amount of the same dopant impurity. did.
  • this method unlike in the case of reusing as a crystal family with normal resistivity, the change in the electrical and defect characteristics of the crystal manufactured from the recycled material is small, so that it can be reused. .
  • Even if unnecessary parts of the crystal ingot containing more dopant than necessary are reused, there is a segregation phenomenon during crystal growth, so a certain percentage of the raw material melt containing impurities is used. It has the characteristic that it is not incorporated into the crystal only if it is.
  • the present invention is effective even when an unnecessary portion of a crystal ingot containing a smaller amount of dopant impurities than necessary is reused.
  • segregation occurs during crystal growth, and only a certain percentage of the dopant contained in the melt is incorporated into the crystal. This ratio is the segregation coefficient.
  • boron is used as a dopant, but its segregation coefficient is relatively large, about 0.8. Therefore, unnecessary portions of the boron-doped low-resistivity crystal are incorporated into the crystal to be remanufactured by a large amount of boron contained in the molten raw material. As a result, the amount of boron that must be added to re-manufacture a crystal having the required resistivity is significantly reduced, and it is possible to save expensive metal por- tion elements.
  • the unnecessary portion of the low-resistivity crystal ingot is used again as a raw material for the low-resistivity crystal, thereby reducing the amount of dopant to be supplied. It is possible to do.
  • the unnecessary portion of the low resistivity crystal is reused as a raw material for the low resistivity crystal again, not only the unnecessary portion obtained from the low resistivity crystal but also the unused pure polycrystal are used.
  • a desired resistivity can be aimed at by mixing and using the raw materials. For example, if a crystal is grown again from raw material obtained only from the tail of a crystal ingot with a certain resistivity, the resistivity of the remanufactured crystal may be lower than that of the original crystal. There is. Therefore, a desired resistivity can be obtained by mixing unused pure polycrystalline raw materials with unnecessary portions of the low-resistivity crystal. Is 0.001. ⁇ From 0.1 ⁇ cm.
  • an unnecessary portion obtained from the crystal can be used as a raw material for a low-resistivity nitrogen-doped crystal.
  • the segregation coefficient is very small, 0.0007, so even if an unnecessary portion of the nitrogen-doped crystal is used again as a raw material for the nitrogen-doped crystal, the nitrogen-doped crystal has almost no effect on the target nitrogen doping concentration The advantage is that it has no effect.
  • the nitrogen concentration no consideration is required at all, such as adjusting the dopant amount as in the resistivity control by the dopant or adding an unused pure polycrystalline raw material. Therefore, when the unnecessary portion of the nitrogen-doped low resistivity crystal is reused for the nitrogen-doped low resistivity crystal, there is no need to adjust the nitrogen concentration at all.
  • the present invention will be described more specifically, but the present invention is not limited thereto.
  • FIG. 1 is a flowchart showing the manufacturing method of the present invention.
  • a single crystal ingot 1 with a resistivity of 0.1 ⁇ cm or less is pulled up by the Chiyoklarski method.
  • a cone part 3 and a tail part 4 which are unnecessary parts 10, are derived (Fig. 1 (a)).
  • unnecessary portions 10 such as portions having slip dislocations, OSFs and crystal defects, portions not meeting the resistivity standard, and portions not meeting the oxygen concentration standard, are derived from the single crystal ingot 1. I do.
  • the resistivity is again determined using the Chiyoklarski method.
  • a single crystal ingot 11 of 0.1 ⁇ cm or less is manufactured (Fig. 1 (c)). From the remanufactured single crystal ingot 11, if the straight body part 12 as a product is taken out, unnecessary parts 20 such as a cone part 13 and a tail part 14 are derived, but this unnecessary part 20 By repeating the above steps, the raw materials can be reused.
  • a step such as washing may be added between the above steps due to manufacturing reasons.
  • the single crystal growing apparatus shown in FIG. 2 can be used.
  • a crucible 35 is provided in a champ 32 into which a hot zone (H Z) is inserted, and a heater 33 surrounding the crucible 35 is provided.
  • the raw material containing the unnecessary portion of the low resistivity crystal ingot is put into the crucible 35 and is heated and melted by the heater 33 to obtain a raw material melt 36.
  • the unused polycrystalline raw material and the metal element are adjusted and melted as necessary so that the target low resistivity is obtained.
  • rod-shaped single crystal 31 is pulled out of the melt.
  • the crucible 35 can move up and down in the direction of the crystal growth axis, and raises the crucible 35 so as to capture the lowering of the liquid level of the melt that has crystallized and decreased during the crystal growth. Thereby, the height of the surface of the melt 36 is always kept constant.
  • the MCZ method in which a magnetic field is applied to the raw material melt 36 may be used.
  • the manufactured single crystal 31 is inspected to see if its quality such as slip, OSF, resistivity, oxygen concentration, etc. meets the requirements.
  • the tail portion is reused as a raw material for the low resistivity crystal as described above.
  • the hot zone of the single-crystal growth apparatus using the Czochralski method whose schematic diagram is shown in Fig. 2 is equipped with a crucible having a diameter of 32 inches (800 mm) and a diameter of 12 inches (300 mm).
  • Silicon single crystal was grown.
  • Unused pure polycrystalline silicon raw material 3 Charged 20 kg crucible. From this crucible, a crystal having a straight body length of about 120 cm was grown while applying a horizontal magnetic field having a central magnetic field strength of 350 G. At this time, the metal polon element was doped so that the resistivity was 0.008 Qcm at the position of the straight body length O cm (crystal shoulder) of the crystal.
  • a sample in the form of a wafer was taken from the crystal every 25 c Hi, and the resistivity was measured. As a result, as shown in Fig. 3, the resistivity decreases in the length direction of the crystal, and a crystal with a straight body length of about 120 cm (120 cm from the shoulder) and a thickness of 0.06 Q cm is formed. Obtained. Next, the cone part, tail part and regular diameter that are less than the regular diameter of the low-resistivity crystal are satisfied so that the average resistivity of the recycled material is 0.0129 Qcm. Even if it was used, 320 kg of parts that had crystal defects such as slips or did not meet the quality requirements were collected, crushed to a size that could be used as a raw material, and washed. .
  • Fig. 4 shows what percentage of the metal polon should be added when the ratio of the resistivity of the raw material to the target resistivity is used and pure unused raw material is used.
  • the resistivity of the raw material obtained by reusing the unnecessary portion is 0.012 Qcm
  • the target resistivity is 0.008 ⁇ cm
  • the ratio is 0.02 Qcm.
  • 0 1 2 9/0. 0 0 8 1.6 1 2 5 Therefore, from Fig. 4, it is clear that about 58% of the metal boron element in the case of using a pure unused raw material should be introduced. In other words, the savings in metal boron elements can be as much as 42%.
  • the resistivity of the actually remanufactured single crystal was measured in the same manner as for the single crystal manufactured from the unused raw material described above, and as shown by the solid line in FIG.
  • the silicon single crystal re-manufactured from unnecessary parts in 1 had a resistivity distribution equivalent to that of unused raw materials, and was resistant to reuse.
  • the resistivity of the actually remanufactured single crystal was measured in the same manner as for the single crystal manufactured from the above-mentioned unused raw material. As shown by the broken line in FIG.
  • the silicon single crystal remanufactured from Japan also had a resistivity distribution equivalent to that using unused raw materials, and was resistant to reuse.
  • the unnecessary portion derived from the low resistivity crystal ingot can be used as a raw material for low resistivity crystallization.
  • the segregation coefficient of boron is relatively large, about 0.8. Therefore, the boron contained in the raw material obtained by melting the unnecessary portion obtained from the low resistivity crystal is incorporated into the single crystal to be re-manufactured, thereby saving expensive metal boron elements. It becomes possible. At this time, in some cases, a desired resistivity can be obtained by mixing unused pure materials. (Experiment)
  • the target nitrogen concentration was 3 ⁇ 10 13 cm 3 at the straight body portion O cm of the crystal.
  • the segregation coefficient is as small as 0.0007. Therefore, the calculated nitrogen concentration in the above crystal becomes as shown in Fig. 5, and it increases with the length of the cylinder.
  • a sample was taken from a portion near the boundary between the tail portion and the straight body portion of the crystal, and the nitrogen concentration was measured by SIMS.
  • Four samples taken from four similar crystals were used for the measurement.
  • the average value of the nitrogen concentration was approximately 1.2 ⁇ 10 14 Z cm 3 . This compares with calculated values 1. 0 X 1 0 14 atoms Z cm 3 at sampling portion shown in FIG. 5, when considering from the nitrogen concentration measurement accuracy of SIMS, and it is the nitrogen doping as aimed You can see that.
  • the crystal properties other than nitrogen concentration such as oxygen concentration, OSF, lifetime, and FPD (Grown-in defect) were also investigated.
  • the cone and tail portions of the crystal ingot grown as described above were collected, crushed to a size that could be used as a raw material, and washed. Except that this was collected for 32 O kg and this recycled material was used as a raw material, the straight body length was about 120 c under exactly the same conditions as when it was manufactured from the above-mentioned unused raw material.
  • m were grown silicon single crystal having a diameter of 1 2 I inch (3 0 0 mm).
  • Fig. 7 shows the calculated values of the nitrogen concentration at a straight body of 0 cm and a straight body of 120 cm in the case of unused raw materials and the case of recycled raw materials.
  • the segregation coefficient of nitrogen is very small, so the difference between unused and recycled materials is 0.3. /. It turns out that it is very small within.
  • Oxygen concentration, OSF, lifetime, and FPD (Grown-in defect) characteristics were investigated as crystal characteristics other than nitrogen concentration, and all showed the same characteristics as crystals manufactured from unused raw materials. .
  • the unnecessary portion obtained from the nitrogen-doped crystal can be used again as a raw material for the nitrogen-doped crystal.
  • the segregation coefficient is very small, 0.0007, so even if an unnecessary portion of the nitrogen-doped crystal is used again as a raw material for the nitrogen-doped crystal, the nitrogen-doped crystal will almost never reach the target nitrogen doping concentration. Has no effect.
  • the present invention is not limited to the above embodiment.
  • the above embodiment is an exemplification, and has substantially the same configuration as the technical idea described in the claims of the present invention. It is included in the technical scope of the invention.
  • the gist of the present invention is that "a crystal part containing a large amount of dopant impurities, such as a cone part, a tail part, or a crystal defect such as a slip even though the diameter is satisfied, is less than the predetermined diameter.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

