JP5262257B2 - Method for producing nitrogen-doped silicon single crystal - Google Patents

Method for producing nitrogen-doped silicon single crystal Download PDF

Info

Publication number
JP5262257B2
JP5262257B2 JP2008102208A JP2008102208A JP5262257B2 JP 5262257 B2 JP5262257 B2 JP 5262257B2 JP 2008102208 A JP2008102208 A JP 2008102208A JP 2008102208 A JP2008102208 A JP 2008102208A JP 5262257 B2 JP5262257 B2 JP 5262257B2
Authority
JP
Japan
Prior art keywords
single crystal
nitrogen
raw material
melt
silicon single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008102208A
Other languages
Japanese (ja)
Other versions
JP2009249265A (en
Inventor
浩紀 村上
裕章 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2008102208A priority Critical patent/JP5262257B2/en
Publication of JP2009249265A publication Critical patent/JP2009249265A/en
Application granted granted Critical
Publication of JP5262257B2 publication Critical patent/JP5262257B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a nitrogen-doped silicon single crystal by the Czochralski method (CZ method) capable of suppressing raw material procurement cost by sufficiently decreasing the used amount of a high-priced raw material of a nitrogen dopant and capable of improving manufacturing efficiency. <P>SOLUTION: After pulling up the nitrogen-doped silicon single crystal 4, a silicon raw material 8 is supplied to and melt in a residual melt 3a remaining in a crucible 1, and the nitrogen-doped silicon single crystal 4 is pulled up from this melt 3. In growing the silicon single crystal and by basing upon the solidification ratio at the time just before the termination of pull-up of the silicon single crystal, the quantity of a silicon raw material supplied to the residual melt is set in order to adjust the nitrogen concentration in the silicon single crystal. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、チョクラルスキー法(以下、「CZ法」という)により、窒素をドープされたシリコン単結晶を製造する方法に関し、特に、単結晶引き上げ後にルツボ内に残存する残存融液を用いる窒素ドープシリコン単結晶の製造方法に関する。   The present invention relates to a method for producing a silicon single crystal doped with nitrogen by the Czochralski method (hereinafter referred to as “CZ method”), and in particular, nitrogen using a residual melt remaining in a crucible after pulling the single crystal. The present invention relates to a method for producing a doped silicon single crystal.

半導体基板の素材となる窒素ドープシリコン単結晶を製造するには種々の方法があるが、その中でもCZ法が広く採用されている。   There are various methods for producing a nitrogen-doped silicon single crystal as a material for a semiconductor substrate. Among them, the CZ method is widely adopted.

図1は、CZ法による窒素ドープシリコン単結晶の引き上げを実施するのに適した単結晶引き上げ装置の要部構成を模式的に示す図である。単結晶引き上げ装置は、その外郭を図示しないチャンバで構成され、その中心部にルツボ1が配置されている。ルツボ1は二重構造になっており、内側の石英ルツボ1aと、外側の黒鉛ルツボ1bとから構成される。   FIG. 1 is a diagram schematically showing the main configuration of a single crystal pulling apparatus suitable for pulling a nitrogen-doped silicon single crystal by the CZ method. The single crystal pulling apparatus is configured with a chamber (not shown) in its outer shell, and a crucible 1 is disposed at the center thereof. The crucible 1 has a double structure and is composed of an inner quartz crucible 1a and an outer graphite crucible 1b.

ルツボ1は、回転および昇降が可能な支持軸6の上端部に固定されている。ルツボ1の外側には、ルツボ1を取り囲むように抵抗加熱式のヒータ2が配設されている。ルツボ1の上方には、支持軸6と同一軸上で逆方向または同一方向に所定の速度で回転するワイヤなどの引き上げ軸5が配設されており、引き上げ軸5の下端には種結晶7が取り付けられている。   The crucible 1 is fixed to the upper end of a support shaft 6 that can rotate and move up and down. A resistance heating type heater 2 is disposed outside the crucible 1 so as to surround the crucible 1. Above the crucible 1, a pulling shaft 5 such as a wire rotating on the same axis as the support shaft 6 in the reverse direction or in the same direction at a predetermined speed is disposed. Is attached.

このような単結晶引き上げ装置を用いて窒素ドープシリコン単結晶の引き上げを行う際には、ルツボ1内にシリコン原料と窒素ドーパント用原料を投入し、減圧下の不活性ガス雰囲気中でヒータ2による加熱により、両原料をルツボ1内で溶融させる。その後、ルツボ1内に形成された原料融液3の表面に、引き上げ軸5の下端に保持された種結晶7を浸漬し、ルツボ1および引き上げ軸5を回転させながら、引き上げ軸5を徐々に引き上げる。これにより、種結晶7の下方に窒素ドープシリコン単結晶4が育成される。   When a nitrogen-doped silicon single crystal is pulled using such a single crystal pulling apparatus, a silicon raw material and a nitrogen dopant raw material are put into the crucible 1 and are heated by a heater 2 in an inert gas atmosphere under reduced pressure. Both raw materials are melted in the crucible 1 by heating. Thereafter, the seed crystal 7 held at the lower end of the pulling shaft 5 is immersed in the surface of the raw material melt 3 formed in the crucible 1, and the pulling shaft 5 is gradually moved while rotating the crucible 1 and the pulling shaft 5. Pull up. Thereby, the nitrogen-doped silicon single crystal 4 is grown below the seed crystal 7.