A process for producing a single crystal, comprising melting in a crucible a raw material containing at least unwanted portion resulting from single crystal ingots of 0.1 Ωcm or below resistivity pulled up according to the Czochralski method and once more forming a single crystal of 0.1 Ωcm or below resistivity according to the Czochralski method. This technique enables re-utilizing unwanted portion of crystals containing dopant impurities in high proportion which has been inevitably disposed of and enables saving of an expensive metal element required for growing crystals of low resistivity.

Description

明 細 書 単結晶の製造方法 技術分野  Description Single crystal manufacturing method Technical field
本発明は高品位単結晶ゥエーハと して製造されているェピタキシャルゥエーハ ゃァニールゥエーハの基板として用いられることの多い低抵抗率結晶及び低抵抗 率窒素ドープ結晶の製造方法に関する。 背景技術  The present invention relates to a method for producing a low resistivity crystal and a low resistivity nitrogen-doped crystal which are often used as a substrate for an epitaxy wafer which is manufactured as a high quality single crystal wafer. Background art
ェピタキシャルゥエーハは、 その優れた特性から広く個別半導体やバイポーラ Epitaxy wafers are widely used for individual semiconductors and bipolar
I C等を製造するゥエーハと して、 古くから用いられてきた。 また、 M O S L S I についても、 ソフ トエラーゃラッチアップ特性が優れている事から、 マイク 口プロセッサュニッ トゃフラ ッシュメモリデバイスに広く用いられている。 ェピ タキシャルゥエーハの優れた特性の一例と しては、 単結晶製造時に導入される、 いわゆる G r o w n— i n欠陥が実質的に存在しないので、 D R A Mの信頼性等 の不良が低減するということがあげられ、 需要はますます拡大している。 It has been used for a long time as an e-ha for manufacturing ICs. MOSLSI is also widely used in microphone-port processor units and flash memory devices because of its excellent soft error and latch-up characteristics. One example of the excellent properties of epitaxial wafers is that there is virtually no so-called row-in defect, which is introduced during the production of single crystals, thus reducing defects such as DRAM reliability. Demand is growing.
特にェピタキシャノレゥエーハの基板となるゥエーハの抵抗率を 0 . 1 Ω c m以 下と したェピタキシャル成長用低抵抗率ゥェ一ハは、 ラッチアップ特性が優れて いる上に、 基板がゲッタリ ング能力を備えているため益々重要性が高まってきて いる。 更にゲッタリ ング能力を高めるため窒素ドープすることなども提案されて 来ている (例えば特開 2 0 0 1 — 1 3 9 3 9 6号公報参照)。  In particular, a low resistivity wafer for epitaxy growth, in which the resistivity of the wafer that is the substrate of the epitaxy wafer is 0.1 Ωcm or less, has excellent latch-up characteristics and the substrate The importance of gettering capabilities is increasing. Further, it has been proposed to dope with nitrogen to enhance the gettering ability (see, for example, JP-A-2001-139396).
以上のような理由から、 低抵抗率結晶や低抵抗率結晶に更に窒素をドープした ような不純物を多く含んだ結晶の重要性が高まってきている。  For the above reasons, the importance of low resistivity crystals and crystals containing many impurities such as nitrogen doped in low resistivity crystals is increasing.
しかしながら、 低抵抗率結晶をチヨクラルスキー法 (C Z法) により育成する 際に、 ドーパントに関する特異な問題がある。 例えば、 P型低抵抗率結晶を育成 する場合には、 金属ボロン等のエレメ ン トを大量に消費するが、 これは純度の高 いものが得にく く、 純度が高くなると非常に高価なものになり、 結晶製造のコス トが髙くなつてしまう という問題点があった。 原料コス トを低減するための試みと して、 0 . 1 Ω c mより抵抗率が大きい通 常の抵抗率の結晶では、 窒素ドープ結晶のコーン部やテール部を再利用してパー テイクルモニター用ゥエーハと して用いることが提案されている (例えば特開 2However, when growing low resistivity crystals by the Czochralski method (CZ method), there are specific problems with dopants. For example, when growing a P-type low-resistivity crystal, elements such as metal boron are consumed in large quantities, but it is difficult to obtain a high-purity one, and if the purity is high, it becomes very expensive. And the cost of crystal production is increased. As an attempt to reduce the raw material cost, in the case of ordinary resistivity crystals with a resistivity greater than 0.1 Ωcm, the particle monitor is reused by reusing the cone and tail of the nitrogen-doped crystal. It has been proposed to use it as a wafer
0 0 1 - 3 3 2 5 9 号公報参照)。 0 0 1-3 3 2 5 9).
また、 通常の抵抗率の結晶では、 育成された結晶の定形直径を満たしていない コーン部やテール部、 定形直径は満たしていてもスリ ップが入っていたり、 抵抗 率規格に外れている部分等、 シリ コンゥエーハに加工できない部分を、 太陽電池 などの原料と して再利用することが提案されている (例えば特開 2 0 0 2— 1 0 4 8 9 7号公報参照)。  In the case of crystals with normal resistivity, cones and tails that do not satisfy the standard diameter of the grown crystal, and where the standard diameter is satisfied, there are slips or parts that do not meet the resistivity standard For example, it has been proposed to reuse parts that cannot be processed into silicon wafers as raw materials for solar cells and the like (see, for example, Japanese Patent Application Laid-Open No. 2002-108497).
上述のように抵抗率がそれほど低くない場合は、 パーティクルモニター用ゥェ ーハゃ太陽電池用ゥエーハと して再利用できた。 しかしながら、 0 . l Q c m以 下の低抵抗率結晶や、 低抵抗率結晶に更に窒素をドープした結晶は特定の用途に 使われる結晶であり、 多く のドーパント不純物が含まれているため、 これをパー テイクルモニターや太陽電池などに再利用した場合、 電気特性や欠陥特性が変化 してしまう という問題点があるため、 再利用が難しく廃棄処分にせざるを得なか つた  When the resistivity was not so low as described above, the wafer could be reused as a wafer for particle monitors and an wafer for solar cells. However, low-resistivity crystals of 0.1 Qcm or less and crystals further doped with nitrogen are crystals used for specific applications and contain many dopant impurities. When used for particle monitors, solar cells, etc., the electrical and defect characteristics change, which makes it difficult to reuse and has to be disposed of.
このように不純物を多く含んだ結晶においては、 定形直径に満たないコーン部 分'テール部分や、 定形直径は満たしていてもスリ ップや O S F等結晶欠陥が入 つていたり、 抵抗率規格や酸素濃度規格に外れているなど品質が要求を満たして いない部分などのいわゆる不要部分の再利用という点で問題があった。 発明の開示  In such a crystal containing a large amount of impurities, a cone portion that is less than the standard diameter, a tail portion, a crystal defect such as a slip or OSF even if the standard diameter is satisfied, or a resistivity standard or There was a problem in reusing so-called unnecessary parts, such as parts that do not meet quality requirements, such as being out of the oxygen concentration standard. Disclosure of the invention
本発明はこのような問題点に鑑みてなされたもので、 従来廃棄せざるを得なか つたドーパント不純物を多く含む低抵抗結晶の不要部分を再利用し、 かつ低抵抗 率結晶を育成するために必要な高価な金属ェレメ ン トの節約を図ることのできる 技術を提供することで、 これらの結晶製造コス トを下げるだけでなく、 環境にも 優しい結晶製造法を提供することを主たる目的とする。  The present invention has been made in view of such a problem, and is intended to reuse an unnecessary portion of a low-resistance crystal containing a large amount of dopant impurities, which had to be discarded in the past, and to grow a low-resistance crystal. The main purpose is to provide a technology that can reduce the cost of producing these crystals and also provide an environment-friendly crystal production method by providing technologies that can save the necessary expensive metal elements. .
上記課題を解決するための本発明は、 単結晶の製造方法であって、 少なく とも 、 チヨクラルスキー法によって引上げられた抵抗率 0 . 1 Ω c m以下の単結晶ィ ンゴッ トで派生する不要部分を含む原料をルツボで溶融し、 再度チヨクラルスキ 一法により抵抗率 0 . 1 Ω c m以下の単結晶を製造することを特徴とする単結晶 の製造方法である。 The present invention for solving the above-mentioned problems is directed to a method for producing a single crystal, which comprises at least a single crystal having a resistivity of 0.1 Ωcm or less pulled by the Cjochralski method. This is a method for producing a single crystal, characterized by melting a raw material containing an unnecessary portion derived from an ingot with a crucible and again producing a single crystal having a resistivity of 0.1 Ωcm or less by the Czochralski method.