ここで、窒素ドーパント用原料としては、窒化珪素膜付きのウェーハや高純度の窒化珪素粉末など、窒素を高濃度に含有するものが慣用されるが、これは高価なものであり、原料調達コストを悪化させる一因となっている。そこで、原料調達コストを抑制するため、慣用の高価な窒素ドーパント用原料の使用量を低減する技術が、これまでに提案されている。   Here, as the nitrogen dopant raw material, a material containing a high concentration of nitrogen, such as a wafer with a silicon nitride film or a high-purity silicon nitride powder, is commonly used, but this is expensive and the raw material procurement cost is high. It is a factor that makes it worse. Therefore, in order to suppress the raw material procurement cost, a technique for reducing the amount of a conventional expensive nitrogen dopant raw material used has been proposed.

例えば、特許文献1には、引き上げられた窒素ドープシリコン単結晶のうち、製品とはならない部分(以下、「非製品部」という)をシリコン原料とともにルツボ内で溶融し、この原料融液から窒素ドープシリコン単結晶を育成する技術が記載されている。非製品部として、製品として取り扱われる直胴部の上下に形成されたショルダー部とテール部、ならびに、直胴部に含まれるものであるが、スリップ転位や酸化誘起積層欠陥(OSF)などが著しいために製品とはならない結晶欠陥部、および、抵抗率や酸素濃度などが規格を満足しないために製品とはならない規格外れ部が用いられる。   For example, Patent Document 1 discloses that a portion (hereinafter referred to as “non-product portion”) of a pulled nitrogen-doped silicon single crystal that is not a product is melted in a crucible together with a silicon raw material, and nitrogen is removed from the raw material melt. A technique for growing a doped silicon single crystal is described. As a non-product part, it is included in the shoulder part and tail part formed above and below the straight body part handled as a product, and the straight body part, but slip dislocation, oxidation-induced stacking fault (OSF), etc. are remarkable. Therefore, a crystal defect portion that does not become a product and a non-standard portion that does not become a product because the resistivity, oxygen concentration, or the like does not satisfy the standard are used.

このような特許文献1に記載の技術を用いる場合に、非製品部は、窒素ドープシリコン単結晶から派生したものであるため、それ自体が窒素を含有している。このことから、その非製品部を窒素ドーパント用原料に用い、これにより、慣用の高価な窒素ドーパント用原料の使用量を低減できるとされている。   When such a technique described in Patent Document 1 is used, the non-product part is derived from a nitrogen-doped silicon single crystal, and therefore itself contains nitrogen. From this, it is said that the non-product part is used for the raw material for nitrogen dopant, and this can reduce the usage amount of the conventional expensive raw material for nitrogen dopant.

特開2004−224582号公報JP 2004-224582 A

ところで、CZ法によるシリコン単結晶の育成時は、引き上げ前の原料融液中に含まれる不純物が固相のシリコン単結晶と液相の原料融液とに振り分けられるが、不純物元素の偏析挙動に起因して、シリコン単結晶中の不純物濃度が原料融液中の不純物濃度よりもはるかに低くなる。これは、固相であるシリコン単結晶における不純物の溶解度が、液相である原料融液における不純物の溶解度よりも低いことによる。その比である「固相中の溶解度/液相中の溶解度」は、偏析係数と称され、不純物元素ごとに固有のものである。   By the way, during the growth of a silicon single crystal by the CZ method, impurities contained in the raw material melt before pulling are distributed to the solid phase silicon single crystal and the liquid phase raw material melt. As a result, the impurity concentration in the silicon single crystal is much lower than the impurity concentration in the raw material melt. This is because the solubility of impurities in a silicon single crystal that is a solid phase is lower than the solubility of impurities in a raw material melt that is a liquid phase. The ratio “solubility in the solid phase / solubility in the liquid phase” is referred to as a segregation coefficient and is unique to each impurity element.

不純物を窒素とする場合、窒素の偏析係数が7×10-4と小さいため、窒素ドープシリコン単結晶中の窒素の濃度は極めて低くなり、この窒素ドープシリコン単結晶から派生する非製品部中においても窒素の濃度は極めて低くなる。 When nitrogen is used as the impurity, since the segregation coefficient of nitrogen is as small as 7 × 10 −4 , the nitrogen concentration in the nitrogen-doped silicon single crystal becomes extremely low, and in the non-product part derived from this nitrogen-doped silicon single crystal Even the concentration of nitrogen is extremely low.

そのため、上記特許文献1に記載の技術では、窒素を含有する非製品部を窒素ドーパント用原料に用いるにしても、非製品部中の窒素濃度が極めて低いことから、実際には、慣用の高価な窒素ドーパント用原料を補充しなければ、所望する窒素濃度の窒素ドープシリコン単結晶を育成することはできない。従って、高価な窒素ドーパント用原料の使用量を十分に低減できるとはいえず、原料調達コストの抑制はあまり期待できない。   Therefore, in the technique described in Patent Document 1, even if a non-product part containing nitrogen is used as a raw material for nitrogen dopant, the nitrogen concentration in the non-product part is extremely low. A nitrogen-doped silicon single crystal having a desired nitrogen concentration cannot be grown without supplementing a raw material for nitrogen dopant. Therefore, it cannot be said that the amount of the expensive nitrogen dopant raw material used can be sufficiently reduced, and the suppression of the raw material procurement cost cannot be expected so much.

また、窒素ドーパント用原料として、窒化珪素膜付きのウェーハ、または上記特許文献1に記載の非製品部を用いた場合、これらはある程度大きな固形物であるため、これを溶融させるのに時間を要する。特に、窒化珪素膜付きのウェーハを窒素ドーパント用原料に用いた場合、その窒化珪素は原料融液に溶解し難いため、単結晶育成の初期に有転位を誘発し、多結晶化を引き起こすことがある。単結晶育成の初期に多結晶化が発生すると、それ以降の育成で単結晶化が阻害されることから、実操業では、それまでに育成した結晶を原料融液に浸漬して再溶融し、あらためて単結晶の引き上げを行う。いずれの場合も、生産効率の悪化は否めない。   Further, when a wafer with a silicon nitride film or a non-product part described in Patent Document 1 is used as a nitrogen dopant raw material, it takes a long time to melt it because it is a solid material to some extent. . In particular, when a wafer with a silicon nitride film is used as a raw material for a nitrogen dopant, since the silicon nitride is difficult to dissolve in the raw material melt, it induces dislocations at the initial stage of single crystal growth and may cause polycrystallization. is there. When polycrystallization occurs in the initial stage of single crystal growth, single crystallization is hindered in subsequent growth, so in actual operation, the crystals grown so far are immersed in the raw material melt and remelted, The single crystal is pulled up again. In either case, production efficiency cannot be denied.

本発明は、上記の問題に鑑みてなされたものであり、高価な窒素ドーパント用原料の使用量を十分に低減して原料調達コストの抑制を実現でき、しかも生産効率を向上させることが可能なCZ法による窒素ドープシリコン単結晶の製造方法を提供することを目的とする。   The present invention has been made in view of the above problems, and can sufficiently reduce the amount of the expensive nitrogen dopant raw material used to achieve a reduction in raw material procurement costs, and can improve production efficiency. It aims at providing the manufacturing method of the nitrogen dope silicon single crystal by CZ method.

本発明者らは、上記目的を達成するために、窒素ドープシリコン単結晶の育成状況を詳細に検討し、窒素ドープシリコン単結晶を引き上げた後にルツボ内に残存する結晶化されなかった残存融液に着目した。   In order to achieve the above object, the present inventors have studied in detail the growth status of nitrogen-doped silicon single crystals, and after the nitrogen-doped silicon single crystals are pulled up, the residual melt that has not been crystallized remains in the crucible. Focused on.

すなわち、残存融液は、不純物元素の偏析により、窒素ドープシリコン単結晶中に取り込まれなかった多量の窒素を含有しており、窒素の濃度が極めて高いものである。これは以下の説明から理解できる。   That is, the residual melt contains a large amount of nitrogen that has not been taken into the nitrogen-doped silicon single crystal due to segregation of impurity elements, and the concentration of nitrogen is extremely high. This can be understood from the following explanation.

図2は、シリコン単結晶の育成における固化率と単結晶中の不純物濃度の関係を示す図である。同図に示す関係は、不純物として、窒素(N)を例に取り、固化率gのときのシリコン単結晶(固相)中の不純物濃度〔C〕Sを与える公知の下記(1)式に従って示している。図2中、縦軸はシリコン単結晶中の不純物濃度を示し、横軸は固化率を示す。「固化率」とは、シリコン単結晶を引き上げる前のルツボ内の原料融液量に対するシリコン単結晶の質量比での比率である。
〔C〕S=k0〔C〕0(1−g)k0-1 ・・・(1)
FIG. 2 is a diagram showing the relationship between the solidification rate in the growth of a silicon single crystal and the impurity concentration in the single crystal. The relationship shown in the figure is based on the following known formula (1) that gives an impurity concentration [C] S in a silicon single crystal (solid phase) when nitrogen (N) is used as an impurity as an example and the solidification rate is g. Show. In FIG. 2, the vertical axis indicates the impurity concentration in the silicon single crystal, and the horizontal axis indicates the solidification rate. The “solidification rate” is a ratio of the mass ratio of the silicon single crystal to the amount of the raw material melt in the crucible before pulling up the silicon single crystal.
[C] S = k 0 [C] 0 (1-g) k0-1 (1)

上記(1)式から固化率の変化に対応したシリコン単結晶中の不純物濃度が得られる。同(1)式において、k0は、不純物の偏析係数であり、〔C〕0は、固化が始まる前の原料融液(液相)中の不純物の初期濃度を示しており、窒素で3.5×1016atoms/cm3としている。 From the above equation (1), the impurity concentration in the silicon single crystal corresponding to the change in the solidification rate can be obtained. In the formula (1), k 0 is the segregation coefficient of impurities, and [C] 0 indicates the initial concentration of impurities in the raw material melt (liquid phase) before solidification starts. 5 × 10 16 atoms / cm 3 .