このよ うに、 ドーパントを多く含む抵抗率 0 . 1 Ω c m以下の低抵抗率単結晶 インゴッ トで派生した不要部分を、 再度チヨクラルスキー法により抵抗率 0 . 1 Ω c m以下の低抵抗率単結晶を製造するための原料と して用いることで、 原料の 再利用を図ることができる。  In this way, unnecessary portions derived from a low-resistivity single-crystal ingot containing a large amount of dopant and having a resistivity of 0.1 Ωcm or less are again subjected to the Czochralski method to a low-resistance single-crystal having a resistivity of 0.1 Ωcm or less. By using it as a raw material for producing crystals, the raw material can be reused.
この場合、 前記不要部分は、 前記チヨクラルスキー法によって引上げられた単 結晶インゴッ トの内、 コーン部分、 テール部分、 スリ ップ転位、 O S Fや結晶欠 陥を有する部分、 抵抗率規格を満たさない部分、 酸素濃度規格を満たさない部分 の少なく とも 1つ以上の部分とすることができる。  In this case, the unnecessary portion is a portion having a cone portion, a tail portion, a slip dislocation, a portion having an OSF or a crystal defect, or a resistivity standard out of a single crystal ingot pulled up by the Czochralski method. At least one part, which does not satisfy the oxygen concentration standard, can be used.
このように、 従来は再利用が難しく廃棄処分にせざるを得なかった低抵抗率結 晶のコーン部等を、 再び低抵抗率結晶の原料と して用いることにより、 低抵抗率 結晶の再利用を図ることができ、 結晶製造コス トを下げることができる。  In this way, low-resistivity crystals can be reused by reusing low-resistivity crystal cones, etc., which were conventionally difficult to recycle and had to be disposed of, as raw materials for low-resistivity crystals. The cost of crystal production can be reduced.
この場合、 前記不要部分を原料と してルツボで溶融する際に、 単独あるいは未 使用の多結晶原料と混合して使用することで抵抗率を制御するために投入する ド 一パント量を低減可能とすることができる。  In this case, when the unnecessary portion is melted with a crucible as a raw material, it can be used alone or mixed with an unused polycrystalline raw material to reduce the amount of depant used to control the resistivity. It can be.
このよ うに、 すでに製造された単結晶インゴッ トで派生した不要部分のみ、 ま たは不要部分と未使用の多結晶原料とを混合することで、 再度製造する単結晶の 抵抗率を制御し、 所望の抵抗率の単結晶を得ることができ、 高価なドーパン トの 量を低減することが可能となる。  In this way, by controlling only the unnecessary portion derived from the already manufactured single crystal ingot, or by mixing the unnecessary portion with the unused polycrystalline raw material, the resistivity of the single crystal to be manufactured again is controlled, A single crystal having a desired resistivity can be obtained, and the amount of expensive dopant can be reduced.
この場合、 前記不要部分が派生するチョク ラルスキー法によって引上げられた 単結晶ィンゴッ トは、 ポロンがドープされた単結晶であることが好ましい。  In this case, the single crystal ingot pulled up by the Czochralski method from which the unnecessary portion is derived is preferably a single crystal doped with polon.
このよ うに、 不要部分が派生する単結晶ィンゴッ トがボロンを ドープされたも のであれば、 ボロンは偏析係数が約 0 . 8 と大きいため、 この不要部分を溶融し た原料中のポロンの多くが、 再製造する低抵抗率結晶の中に再び取り込まれるこ とになる。 そのため、 高価なボロンエレメ ン トの節約を図ることが可能となる。 この場合、 前記不要部分が派生するチヨクラルスキー法によって引上げられた 単結晶ィンゴッ トは、 窒素がドープされた単結晶とすることができる。 このように、 低抵抗率結晶に更に窒素をドープした単結晶ィンゴッ トの場合に は、 その結晶から派生する不要部分を再び低抵抗率窒素ドープ結晶用原料として 用いることができる。 窒素の場合、 偏析係数が 0 . 0 0 0 7と非常に小さいので 、 窒素ドープ結晶の不要部を再び窒素ドープ結晶用の原料と して用いても、 目標 の窒素ドープ濃度に対してほとんど影響を及ぼすことがなく、 窒素濃度に関して は全く調整の必要がないという利点がある。 In this way, if the single crystal ingot from which the unnecessary portion is derived is doped with boron, boron has a large segregation coefficient of about 0.8, so that most of the boron in the raw material that melts this unnecessary portion Will be re-introduced into the low resistivity crystal to be remanufactured. Therefore, it is possible to save expensive boron elements. In this case, the single-crystal ingot pulled up by the Czochralski method from which the unnecessary portion is derived can be a single crystal doped with nitrogen. As described above, in the case of a single crystal ingot obtained by further doping nitrogen into a low resistivity crystal, an unnecessary portion derived from the crystal can be used again as a raw material for a low resistivity nitrogen doped crystal. In the case of nitrogen, the segregation coefficient is very small, 0.0007, so even if an unnecessary portion of the nitrogen-doped crystal is used again as a raw material for the nitrogen-doped crystal, it hardly affects the target nitrogen doping concentration. This has the advantage that no adjustment is required for the nitrogen concentration.
この場合、 前記不要部分が派生するチョクラルスキー法によって引上げられた 単結晶ィンゴッ トの窒素濃度が 1 X 1 0 10〜 5 X 1 0 15個/ c m 3であることが好 ま しい。 In this case, it is preferable that the single crystal ingot pulled up by the Czochralski method from which the unnecessary portion is derived has a nitrogen concentration of 1 × 10 10 to 5 × 10 15 / cm 3 .
これは、, 結晶欠陥を制御するのに 1 X 1 0 1 Q個 Z c m 3以上の窒素濃度が必要 であり、 単結晶化の妨げにならない濃度と して 5 X 1 0 15個/ c m 3を越えない ことが必要であるから、 窒素ドープ結晶はこのような窒素濃度である場合が多い し、 また、 このような濃度であれば、 再度製造する結晶に悪影響を及ぼすことも ない。 This is because a nitrogen concentration of 1 × 10 1 Q pieces Z cm 3 or more is required to control crystal defects, and a concentration that does not hinder single crystallization is 5 × 10 15 pieces / cm 3 Therefore, the nitrogen-doped crystal often has such a nitrogen concentration, and such a concentration does not adversely affect the crystal to be manufactured again.
この場合、 前記不要部分が派生するチヨクラルスキー法によって引上げられた 単結晶ィンゴッ トまたは前記多結晶原料がシリ コンであることが好ましい。 このよ うに不要部分が派生する単結晶ィンゴッ トとこれに混合する多結晶原料 がシリ コンであれば、'例えば、 不要部分から作製したシリコン単結晶をェピタキ シャルゥエーハ用基板や高ゲッタリング基板と して、 半導体集積回路用基板と し て用いることが可能となる。  In this case, it is preferable that the single-crystal ingot or the polycrystalline raw material drawn by the Czochralski method from which the unnecessary portion is derived is silicon. If the single crystal ingot from which the unnecessary portion is derived and the polycrystalline raw material mixed with the single crystal ingot are silicon, for example, a silicon single crystal produced from the unnecessary portion may be used as a substrate for an epitaxial wafer or a high gettering substrate. Thus, it can be used as a substrate for a semiconductor integrated circuit.
以上説明したように、 本発明の単結晶の製造方法は、 従来、 不純物を多く含む ために廃棄せざるをえなかった結晶の不要部分を再利用し、 かつ低抵抗率結晶を 育成するために必要な高価な金属エレメントの節約を図ることのできる技術を提 供し、 これらの結晶製造コス トを下げるだけでなく、 環境にも優しい結晶製造法 を提供することができる。 図面の簡単な説明  As described above, the method for producing a single crystal of the present invention is intended to reuse an unnecessary portion of a crystal which had to be discarded because it contains a lot of impurities, and to grow a low resistivity crystal. By providing a technology that can save the necessary expensive metal elements, it is possible to not only reduce the cost of producing these crystals, but also to provide an environmentally friendly crystal production method. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の製造方法を示したフロー図である。  FIG. 1 is a flowchart showing the manufacturing method of the present invention.
図 2は、 本発明の方法で用いることができる単結晶育成装置及び H Zを模式的 に表した図である。 FIG. 2 schematically shows a single crystal growing apparatus and HZ that can be used in the method of the present invention. FIG.
図 3は、 未使用原料の場合と再利用原料の場合における単結晶の抵抗率軸方向 分布を測定した結果を示した図である。  FIG. 3 is a diagram showing the results of measuring the resistivity axial distribution of a single crystal in the case of an unused raw material and in the case of a recycled raw material.
図 4は、 原料の抵抗率と狙い抵抗率に対する金属ポロンエレメントの必要量を 表した図である。  Fig. 4 is a diagram showing the required amount of metal polon elements with respect to the resistivity of the raw material and the target resistivity.
図 5は、 計算上の窒素濃度の軸方向分布を示した図である。  FIG. 5 is a diagram showing a calculated nitrogen concentration axial distribution.
図 6は、 未使用原料の場合と再利用原料の場合における窒素濃度の S I M Sに よる測定結果を示した図である。  FIG. 6 is a diagram showing the measurement results of nitrogen concentration by SIMS in the case of an unused raw material and in the case of a recycled raw material.
図 7は、 未使用原料の場合と再利用原料の場合における窒素濃度計算値を比較 した図である。 発明を実施するための最良の形態  Figure 7 is a diagram comparing the calculated values of nitrogen concentration in the case of unused raw materials and the case of recycled raw materials. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明について詳細に説明する。  Hereinafter, the present invention will be described in detail.
前述したように、 従来は低抵抗率結晶用原料の再利用という点では問題があつ た。 それは、 従来は低抵抗率結晶インゴッ トで派生した不要部分を、 通常の抵抗 率の結晶と同様に、 パーティ クルモニター用ゥエーハゃ太陽電池用ゥエーハを製 造するために再利用しょう と していたからである。 ドーパント不純物を大量に含 んだ結晶の不要部分は、 電気特性や欠陥特性の制御という観点から、 パーテイク ルモニター用ゥエーハゃ太陽電池用ゥエーハなどの原料と して再利用することは 容易ではない。 もちろん、 これを通常育成している通常抵抗率の結晶原料と して 再利用することも、 同じく電気特性や欠陥特性を制御する上で大きな問題となる ので不可能である。  As mentioned above, there has been a problem in the past in terms of reusing raw materials for low resistivity crystals. This is because, in the past, unnecessary parts derived from low-resistivity crystal ingots were to be reused for manufacturing particle monitors, solar cells, and solar cells, similar to ordinary resistivity crystals. is there. Unnecessary parts of crystals containing a large amount of dopant impurities are not easy to reuse as raw materials for particle monitors, solar cells, solar cells, etc. from the viewpoint of controlling electrical and defect characteristics. Of course, it cannot be reused as a crystal material with normal resistivity that is usually grown, because it also poses a major problem in controlling electrical and defect properties.
そこで本発明者らは、 ドーパント不純物を多く含む結晶の不要部分を、 同じド 一パント不純物を多く含ませる低抵抗率結晶用の原料と して用いることで、 再利 用を図ることを初めて発想した。 この方法であれば、 通常抵抗率の結晶原科と し て再利用する場合とは異なり、 再利用原料から製造された結晶の電気特性や欠陥 特性の変化が小さいので、 再利用が可能となる。 もし、 ドーパン ト不純物が必要 より多く含まれている結晶インゴッ トの不要部分を再利用する場合であっても、 結晶成長時には偏析現象があるため、 不純物を含んだ原料融液からはある一定割 合でしか、 結晶中に取り込まれないという特徴がある。 したがって、 この現象を 利用することによって、 ドーパント不純物を多く含んだ不要部分を溶融してもそ の一部が再製造する結晶に取り込まれるだけとなり、 所望の抵抗率の低抵抗率結 晶と して再利用することが可能である。 Therefore, the present inventors have for the first time conceived the idea of reusing the unnecessary portion of a crystal containing a large amount of dopant impurities as a raw material for a low resistivity crystal containing a large amount of the same dopant impurity. did. With this method, unlike in the case of reusing as a crystal family with normal resistivity, the change in the electrical and defect characteristics of the crystal manufactured from the recycled material is small, so that it can be reused. . Even if unnecessary parts of the crystal ingot containing more dopant than necessary are reused, there is a segregation phenomenon during crystal growth, so a certain percentage of the raw material melt containing impurities is used. It has the characteristic that it is not incorporated into the crystal only if it is. Therefore, by utilizing this phenomenon, even if an unnecessary portion containing a large amount of dopant impurities is melted, only a part of the portion is taken into the crystal to be remanufactured, and as a low resistivity crystal having a desired resistivity, It can be reused.
一方、 ドーパント不純物が必要より少ない量しか含まれていない結晶イ ンゴッ トの不要部分を再利用する場合であっても本発明は効果を発揮する。 前述したよ うに、 結晶成長時には偏析現象が生じるため、 溶融液に含まれる ドーパン トのう ちある一定割合でしか結晶中には取り込まれない。 この割合を表したものが偏析 係数である。 しかし、 例えば P型低抵抗率結晶ではボロンをドーパン ト と して用 いるが、 この偏析係数は約 0 . 8 と比較的大きい。 従って、 ボロンドープ低抵抗 率結晶の不要部分を溶融した原料の中に含まれるポロンの多く力 再製造する結 晶の中に取り込まれることとなる。 そのため、 必要な抵抗率の結晶を再製造する ために追加しなければならないボロンの量は著しく少なくなり、 高価な金属ポロ ンエレメン トの節約を図ることが可能となる。  On the other hand, the present invention is effective even when an unnecessary portion of a crystal ingot containing a smaller amount of dopant impurities than necessary is reused. As described above, segregation occurs during crystal growth, and only a certain percentage of the dopant contained in the melt is incorporated into the crystal. This ratio is the segregation coefficient. However, for example, in a P-type low resistivity crystal, boron is used as a dopant, but its segregation coefficient is relatively large, about 0.8. Therefore, unnecessary portions of the boron-doped low-resistivity crystal are incorporated into the crystal to be remanufactured by a large amount of boron contained in the molten raw material. As a result, the amount of boron that must be added to re-manufacture a crystal having the required resistivity is significantly reduced, and it is possible to save expensive metal por- tion elements.
このよ うに、 低抵抗率結晶において抵抗率をコントロールする際に、 低抵抗率 結晶ィンゴッ トの不要部分を再び低抵 率結晶用原料と して用いることによって 、 投入すべき ド一パン トを軽減することが可能である。  In this way, when controlling the resistivity of the low-resistivity crystal, the unnecessary portion of the low-resistivity crystal ingot is used again as a raw material for the low-resistivity crystal, thereby reducing the amount of dopant to be supplied. It is possible to do.
以上のように、 再製造する結晶の特性および原料の節約という点から、 低抵抗 率結晶ィンゴッ トから派生した不要部分は、 再び低抵抗率結晶用原料と して用い ることが、 非常に有効である。  As described above, it is very effective to reuse unnecessary parts derived from low-resistivity crystal ingots again as raw materials for low-resistivity crystals in terms of the properties of recrystallized crystals and saving of raw materials. It is.
また、 低抵抗率結晶の不要部分を再び低抵抗率結晶用原料と して再利用を図る 際に、 低抵抗率結晶から得られた不要部分ばかりでなく、 これと未使用の純粋な 多結晶原料とを混ぜ合わせて使用することで所望の抵抗率を狙うことができる。 例えば、 ある一定の抵抗率の結晶ィンゴッ トのテール部ばかりから得られた原料 から再度結晶を育成すると、 その再製造した結晶の抵抗率はもとの結晶の抵抗率 より低くなつてしまう可能性がある。 そこで、 低抵抗率結晶の不要部分に、 未使 用の純粋な多結晶原料を混ぜ合わせることで、 所望の抵抗率を得ることができる 以上の様な低抵抗率結晶の抵抗率範囲と しては 0 . 0 0 1 。 ^から 0 . 1 Ω c mであることが好ましい。 0 . 0 0 1 Ω c m以下の抵抗率では単結晶化しにく くなるという問題があるし、 0 . 1 Ω c mより大きい抵抗率ではエレメ ン トの節 約効果が小さいためである。 さらに、 0 . 1 Ω c m以下の結晶インゴッ トの不要 部分を通常の抵抗率の結晶用原料やパーティクルモニター等に再利用しょう とす ると、 電気特性や欠陥特性が大きく変化するため、 0 . l Q c m以下の結晶の不 要部分を再利用する際には、 再度、 0 . 1 Ω c m以下の低抵抗率結晶用原料と し て用いることが好ましい。 Also, when the unnecessary portion of the low resistivity crystal is reused as a raw material for the low resistivity crystal again, not only the unnecessary portion obtained from the low resistivity crystal but also the unused pure polycrystal are used. A desired resistivity can be aimed at by mixing and using the raw materials. For example, if a crystal is grown again from raw material obtained only from the tail of a crystal ingot with a certain resistivity, the resistivity of the remanufactured crystal may be lower than that of the original crystal. There is. Therefore, a desired resistivity can be obtained by mixing unused pure polycrystalline raw materials with unnecessary portions of the low-resistivity crystal. Is 0.001. ^ From 0.1 Ω cm. This is because it is difficult to form a single crystal at a resistivity of less than 0.01 Ωcm, and the effect of element saving is small at a resistivity of more than 0.1 Ωcm. Further, if an unnecessary portion of a crystal ingot of 0.1 Ωcm or less is reused as a material for a crystal having a normal resistivity or a particle monitor, the electrical characteristics and defect characteristics are greatly changed. When reusing an unnecessary portion of a crystal of l Q cm or less, it is preferable to use the crystal as a raw material for a low resistivity crystal of 0.1 Ω cm or less again.