図3は、シリコン単結晶の育成における固化率と原料融液中の不純物濃度の関係を示す図である。同図に示す関係は、前記図2と対応関係にあり、固化率gのときの原料融液(液相)中の不純物濃度〔C〕Lを与える公知の下記(2)式に従って示している。図3中、縦軸は原料融液中の不純物濃度を示し、横軸は固化率を示す。
〔C〕L=〔C〕0(1−g)k0-1 ・・・(2)
FIG. 3 is a diagram showing the relationship between the solidification rate in the growth of a silicon single crystal and the impurity concentration in the raw material melt. The relationship shown in the figure corresponds to the relationship shown in FIG. 2, and is shown in accordance with the following known formula (2) that gives the impurity concentration [C] L in the raw material melt (liquid phase) when the solidification rate is g. . In FIG. 3, the vertical axis represents the impurity concentration in the raw material melt, and the horizontal axis represents the solidification rate.
[C] L = [C] 0 (1-g) k0-1 (2)

上記(2)式から固化率の変化に対応した原料融液中の不純物濃度が得られ、同式におけるk0、および〔C〕0は、それぞれ前記(1)式での意味および値と同じである。 From the above equation (2), the impurity concentration in the raw material melt corresponding to the change in the solidification rate is obtained, and k 0 and [C] 0 in the equation are the same as the meaning and value in the above equation (1), respectively. It is.

前記図2から明らかなように、固相であるシリコン単結晶中における各不純物の濃度は、原料融液中の各不純物の初期濃度(窒素で3.5×1016atoms/cm3)に比べて著しく低い。また、窒素および鉄のいずれについても、不純物濃度は、シリコン単結晶のトップ側(固化率が0に近い側)では低く、固化率の上昇に伴って徐々に高くなり、ボトム側(固化率が1.0に近い側)では急激に高くなっている。 As apparent from FIG. 2, the concentration of each impurity in the silicon single crystal as a solid phase is higher than the initial concentration of each impurity in the raw material melt (3.5 × 10 16 atoms / cm 3 with nitrogen). Remarkably low. In addition, for both nitrogen and iron, the impurity concentration is low on the top side (side where the solidification rate is close to 0) of the silicon single crystal, and gradually increases as the solidification rate increases, and the bottom side (where the solidification rate is On the side close to 1.0), it increases rapidly.

一方、前記図3から明らかなように、液相である原料融液中の各不純物の濃度は、シリコン単結晶のトップ側では初期濃度と同程度で低く、固化率の上昇に伴って徐々に高くなり、ボトム側では急激に高くなっている。   On the other hand, as apparent from FIG. 3, the concentration of each impurity in the raw material melt, which is a liquid phase, is as low as the initial concentration on the top side of the silicon single crystal, and gradually increases as the solidification rate increases. It becomes higher and sharply higher on the bottom side.

このような不純物元素の偏析により、窒素ドープシリコン単結晶を引き上げた後のルツボ内の残存融液は、窒素の濃度が極めて高くなる。従って、残存融液は、窒素を十分に含有していることから、慣用の高価な窒素ドーパント用原料の代替として好適に用いることができる。   Due to such segregation of impurity elements, the residual melt in the crucible after pulling up the nitrogen-doped silicon single crystal has an extremely high nitrogen concentration. Therefore, since the remaining melt sufficiently contains nitrogen, it can be suitably used as an alternative to a conventional expensive raw material for nitrogen dopant.