また、 低抵抗率結晶に更に窒素を ドープした結晶の場合には、 その結晶から得 られる不要部分を再ぴ低抵抗率窒素ドープ結晶用原料と して用いることができる 。 窒素の場合、 偏析係数が 0 . 0 0 0 7と非常に小さいので、 窒素ドープ結晶の 不要部を再び窒素ドープ結晶用の原料と して用いても、 目標の窒素ドープ濃度に 対して、 ほとんど影響を及ぼすことがないのが利点である。  Further, in the case of a crystal obtained by further doping nitrogen into a low-resistivity crystal, an unnecessary portion obtained from the crystal can be used as a raw material for a low-resistivity nitrogen-doped crystal. In the case of nitrogen, the segregation coefficient is very small, 0.0007, so even if an unnecessary portion of the nitrogen-doped crystal is used again as a raw material for the nitrogen-doped crystal, the nitrogen-doped crystal has almost no effect on the target nitrogen doping concentration The advantage is that it has no effect.
すなわち窒素濃度に関しては、 ドーパン トによる抵抗率コントロ一ルのよ うに ドーパン ト量を調整したり、 未使用の純粋な多結晶原料を加えたり、 という様な 配慮が全く必要でない。 従って、 窒素ドープ低抵抗率結晶の不要部を窒素ドープ 低抵抗率結晶に再利用する際には、 窒素濃度に関しては全く調整の必要がない。 以下、 本発明についてさらに具体的に説明するが、 本発明はこれらに限定され るものではない。  In other words, with regard to the nitrogen concentration, no consideration is required at all, such as adjusting the dopant amount as in the resistivity control by the dopant or adding an unused pure polycrystalline raw material. Therefore, when the unnecessary portion of the nitrogen-doped low resistivity crystal is reused for the nitrogen-doped low resistivity crystal, there is no need to adjust the nitrogen concentration at all. Hereinafter, the present invention will be described more specifically, but the present invention is not limited thereto.
図 1は、 本発明の製造方法を示したフロー図である。 まずチヨクラルスキー法 によって抵抗率 0 . 1 Ω c m以下の単結晶インゴッ ト 1 を引上げる。 この単結晶 インゴッ ト 1から製品となる直胴部 2を取り出すと、 不要部分 1 0であるコーン 部分 3、 テール部分 4が派生する (図 1 ( a ) )。 この他にも、 単結晶インゴッ ト 1の内、 スリ ップ転位、 O S Fや結晶欠陥を有する部分、 抵抗率規格を満たさな い部分、 酸素濃度規格を満たさない部分等の不要部分 1 0が派生する。  FIG. 1 is a flowchart showing the manufacturing method of the present invention. First, a single crystal ingot 1 with a resistivity of 0.1 Ω cm or less is pulled up by the Chiyoklarski method. When the straight body part 2 as a product is taken out of the single crystal ingot 1, a cone part 3 and a tail part 4, which are unnecessary parts 10, are derived (Fig. 1 (a)). In addition, unnecessary portions 10, such as portions having slip dislocations, OSFs and crystal defects, portions not meeting the resistivity standard, and portions not meeting the oxygen concentration standard, are derived from the single crystal ingot 1. I do.
次に、 これらの不要部分をルツボ 5で溶融し、 再度、 抵抗率 0 . Ι Ω ο ηι以下 の単結晶を製造するための原料融液 6 とする (図 1 ( b ) )。 この時、 狙いの低抵 抗率となるように未使用の多結晶原料 7や金属エレメ ン ト (ボロン、 リ ン、 アン チモン等) 等を添加して混合、 溶融することができる。  Next, these unnecessary portions are melted in a crucible 5 to obtain again a raw material melt 6 for producing a single crystal having a resistivity of less than 0.1 ΩΩοηι (FIG. 1 (b)). At this time, unused polycrystalline raw material 7 and metal elements (boron, phosphorus, antimony, etc.) can be added, mixed, and melted so as to obtain a target low resistivity.
そして、 この原料融液 6により、 再度、 チヨクラルスキー法を用いて、 抵抗率 0 . 1 Ω c m以下の単結晶イ ンゴッ ト 1 1を製造する (図 1 ( c ) )。 この再製造 した単結晶ィンゴッ ト 1 1からも、 製品となる直胴部 1 2を取り出すと、 コーン 部分 1 3、 テール部分 1 4等の不要部分 2 0が派生するが、 この不要部分 2 0も 上記工程を繰り返すことにより、 原料の再利用を図ることができる。 Then, using the raw material melt 6, the resistivity is again determined using the Chiyoklarski method. A single crystal ingot 11 of 0.1 Ωcm or less is manufactured (Fig. 1 (c)). From the remanufactured single crystal ingot 11, if the straight body part 12 as a product is taken out, unnecessary parts 20 such as a cone part 13 and a tail part 14 are derived, but this unnecessary part 20 By repeating the above steps, the raw materials can be reused.
なお、 上記工程間において、 製造の都合により、 洗浄等の工程が追加される場 合があり得る。  It should be noted that a step such as washing may be added between the above steps due to manufacturing reasons.
チヨクラルスキー法により、 単結晶インゴッ トを製造する場合には、 例えば、 図 2に示した単結晶育成装置を用いることができる。 この単結晶育成装置 3 0で は、 ホッ トゾーン (H Z ) が揷入されるチャ ンパ 3 2にルツボ 3 5が装備されて おり、 その周囲を囲繞するヒータ 3 3が設けられている。 ルツボ 3 5内に前述の 低抵抗率結晶ィンゴッ トの不要部分を含む原料を入れ、 ヒータ 3 3により加熱溶 融し、 原料融液 3 6 とする。 この時、 必要に応じて狙いの低抵抗率となるように 未使用の多結晶原料と必要に応じて金属エレメントが調整されて溶融される。 ルツボ 3 5内の融液 3 6の液面に種結晶 3 4を浸漬した後、 溶融液から棒状の 単結晶 3 1が引き上げられる。 ルツボ 3 5は結晶成長軸方向に昇降可能であり、 結晶成長中に結晶化して減少した融液の液面下降分を捕うように該ルツボ 3 5を 上昇させる。 これにより、 融液 3 6の表面の高さは常に一定に保たれる。 この場 合、 原料融液 3 6に磁場が印加される M C Z法が用いられることもある。  When a single crystal ingot is manufactured by the Czochralski method, for example, the single crystal growing apparatus shown in FIG. 2 can be used. In this single crystal growing apparatus 30, a crucible 35 is provided in a champ 32 into which a hot zone (H Z) is inserted, and a heater 33 surrounding the crucible 35 is provided. The raw material containing the unnecessary portion of the low resistivity crystal ingot is put into the crucible 35 and is heated and melted by the heater 33 to obtain a raw material melt 36. At this time, the unused polycrystalline raw material and the metal element are adjusted and melted as necessary so that the target low resistivity is obtained. After immersing seed crystal 34 in the liquid surface of melt 36 in crucible 35, rod-shaped single crystal 31 is pulled out of the melt. The crucible 35 can move up and down in the direction of the crystal growth axis, and raises the crucible 35 so as to capture the lowering of the liquid level of the melt that has crystallized and decreased during the crystal growth. Thereby, the height of the surface of the melt 36 is always kept constant. In this case, the MCZ method in which a magnetic field is applied to the raw material melt 36 may be used.
製造された単結晶 3 1は、 ス リ ップ、 O S F、 抵抗率、 酸素濃度等の品質が要 求を満たしているか検査され、 このような品質を満たしていない部分や、 結晶の コーン部分およびテール部分が、 前述のように低抵抗率結晶用原料として再利用 される。 以下、 実施例を示して本発明をより具体的に説明するが、 本発明はこれらに限 定されるものではない。  The manufactured single crystal 31 is inspected to see if its quality such as slip, OSF, resistivity, oxygen concentration, etc. meets the requirements. The tail portion is reused as a raw material for the low resistivity crystal as described above. Hereinafter, the present invention will be described more specifically with reference to Examples, but the present invention is not limited thereto.
(実施例 1 )  (Example 1)
図 2に概略図を示したチヨクラルスキー法による単結晶育成装置のホッ トゾー ンに直径 3 2イ ンチ ( 8 0 0 m m ) のルツボを装備して、 直径 1 2イ ンチ ( 3 0 0 m m ) のシリ コン単結晶を育成した。 未使用の純粋な多結晶シリ コン原料を 3 2 0 k gルツボへチャージした。 このルツボから、 中心磁場強度 3 5 0 0 Gの水 平磁場を印加しながら、 直胴長さ約 1 2 0 c mの結晶を育成した。 この時、 抵抗 率が結晶の直胴長さ O c m (結晶肩部) の位置で 0. 0 0 8 Q c mとなるように 金属ポロンエレメ ントをドープした。 The hot zone of the single-crystal growth apparatus using the Czochralski method whose schematic diagram is shown in Fig. 2 is equipped with a crucible having a diameter of 32 inches (800 mm) and a diameter of 12 inches (300 mm). ) Silicon single crystal was grown. Unused pure polycrystalline silicon raw material 3 Charged 20 kg crucible. From this crucible, a crystal having a straight body length of about 120 cm was grown while applying a horizontal magnetic field having a central magnetic field strength of 350 G. At this time, the metal polon element was doped so that the resistivity was 0.008 Qcm at the position of the straight body length O cm (crystal shoulder) of the crystal.