本発明は、このような技術思想に基づくものであり、CZ法により、窒素をドープされたシリコン単結晶を製造する方法であって、窒素ドーパント用原料として窒化珪素膜付きウェーハまたは窒化珪素粉末を溶融させた初期原料融液からシリコン単結晶を引き上げた後、ルツボ内に残存する残存融液にシリコン原料を供給して溶融し、この融液からシリコン単結晶を引き上げる窒素ドープシリコン単結晶の製造方法であり、前記残存融液へのシリコン原料の供給、および前記シリコン単結晶の引き上げを複数回繰り返すことを特徴とするものである。この製造方法では、シリコン単結晶の育成の際、直前のシリコン単結晶の引き上げ終了時の固化率に基づいて、このときの残存融液中の窒素の濃度を算出して当該残存融液中に含まれる窒素の量を算出し、当該残存融液と供給するシリコン原料とが溶融して成る原料融液中の窒素濃度が初期原料融液中の初期濃度に合致するように、当該残存融液の重量および当該残存融液中の窒素の量から、供給するシリコン原料の必要重量を算出し、この量のシリコン原料のみを当該残存融液に供給する。
The present invention is based on such a technical idea, and is a method for producing a silicon single crystal doped with nitrogen by the CZ method, and a silicon nitride film-coated wafer or silicon nitride powder is used as a nitrogen dopant raw material. Production of a nitrogen-doped silicon single crystal that pulls up the silicon single crystal from the melted initial raw material melt , then supplies the silicon raw material to the remaining melt remaining in the crucible and melts it, and pulls up the silicon single crystal from this melt The method is characterized in that the supply of the silicon raw material to the residual melt and the pulling up of the silicon single crystal are repeated a plurality of times. In this manufacturing method, when the silicon single crystal is grown, the concentration of nitrogen in the residual melt at this time is calculated based on the solidification rate at the end of pulling of the immediately preceding silicon single crystal, The amount of nitrogen contained is calculated, and the residual melt is adjusted so that the nitrogen concentration in the raw material melt obtained by melting the residual melt and the silicon raw material to be supplied matches the initial concentration in the initial raw material melt. The required weight of the silicon raw material to be supplied is calculated from the weight of the above and the amount of nitrogen in the residual melt, and only this amount of silicon raw material is supplied to the residual melt.

このような構成により、CZ法による窒素ドープシリコン単結晶の引き上げ後にルツボ内に残存する窒素濃度の高い残存融液を、そのままの状態で窒素ドーパント用原料として再利用するため、高価な窒素ドーパント用原料の補充は不要であり、その結果、高価な窒素ドーパント用原料の使用量を十分に低減することができる。しかも、シリコン単結晶の育成にあたり、窒化珪素が十分に溶解した状態にある残存融液を窒素ドーパント用原料として用いるため、これをあらためて溶融させる必要はないし、これとシリコン原料との原料融液から育成されるシリコン単結晶は、育成初期に有転位の発生が抑えられ、多結晶化が抑制される。   With such a configuration, the residual melt having a high nitrogen concentration remaining in the crucible after the pulling of the nitrogen-doped silicon single crystal by the CZ method is reused as a raw material for the nitrogen dopant as it is. The replenishment of the raw material is unnecessary, and as a result, the amount of the expensive nitrogen dopant raw material used can be sufficiently reduced. Moreover, in growing the silicon single crystal, since the remaining melt in which silicon nitride is sufficiently dissolved is used as a raw material for nitrogen dopant, it is not necessary to melt it again. From the raw material melt of this and the silicon raw material, In the grown silicon single crystal, the occurrence of dislocations is suppressed at the initial stage of growth, and polycrystallization is suppressed.

本発明の窒素ドープシリコン単結晶の製造方法によれば、高価な窒素ドーパント用原料の使用量を十分に低減することができ、その結果として、原料調達コストの抑制を実現することが可能になる。しかも、単結晶育成の際、窒素ドーパント用原料である残存融液の溶融はあらためて要することがなく、単結晶育成の初期における多結晶化が抑制されることから、生産効率を向上させることができる。   According to the method for producing a nitrogen-doped silicon single crystal of the present invention, it is possible to sufficiently reduce the amount of expensive nitrogen dopant raw material used, and as a result, it is possible to realize suppression of raw material procurement costs. . In addition, when the single crystal is grown, it is not necessary to melt the residual melt that is the raw material for the nitrogen dopant, and polycrystallization in the initial stage of the single crystal growth is suppressed, so that the production efficiency can be improved. .

以下に、本発明の窒素ドープシリコン単結晶の製造方法の一実施形態を詳述する。本実施形態での窒素ドープシリコン単結晶の製造方法は、シリコン単結晶を引き上げた後、ルツボ内に残存する残存融液にシリコン原料を供給して溶融し、この融液からシリコン単結晶を引き上げることを特徴としている。   Below, one Embodiment of the manufacturing method of the nitrogen dope silicon single crystal of this invention is explained in full detail. The method for producing a nitrogen-doped silicon single crystal in the present embodiment is such that after pulling up the silicon single crystal, the silicon raw material is supplied to the remaining melt remaining in the crucible and melted, and the silicon single crystal is pulled up from this melt. It is characterized by that.

簡単な例でいえば、CZ法による窒素ドープシリコン単結晶の引き上げを2回行うこととし、1回目の引き上げの際は、窒素ドーパント用原料として窒素濃度の高い慣用のものを用いて単結晶引き上げを行い、引き続き2回目の引き上げの際は、1回目の引き上げ後のルツボ内の残存融液を窒素ドーパント用原料として用いて単結晶引き上げを行う。   In a simple example, the nitrogen-doped silicon single crystal is pulled twice by the CZ method, and the single crystal pulling is performed using a conventional material having a high nitrogen concentration as the nitrogen dopant raw material for the first pulling. When the second pulling is continued, single crystal pulling is performed using the residual melt in the crucible after the first pulling as a nitrogen dopant raw material.

図4は、本発明の一実施形態である窒素ドープシリコン単結晶の製造方法における工程を模式的に示す図である。図4(a)に示すように、ルツボ1内に、窒素ドープシリコン単結晶の製造に慣用される多結晶のシリコン原料8と、窒化珪素膜付きのウェーハや高純度の窒化珪素粉末などの慣用の窒素ドーパント用原料9とを所定の配合比で仕込み、ヒータにより加熱する。これにより、図4(b)に示すように、両原料8、9を溶融させた原料融液3が得られる。   FIG. 4 is a diagram schematically showing steps in the method for producing a nitrogen-doped silicon single crystal according to an embodiment of the present invention. As shown in FIG. 4 (a), in the crucible 1, a polycrystalline silicon raw material 8 commonly used for the production of a nitrogen-doped silicon single crystal, and a conventional wafer such as a wafer with a silicon nitride film or a high-purity silicon nitride powder. The nitrogen dopant raw material 9 is charged at a predetermined blending ratio and heated by a heater. Thereby, as shown in FIG.4 (b), the raw material melt 3 which fuse | melted both the raw materials 8 and 9 is obtained.

続いて、図4(c)に示すように、ルツボ1内の原料融液3の表面に種結晶7を浸漬し、通常の製造条件に従って上方に引き上げる。これにより、図4(d)に示すように、種結晶7の下方に窒素ドープシリコン単結晶4が育成される。シリコン単結晶4を引き上げた後のルツボ1内の底には、窒素を高濃度で含有する融液3aが残存している。この残存融液3aは、窒化珪素が十分に溶解した状態にある。   Subsequently, as shown in FIG. 4C, the seed crystal 7 is immersed in the surface of the raw material melt 3 in the crucible 1 and pulled upward according to normal manufacturing conditions. As a result, as shown in FIG. 4D, the nitrogen-doped silicon single crystal 4 is grown below the seed crystal 7. A melt 3a containing nitrogen at a high concentration remains at the bottom in the crucible 1 after the silicon single crystal 4 is pulled up. This residual melt 3a is in a state in which silicon nitride is sufficiently dissolved.

次に、図4(e)に示すように、残存融液3aが残存しているルツボ1内に、多結晶のシリコン原料8を所定量投入し、ヒータにより加熱する。これにより、図4(f)に示すように、シリコン原料8が溶融して残存融液3aと混合した原料融液3が得られる。   Next, as shown in FIG. 4E, a predetermined amount of polycrystalline silicon raw material 8 is put into the crucible 1 in which the remaining melt 3a remains, and heated by a heater. Thereby, as shown in FIG. 4F, the raw material melt 3 in which the silicon raw material 8 is melted and mixed with the remaining melt 3a is obtained.

続いて、図4(g)に示すように、前記図4(c)に示す工程と同様の製造条件に従って、ルツボ1内の原料融液3に種結晶7を浸漬し上方に引き上げる。これにより、図4(h)に示すように、前記図4(d)に示す工程と同様、種結晶7の下方に窒素ドープシリコン単結晶4が育成される。   Subsequently, as shown in FIG. 4G, the seed crystal 7 is immersed in the raw material melt 3 in the crucible 1 and pulled upward in accordance with the same manufacturing conditions as in the step shown in FIG. As a result, as shown in FIG. 4H, the nitrogen-doped silicon single crystal 4 is grown below the seed crystal 7 as in the step shown in FIG.

そして、図4(h)に示す工程でも、ルツボ1内には、窒素を高濃度で含有する融液3aが残存しているため、さらに前記図4(e)〜(h)に示す工程を経ることにより、窒素ドープシリコン単結晶4を育成することができる。すなわち、前記図4(e)〜(h)に示す工程は繰り返すことができ、1つのルツボから複数の単結晶を連続して引き上げる、いわゆるマルチプリング法での操業を行うことも可能である。   4 (h), the melt 3a containing nitrogen at a high concentration remains in the crucible 1, so that the steps shown in FIGS. 4 (e) to (h) are further performed. By passing, the nitrogen-doped silicon single crystal 4 can be grown. That is, the steps shown in FIGS. 4E to 4H can be repeated, and it is also possible to perform an operation by a so-called multiple pulling method in which a plurality of single crystals are continuously pulled up from one crucible.

このような窒素ドープシリコン単結晶の製造方法においては、窒素ドープシリコン単結晶を引き上げた後のルツボ内に残存する窒素濃度の高い残存融液を、そのままの状態で窒素ドーパント用原料として再利用するため、高価な窒素ドーパント用原料の補充は不要であり、その結果、高価な窒素ドーパント用原料の使用量を十分に低減することができる。このため、原料調達コストの抑制を実現することが可能になる。   In such a method for producing a nitrogen-doped silicon single crystal, the residual melt having a high nitrogen concentration remaining in the crucible after pulling up the nitrogen-doped silicon single crystal is reused as it is as a raw material for nitrogen dopant. Therefore, replenishment of the expensive nitrogen dopant raw material is unnecessary, and as a result, the amount of the expensive nitrogen dopant raw material used can be sufficiently reduced. For this reason, it becomes possible to realize suppression of raw material procurement costs.