この結晶から約 2 5 c Hi毎にゥエーハ状のサンプルを採取して、 抵抗率を測定 した。 その結果、 図 3に示すように結晶の長さ方向に抵抗率が低下し、 直胴長さ 約 1 2 0 c m (肩部から 1 2 0 c m) で 0. 0 0 6 Q c mなる結晶が得られた。 次に、 再利用原料の平均的な抵抗率と して 0. 0 1 2 9 Q c mとなるよ うに、 低抵抗率結晶の定形直径に満たないコ一ン部分'テール部分及び定形直径は満た していてもス リ ツプ等の結晶欠陥が入っていたり品質が要求を満たしていない部 分を 3 2 0 k g集め、 これを原料として使える程度の大きさに碎き、 洗浄を行つ た。 そして、 上記で用いた単結晶育成装置を用いて、 中心磁場強度 3 5 0 0 Gの 水平磁場を印加し、 3 2 0 k gの再利用原料から、 直胴長さ約 1 2 0 c m、 直径 1 2インチ ( 3 0 0 mm) のシリ コン単結晶を再度 2本育成した。 この時の抵抗 率が結晶 0 c mで 0. 0 0 8 Ω c mとなるよ うに金属ボロンエレメ ン トを添カロし た。  A sample in the form of a wafer was taken from the crystal every 25 c Hi, and the resistivity was measured. As a result, as shown in Fig. 3, the resistivity decreases in the length direction of the crystal, and a crystal with a straight body length of about 120 cm (120 cm from the shoulder) and a thickness of 0.06 Q cm is formed. Obtained. Next, the cone part, tail part and regular diameter that are less than the regular diameter of the low-resistivity crystal are satisfied so that the average resistivity of the recycled material is 0.0129 Qcm. Even if it was used, 320 kg of parts that had crystal defects such as slips or did not meet the quality requirements were collected, crushed to a size that could be used as a raw material, and washed. . Then, using the single crystal growing apparatus used above, a horizontal magnetic field with a center magnetic field strength of 350 G was applied, and a straight body length of about 120 cm and a diameter of 320 kg of the recycled material were obtained. Two 12-inch (300 mm) silicon single crystals were grown again. At this time, a metal boron element was added so that the resistivity became 0.08 Ωcm for the crystal of 0 cm.
ここでボロンの場合、 その偏析係数は約 0 . 8 と比較的大きい。 そのため、 原 料溶融液に含まれるボロンが、 再製造する結晶中に効率的に入って行く。 従って 、 低抵抗率結晶から用意した再利用原料を使う場合、 金属ボロンエレメ ン トを節 約することが可能である。  Here, in the case of boron, its segregation coefficient is relatively large, about 0.8. Therefore, boron contained in the raw material melt efficiently enters the crystal to be remanufactured. Therefore, when a recycled material prepared from a low resistivity crystal is used, the metal boron element can be saved.
図 4に、 狙いの抵抗率に対して、 原料の抵抗率の比を取った場合、 純粋な未使 用原料を用いた場合の何%の金属ポロンを投入すれば良いかを示した。 本実施例 1の場合、 狙いの抵抗率 0 . 0 0 8 Ω c mに対して、 不要部分を再利用した原料 の抵抗率は 0. 0 1 2 9 Q c mであるので、 その比は 0 . 0 1 2 9 / 0. 0 0 8 = 1 . 6 1 2 5 となる。 したがって、 図 4より、 純粋な未使用原料を用いた場合 の約 5 8 %の金属ボロンエレメン トを投入すれば良いことがわかる。 すなわち金 属ボロ ンエ レメ ン トの節約量は 4 2 %にもなる。  Fig. 4 shows what percentage of the metal polon should be added when the ratio of the resistivity of the raw material to the target resistivity is used and pure unused raw material is used. In the case of the first embodiment, the resistivity of the raw material obtained by reusing the unnecessary portion is 0.012 Qcm, whereas the target resistivity is 0.008 Ωcm, and the ratio is 0.02 Qcm. 0 1 2 9/0. 0 0 8 = 1.6 1 2 5 Therefore, from Fig. 4, it is clear that about 58% of the metal boron element in the case of using a pure unused raw material should be introduced. In other words, the savings in metal boron elements can be as much as 42%.
そして、 実際に再製造された単結晶の抵抗率を、 前述した未使用原料から製造 された単結晶と同様に測定したところ、 図 3に実線で示したよ うに、 この実施例 1で不要部分から再製造したシリコン単結晶は、 抵抗率分布が未使用の原料を用 いたものと同等なものであり、 再利用に耐えるものであった。 Then, the resistivity of the actually remanufactured single crystal was measured in the same manner as for the single crystal manufactured from the unused raw material described above, and as shown by the solid line in FIG. The silicon single crystal re-manufactured from unnecessary parts in 1 had a resistivity distribution equivalent to that of unused raw materials, and was resistant to reuse.
(実施例 2 ) (Example 2)
次に実施例 1で育成した結晶と同様のシリ コン結晶から不要部分を集めて、 こ れを原料と して使える程度の大きさに碎き、 洗浄を行った。 3 2 0 k gの原料の うち約 8 5 %をこの不要部分からの再利用原料と し、 残りの 1 5 %を純粋な未使 用の多結晶を原料と した。 これらの原料を用い、 実施例 1で用いた単結晶育成装 置を用いて、 中心磁場強度 3 5 0 0 Gの水平磁場を印加し、 直胴長さ約 1 2 0 c m、 直径 1 2インチ ( 3 0 0 m m ) のシリ コン単結晶を再度 2本育成した。 この 時、 金属ボロンエレメ ン トはドープしなかった。 そのため、 本実施例 2における 金属ポロンエレメン トの節約量は 1 0 0 %である。  Next, unnecessary parts were collected from the same silicon crystal as the crystal grown in Example 1, and this was ground into a size that could be used as a raw material, and washed. Approximately 85% of the 320 kg raw material was recycled from this unnecessary portion, and the remaining 15% was made from pure unused polycrystal. Using these raw materials, a horizontal magnetic field having a central magnetic field strength of 350 G was applied using the single crystal growing apparatus used in Example 1 to obtain a straight body length of about 120 cm and a diameter of 12 inches. Two (300 mm) silicon single crystals were grown again. At this time, the metal boron element was not doped. Therefore, the amount of saving of the metal porous element in the second embodiment is 100%.
そして、 実際に再製造された単結晶の抵抗率を、 前述した未使用原料から製造 された単結晶と同様に測定したところ、 図 3に破線で示したように、 この実施例 2で不要部分から再製造したシリ コン単結晶も、 抵抗率分布が未使用の原料を用 いたものと同等なものであり、 再利用に耐えるものであった。  Then, the resistivity of the actually remanufactured single crystal was measured in the same manner as for the single crystal manufactured from the above-mentioned unused raw material. As shown by the broken line in FIG. The silicon single crystal remanufactured from Japan also had a resistivity distribution equivalent to that using unused raw materials, and was resistant to reuse.
以上のように、 低抵抗率結晶インゴッ トから派生した不要部分は、 低抵抗率結 晶用原料と して用いることが可能である。 ボロンの偏析係数は約 0 . 8 と比較的 大きい。 従って、 低抵抗率結晶から得られた不要部分を溶融した原料の中に含ま れるボロンが、 再び再製造する単結晶の中に取り込まれることとなり、 高価な金 属ボロンエレメ ントの節約を図ることが可能となる。 またこの際に、 場合によつ ては、 未使用の純粋な原料を混ぜ合わせることによって、 所望の抵抗率を得るこ とが可能となる。 (実験)  As described above, the unnecessary portion derived from the low resistivity crystal ingot can be used as a raw material for low resistivity crystallization. The segregation coefficient of boron is relatively large, about 0.8. Therefore, the boron contained in the raw material obtained by melting the unnecessary portion obtained from the low resistivity crystal is incorporated into the single crystal to be re-manufactured, thereby saving expensive metal boron elements. It becomes possible. At this time, in some cases, a desired resistivity can be obtained by mixing unused pure materials. (Experiment)
次に窒素をドープした結晶の不要部分を、 再度窒素ドープ結晶用の原料と して 用いた場合の影響を調べるための実験を行った。 窒素濃度の調査は、 低抵抗率結 晶ではできないので、 この実験は 1 0 Ω c m以上の通常抵抗率の結晶で行った。 実施例 1および実施例 2で用いた単結晶育成装置を用いて、 中心磁場強度 3 5 0 0 Gの水平磁場を印加し、 3 2 0 k gの未使用の純粋な多結晶原料から、 直胴 長さ約 1 2 0 c m、 直径 1 2イ ンチ ( 3 0 0 HI m ) のシリ コン単結晶を育成した 。 このとき窒化膜付きシリ コンゥエーハを原料とともにルツボに仕込むことで、 窒素をドープした。 狙いの窒素濃度は結晶の直胴部 O c mのところで 3 X 1 013 個ノ c m 3であった。 窒素の場合、 偏析係数が 0. 0 0 0 7 と非常に小さな値で ある。 従って上述の結晶における計算上の窒素濃度は図 5に示すようになり、 直 胴長さにともなって高くなる。 Next, an experiment was conducted to investigate the effect of using the unnecessary part of the nitrogen-doped crystal again as a raw material for the nitrogen-doped crystal. Since the nitrogen concentration cannot be investigated with low resistivity crystals, this experiment was performed with normal resistivity crystals of 10 Ωcm or more. Using the single crystal growing apparatus used in Example 1 and Example 2, the central magnetic field strength 3 5 A horizontal magnetic field of 0 G is applied, and 320 kg of unused pure polycrystalline raw material is used to produce a silicon with a straight body length of about 120 cm and a diameter of 12 inches (300 HI m). Single crystals were grown. At this time, nitrogen was doped by charging the silicon wafer with the nitride film together with the raw materials into the crucible. The target nitrogen concentration was 3 × 10 13 cm 3 at the straight body portion O cm of the crystal. In the case of nitrogen, the segregation coefficient is as small as 0.0007. Therefore, the calculated nitrogen concentration in the above crystal becomes as shown in Fig. 5, and it increases with the length of the cylinder.