しかも、単結晶の育成にあたり、窒化珪素が十分に溶解した状態にある残存融液を窒素ドーパント用原料として用いるため、これをあらためて溶融させる必要はないし、これとシリコン原料との原料融液から育成されるシリコン単結晶は、育成初期に有転位の発生が抑えられ、多結晶化が抑制される。このため、窒素ドープシリコン単結晶の生産効率を向上させることができる。   In addition, when the single crystal is grown, the residual melt in which silicon nitride is sufficiently dissolved is used as a raw material for the nitrogen dopant, so it is not necessary to melt it again. In the silicon single crystal, the occurrence of dislocations is suppressed in the initial stage of growth, and polycrystallization is suppressed. For this reason, the production efficiency of the nitrogen-doped silicon single crystal can be improved.

ここで、所望する窒素濃度の窒素ドープシリコン単結晶を得るため、ルツボ内に供給するシリコン原料の量を決定する必要がある。シリコン単結晶の育成で原料融液から単結晶中に窒素が取り込まれるため、その育成後にルツボ内に残存する残存融液中の窒素の量は、結晶育成の前の初期状態よりも当然減少しており、次の単結晶の育成の際、その減少分を考慮せずにシリコン原料を供給すると、育成した単結晶中の窒素濃度が所望する範囲を満足しない場合があるからである。   Here, in order to obtain a nitrogen-doped silicon single crystal having a desired nitrogen concentration, it is necessary to determine the amount of silicon raw material supplied into the crucible. Since nitrogen is taken into the single crystal from the raw material melt during the growth of the silicon single crystal, the amount of nitrogen in the residual melt remaining in the crucible after the growth is naturally reduced from the initial state before the crystal growth. This is because, if the silicon raw material is supplied without considering the decrease in the next single crystal growth, the nitrogen concentration in the grown single crystal may not satisfy the desired range.

このため、本実施形態では、固化率を重点管理し、以下の手法に従ってルツボ内へのシリコン原料の供給量を設定する。先ず、シリコン単結晶の引き上げ終了時の固化率gから、前記(2)式に基づき、残存融液中の窒素の濃度〔C〕L(N)を算出し、その残存融液中に含まれる窒素の量(原子単位数)を算出する。 For this reason, in this embodiment, the solidification rate is preferentially managed, and the supply amount of the silicon raw material into the crucible is set according to the following method. First, the nitrogen concentration [C] L (N) in the residual melt is calculated from the solidification rate g at the end of the pulling of the silicon single crystal based on the formula (2), and is contained in the residual melt. The amount of nitrogen (number of atomic units) is calculated.

そして、次の単結晶育成の際、その残存融液とシリコン原料とが溶融して成る原料融液中の窒素濃度が、単結晶中の窒素濃度が所望の範囲となるために採用する初期原料融液中の初期濃度〔C〕0(N)に合致するように、残存融液の重量および残存融液中の窒素の量から、シリコン原料の必要重量を算出し、この量のシリコン原料をルツボ内に投入する。この原料融液から単結晶引き上げを行えば、所望する窒素濃度の窒素ドープシリコン単結晶を育成することができる。 Then, when the next single crystal is grown, the initial concentration of nitrogen used in the raw material melt formed by melting the residual melt and the silicon raw material is within the desired range of the nitrogen concentration in the single crystal. Calculate the required weight of the silicon raw material from the weight of the residual melt and the amount of nitrogen in the residual melt so as to match the initial concentration [C] 0 (N) in the melt. Put it in the crucible. If the single crystal is pulled from this raw material melt, a nitrogen-doped silicon single crystal having a desired nitrogen concentration can be grown.

こうして、シリコン単結晶の育成の際、直前のシリコン単結晶の引き上げ終了時の固化率に基づいて、残存融液に供給するシリコン原料の量を設定することにより、シリコン単結晶中の窒素濃度を適宜調整することができる。   Thus, when the silicon single crystal is grown, the nitrogen concentration in the silicon single crystal is set by setting the amount of the silicon raw material supplied to the remaining melt based on the solidification rate at the end of the pulling of the immediately preceding silicon single crystal. It can be adjusted appropriately.

本発明の窒素ドープシリコン単結晶の製造方法による効果を確認するため、以下の試験を行った。本実施例の試験では、内径22インチのルツボを使用し、先ず、これに多結晶のシリコン原料と窒化珪素膜付きのウェーハとを総重量で140kg仕込み、加熱溶融して得られた原料融液から引き上げを行って、直径200mmのp型窒素ドープシリコン単結晶を育成した。   In order to confirm the effect of the method for producing a nitrogen-doped silicon single crystal of the present invention, the following test was conducted. In the test of this example, a crucible having an inner diameter of 22 inches was used. First, a raw material melt obtained by charging a total of 140 kg of a polycrystalline silicon raw material and a wafer with a silicon nitride film, and heating and melting it. The p-type nitrogen-doped silicon single crystal having a diameter of 200 mm was grown.

このとき、単結晶育成前の原料融液中の窒素濃度が、単結晶のトップ部での窒素濃度が目標の1×1014atom/cm3となるために採用する初期原料融液中の初期濃度となるように、ルツボ内に窒素ドーパント用原料である窒化珪素膜付きのウェーハを仕込んでおいた。さらに、装置内の温度分布や引き上げ速度を調整し、赤外線散乱体欠陥(COP:Crystal Originated Particle)や転位クラスターなどのgrown−in欠陥が存在しない無欠陥結晶領域が形成される育成条件で引き上げを行った。 At this time, the nitrogen concentration in the raw material melt before growing the single crystal is the initial concentration in the initial raw material melt adopted because the nitrogen concentration at the top of the single crystal becomes the target 1 × 10 14 atoms / cm 3. A wafer with a silicon nitride film, which is a raw material for nitrogen dopant, was charged in the crucible so that the concentration would be high. Furthermore, the temperature distribution in the apparatus and the pulling rate are adjusted, and the pulling is performed under a growth condition in which a defect-free crystal region free of grown-in defects such as infrared scatterer defects (COPs) and dislocation clusters is formed. went.

そして、ルツボ内に融液が30kg残存する時点、すなわち固化率が0.786(百分率表示で78.6%)の時点で引き上げを終了した。   The pulling was completed when 30 kg of the melt remained in the crucible, that is, when the solidification rate was 0.786 (78.6% in percentage display).

続いて、2本目の単結晶を育成するにあたり、上記1本目の単結晶育成後に30kgの融液が残存するルツボ内に、多結晶のシリコン原料を投入した。このとき、原料融液中の窒素の初期濃度が1本目の単結晶育成時の初期濃度と同等になるように、1本目の単結晶中に取り込まれた窒素の減少分を考慮し、総重量で139.8kgとなるように多結晶のシリコン原料を投入した。加熱溶融後、上記1本目の育成と同様の条件で、2本目の窒素ドープシリコン単結晶を育成した。   Subsequently, in growing the second single crystal, a polycrystalline silicon raw material was put into a crucible in which 30 kg of melt remained after the first single crystal was grown. At this time, considering the decrease in nitrogen taken into the first single crystal so that the initial concentration of nitrogen in the raw material melt is equivalent to the initial concentration during the growth of the first single crystal, the total weight The polycrystalline silicon raw material was charged to 139.8 kg. After heating and melting, a second nitrogen-doped silicon single crystal was grown under the same conditions as the first growth.

そして、1本目の育成条件と同様に、ルツボ内に融液が30kg残存する時点で2本目の単結晶の引き上げを終了した。同様にして、3本目の単結晶の育成を行った。   Then, similarly to the first growth condition, the pulling of the second single crystal was finished when 30 kg of the melt remained in the crucible. Similarly, a third single crystal was grown.

このように連続する1本目〜3本目の単結晶の育成を1バッチとし、これを5バッチ行った。   The first to third continuous single crystals were grown in one batch as described above, and 5 batches were performed.

各バッチの各段階の育成過程において、育成の初期に、有転位が発生して多結晶化した回数を調査した。多結晶化は、晶癖線を観察することにより確認した。ここで、多結晶化が発生した場合は、それまでに育成した結晶を再溶融し、あらためて単結晶の引き上げを行った。その後、再び多結晶化が発生した場合も、結晶を再溶融し、再度単結晶の引き上げを行った。すなわち、ここで調査した多結晶化の回数とは、1回の育成過程において、多結晶化が発生した累積の回数を意味する。   In the growth process at each stage of each batch, the number of occurrences of dislocations and polycrystallization was investigated at the initial stage of the growth. Polycrystallization was confirmed by observing the habit line. Here, when polycrystallization occurred, the crystal grown so far was remelted and the single crystal was pulled up again. After that, when polycrystallization occurred again, the crystal was remelted and the single crystal was pulled again. That is, the number of polycrystallizations investigated here means the cumulative number of occurrences of polycrystallization in one growth process.

下記の表1に調査結果を示す。表1において、多結晶化の回数は、1本目、2本目および3本目の単結晶の育成過程それぞれでの5バッチの平均値を示す。   Table 1 below shows the survey results. In Table 1, the number of times of polycrystallization indicates the average value of 5 batches in each of the growth processes of the first, second and third single crystals.

Figure 0005262257
Figure 0005262257

同表1の結果から、多結晶化の回数は、窒素ドーパント用原料として窒化珪素膜付きのウェーハを用いた1本目の単結晶育成時と比較して、ルツボ内の残存融液を窒素ドーパント用原料として用いた2本目および3本目の単結晶育成時の方が顕著に減少した。すなわち、ルツボ内の残存融液を窒素ドーパント用原料として用いた場合、予め窒化珪素が十分に溶解した状態であるため、有転位の発生が抑えられ、多結晶化が抑制されることが明らかとなった。   From the results shown in Table 1, the number of times of polycrystallization is compared with the case of growing the first single crystal using a wafer with a silicon nitride film as the nitrogen dopant raw material. The number of the second and third single crystals used as raw materials was significantly reduced. That is, when the residual melt in the crucible is used as