この結晶のテール部分と直胴部との境界に近い部分から、 サンプルを採取して 、 S I M Sにて窒素濃度を測定した。 測定には同様の結晶 4本から採取した 4つ のサンプルを用いた。 その結果、 図 6に示したよ うに、 窒素濃度平均値はほぼ 1 . 2 X 1 014個 Z c m3.であった。 これは、 図 5に示したサンプル採取部分での 計算値 1 . 0 X 1 014個 Z c m3と比較して、 S I M Sの窒素濃度測定精度から 考慮すると、 狙い通りの窒素ドープができていることが判る。 A sample was taken from a portion near the boundary between the tail portion and the straight body portion of the crystal, and the nitrogen concentration was measured by SIMS. Four samples taken from four similar crystals were used for the measurement. As a result, as shown in FIG. 6, the average value of the nitrogen concentration was approximately 1.2 × 10 14 Z cm 3 . This compares with calculated values 1. 0 X 1 0 14 atoms Z cm 3 at sampling portion shown in FIG. 5, when considering from the nitrogen concentration measurement accuracy of SIMS, and it is the nitrogen doping as aimed You can see that.
また、 窒素濃度以外の結晶特性として、 酸素濃度、 O S F、 ライフタイム、 F P D (G r o w n— i n欠陥) の特性も調査した。  The crystal properties other than nitrogen concentration, such as oxygen concentration, OSF, lifetime, and FPD (Grown-in defect) were also investigated.
次に、 上記のように育成した結晶ィンゴッ トのコーン部分及びテール部分を集 めて、 これを原料と して使える程度の大きさに砕き、 洗浄を行った。 これを 3 2 O k g分集め、 原料と してこの再利用原料を用いたことを除いては、 前述の未使 用原料により製造したときと全く同じ条件で直胴長さ約 1 2 0 c m、 直径 1 2ィ ンチ ( 3 0 0 mm) のシリ コン単結晶を育成した。 Next, the cone and tail portions of the crystal ingot grown as described above were collected, crushed to a size that could be used as a raw material, and washed. Except that this was collected for 32 O kg and this recycled material was used as a raw material, the straight body length was about 120 c under exactly the same conditions as when it was manufactured from the above-mentioned unused raw material. m, were grown silicon single crystal having a diameter of 1 2 I inch (3 0 0 mm).
ここで仮に、 前述の未使用原料で育成した結晶インゴッ トの内、 テール部分先 端の最も窒素濃度の高い部分 (:〜 1 . 2 X 1 014個 Z c m3)のみを 3 2 0 k g集 めて、 再度結晶を育成した場合の窒素濃度を計算した。 図 7に未使用原料の場合 と再利用原料の場合における直胴 0 c mと直胴 1 2 0 c mでの窒素濃度の計算値 を示した。 上述したように窒素の偏析係数は非常に小さいため、 未使用原料と再 利用原料を用いた場合の差は 0. 3。/。以内と非常に小さいことがわかる。 Here if, among the crystal Ingo' bets were grown in the above-mentioned unused raw material, portion having the highest concentration of nitrogen tail destination end (:. ~ 1 2 X 1 0 14 atoms Z cm 3) only 3 2 0 kg When they were collected and the crystal was grown again, the nitrogen concentration was calculated. Fig. 7 shows the calculated values of the nitrogen concentration at a straight body of 0 cm and a straight body of 120 cm in the case of unused raw materials and the case of recycled raw materials. As mentioned above, the segregation coefficient of nitrogen is very small, so the difference between unused and recycled materials is 0.3. /. It turns out that it is very small within.
そして、 実際に再利用原料で育成した結晶のテール部分と直胴部の境界に近い 部分から、 サンプルを採取して、 S I M Sにて窒素濃度を測定し、 前述の未使用 原料から製造された結晶の値と比較した。 その結果、 図 6に示したように、 窒素 濃度は 1 . 1 X 1 0 14個 Z c m 3であった。 これは、 S I M Sの測定精度を考慮 すると、 未使用原料から製造された結晶と同濃度であると言える。 Then, a sample was taken from the part near the boundary between the tail part and the straight body part of the crystal actually grown from the recycled material, and the nitrogen concentration was measured by SIMS. Was compared with the value. As a result, as shown in Fig. 6, The concentration was 1.1 × 10 14 Z cm 3 . This can be said to be the same concentration as crystals produced from unused raw materials, taking into account the measurement accuracy of SIMS.
なお窒素濃度以外の結晶特性と して、 酸素濃度、 O S F、 ライフタイム、 F P D ( G r o w n— i n欠陥) の特性を調査したが、 いずれも未使用原料から製造 された結晶と同じ特性を示した。  Oxygen concentration, OSF, lifetime, and FPD (Grown-in defect) characteristics were investigated as crystal characteristics other than nitrogen concentration, and all showed the same characteristics as crystals manufactured from unused raw materials. .
以上の様に、 窒素ドープ結晶から得られた不要部分を、 再度、 窒素ドープ結晶 用原料と して用いることが可能である。 窒素の場合、 偏析係数が 0 . 0 0 0 7 と 非常に小さいので、 窒素ドープ結晶の不要部分を再び窒素ドープ結晶用の原料と して用いても、 目標の窒素ドープ濃度に対して、 ほとんど影響を及ぼすことがな い。  As described above, the unnecessary portion obtained from the nitrogen-doped crystal can be used again as a raw material for the nitrogen-doped crystal. In the case of nitrogen, the segregation coefficient is very small, 0.0007, so even if an unnecessary portion of the nitrogen-doped crystal is used again as a raw material for the nitrogen-doped crystal, the nitrogen-doped crystal will almost never reach the target nitrogen doping concentration. Has no effect.
なお、 上記実験は測定の関係で通常の抵抗率の結晶を用いて行なったが、 0 . 1 Ω c m以下の低抵抗率結晶でも、 実質的に同様の結果が得られることが予想さ れる。 したがって、 低抵抗率結晶に更に窒素をドープした結晶インゴッ トから派 生した不要部分を、 再度、 低抵抗率窒素ドープ結晶の原料として用いることがで きることを意味する。 なお、 本発明は、 上記実施形態に限定されるものではない。 上記実施形態は、 例示であり、 本発明の特許請求の範囲に記載された技術的思想と実質的に同一な 構成を有し、 同様な作用効果を奏するものは、 いかなるものであっても本発明の 技術的範囲に包含される。  Although the above experiment was performed using a crystal having a normal resistivity for measurement, substantially the same result is expected to be obtained with a crystal having a low resistivity of 0.1 Ω cm or less. Therefore, it means that the unnecessary portion derived from the crystal ingot obtained by further doping the low resistivity crystal with nitrogen can be used again as a raw material of the low resistivity nitrogen doped crystal. Note that the present invention is not limited to the above embodiment. The above embodiment is an exemplification, and has substantially the same configuration as the technical idea described in the claims of the present invention. It is included in the technical scope of the invention.
例えば、 本発明の上記実施形態では、 水平磁場を印加した直径 1 2インチ ( 3 0 0 m m ) のシリ コン単結晶について説明した。 しかしながら、 今回の再利用原 料は、 磁場の有無や結晶直径、 更にドーパントの種類に影響されるものではなく 、 0 . 1 Ω c m以下の低抵抗率結晶であれば、 どのような場合にも応用が可能で ある。 従って本発明の主旨である、 「ドーパント不純物を多く含む結晶から得ら れた定形直径に満たないコーン部分、 テール部分、 定形直径は満たしていてもス リ ップ等の結晶欠陥が入っていたり抵抗率規格や酸素濃度規格から外れた品質が 要求を満たしていない部分などの不要部分を、 再びドーパント不純物を多く含ん だ結晶用原料と して用いる」 ことと同様のものは本発明の範囲に包含される。  For example, in the above embodiment of the present invention, a silicon single crystal having a diameter of 12 inches (300 mm) to which a horizontal magnetic field is applied has been described. However, this reused material is not affected by the presence or absence of a magnetic field, the crystal diameter, and the type of dopant, and is not limited to a low resistivity crystal of 0.1 Ωcm or less. Application is possible. Accordingly, the gist of the present invention is that "a crystal part containing a large amount of dopant impurities, such as a cone part, a tail part, or a crystal defect such as a slip even though the diameter is satisfied, is less than the predetermined diameter. Unnecessary parts, such as parts whose quality deviates from resistivity standards and oxygen concentration standards and do not satisfy requirements, are used again as a raw material for crystals containing a large amount of dopant impurities '' are within the scope of the present invention. Included.

Claims

請 求 の 範 囲 The scope of the claims
1 . 単結晶の製造方法であって、 少なく とも、 チヨクラルスキー法によって引 上げられた抵抗率 0 . 1 Ω c m以下の単結晶ィンゴッ トで派生する不要,部分を含 む原料をルツボで溶融し、 再度チヨク ラルスキー法により抵抗率 0 . l Q c m以 下の単結晶を製造することを特徴とする単結晶の製造方法。 1. A method for producing single crystals, in which a crucible is used to melt the raw material containing unnecessary parts derived from a single crystal ingot with a resistivity of 0.1 Ωcm or less, which is raised at least by the Cjochralski method. And producing a single crystal having a resistivity of 0.1 Qcm or less again by the Chiyoklarski method.
2 . 前記不要部分は、 前記チヨクラルスキー法によって引上げられた単結晶ィ ンゴッ トの内、 コーン部分、 テール部分、 スリ ップ転位、 O S Fや結晶欠陥を有 する部分、 抵抗率規格を満たさない部分、 酸素濃度規格を満たさない部分の少な く とも 1つ以上の部分であることを特徴とする請求項 1に記載の単結晶の製造方 法。 2. The unnecessary portion is a portion of the single crystal ingot pulled up by the Czochralski method, which has a cone portion, a tail portion, a slip dislocation, an OSF or a crystal defect, and does not satisfy a resistivity standard. 2. The method for producing a single crystal according to claim 1, wherein the portion is at least one portion that does not satisfy the oxygen concentration standard.
3 . 前記不要部分を原料と してルツボで溶融する際に、 単独あるいは未使用の 多結晶原料と混合して使用することで抵抗率を制御するために投入する ドーパン ト量を低減可能とすることを特徴とする請求項 1または請求項 2に記載の単結晶 の製造方法。 3. When the unnecessary portion is melted in a crucible as a raw material, the amount of dopant to control the resistivity can be reduced by using it alone or by mixing it with an unused polycrystalline raw material. 3. The method for producing a single crystal according to claim 1 or 2, wherein:
4 . 前記不要部分が派生するチヨクラルスキー法によって引上げられた単結晶 インゴッ トは、 ボロンがドープされた単結晶であることを特徴とする請求項 1な いし請求項 3のいずれか 1項に記載の単結晶の製造方法。 4. The method according to any one of claims 1 to 3, wherein the single crystal ingot pulled by the Czochralski method from which the unnecessary portion is derived is a single crystal doped with boron. The method for producing a single crystal according to the above.
5 . 前記不要部分が派生するチョクラルスキー法によつて引上げられた単結晶 ィンゴッ トは、 窒素がドープされた単結晶であることを特徴とする請求項 1ない し請求項 4のいずれか 1項に記載の単結晶の製造方法。 5. The single crystal ingot pulled by the Czochralski method from which the unnecessary portion is derived is a single crystal doped with nitrogen, wherein the single crystal ingot is a single crystal doped with nitrogen. 13. The method for producing a single crystal according to the above item.
6 . 前記不要部分が派生するチヨクラルスキー法によって引上げられた単結晶 インゴッ トの窒素濃度が 1 X 1 0 10〜 5 X 1 0 15個 Z c in 3であることを特徴とす る請求項 5に記載の単結晶の製造方法。 6. The nitrogen concentration of the single crystal ingot pulled up by the Czochralski method from which the unnecessary portion is derived is 1 × 10 10 to 5 × 10 15 Z c in 3. 6. The method for producing a single crystal according to 5.
7 . 前記不要部分が派生するチョクラルスキー法によつて引上げられた単結晶 ィンゴッ トまたは前記多結晶原料がシリ コンであることを特徴とする請求項 1な いし請求項 6のいずれか 1項に記載の単結晶の製造方法。 7. The single crystal ingot or the polycrystalline raw material pulled up by the Czochralski method from which the unnecessary portion is derived is silicon, wherein the raw material is silicon. 3. The method for producing a single crystal according to item 1.
PCT/JP2003/016795 2003-01-20 2003-12-25 Process for producing single crystal WO2004065667A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-10708 2003-01-20
JP2003010708A JP2004224582A (en) 2003-01-20 2003-01-20 Method of manufacturing single crystal

Publications (1)

Publication Number Publication Date
WO2004065667A1 true WO2004065667A1 (en) 2004-08-05

Family

ID=32767264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/016795 WO2004065667A1 (en) 2003-01-20 2003-12-25 Process for producing single crystal

Country Status (2)

Country Link
JP (1) JP2004224582A (en)
WO (1) WO2004065667A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9245811B2 (en) 2013-08-14 2016-01-26 Infineon Technologies Ag Method for postdoping a semiconductor wafer
WO2023051346A1 (en) * 2021-09-29 2023-04-06 西安奕斯伟材料科技有限公司 Method for manufacturing nitrogen-doped monocrystalline silicon

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4961753B2 (en) 2006-01-20 2012-06-27 株式会社Sumco Single crystal production management system and method
JP5077966B2 (en) * 2009-08-27 2012-11-21 シャープ株式会社 Method for producing silicon ingot
FR2962849B1 (en) * 2010-07-16 2014-03-28 Apollon Solar METHOD FOR DOPING A SEMICONDUCTOR MATERIAL

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001332594A (en) * 2000-05-25 2001-11-30 Shin Etsu Handotai Co Ltd Method for producing single crystal silicon wafer for particle monitor
JP2002104897A (en) * 2000-09-26 2002-04-10 Shin Etsu Handotai Co Ltd Silicon crystal and silicon crystal wafer and method of manufacturing them

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001332594A (en) * 2000-05-25 2001-11-30 Shin Etsu Handotai Co Ltd Method for producing single crystal silicon wafer for particle monitor
JP2002104897A (en) * 2000-09-26 2002-04-10 Shin Etsu Handotai Co Ltd Silicon crystal and silicon crystal wafer and method of manufacturing them

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9245811B2 (en) 2013-08-14 2016-01-26 Infineon Technologies Ag Method for postdoping a semiconductor wafer
US9559020B2 (en) 2013-08-14 2017-01-31 Infineon Technologies Ag Method for postdoping a semiconductor wafer
WO2023051346A1 (en) * 2021-09-29 2023-04-06 西安奕斯伟材料科技有限公司 Method for manufacturing nitrogen-doped monocrystalline silicon

Also Published As

Publication number Publication date
JP2004224582A (en) 2004-08-12

Similar Documents

Publication Publication Date Title
JP5246163B2 (en) Silicon single crystal wafer for IGBT and manufacturing method of silicon single crystal wafer for IGBT
KR102658843B1 (en) Methods for growing a nitrogen doped single crystal silicon ingot using continuous czochralski method and a single crystal silicon ingot grown by this method
EP1170404B1 (en) Silicon wafer and production method thereof
US11680336B2 (en) Methods for growing a nitrogen doped single crystal silicon ingot using continuous Czochralski method
JP4908730B2 (en) Manufacturing method of high resistance silicon single crystal
JP2011093770A (en) Resistivity calculation program and method for producing single crystal
KR102576552B1 (en) Methods for Growing Single Crystal Silicon Ingots Using the Continuous Czochralski Method
US10211066B2 (en) Silicon epitaxial wafer and method of producing same
US7214268B2 (en) Method of producing P-doped silicon single crystal and P-doped N-type silicon single crystal wafer
WO2004065667A1 (en) Process for producing single crystal
US11680335B2 (en) Single crystal silicon ingot having axial uniformity
JP5262257B2 (en) Method for producing nitrogen-doped silicon single crystal
US20030154906A1 (en) Process for producing a highly doped silicon single crystal
JP2004175620A (en) Manufacturing method of single crystal
TW202409361A (en) A nitrogen doped single crystal silicon ingot grown by using continuous czochralski method
CN113272479A (en) Controlling dopant concentration in silicon melt to enhance ingot quality

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase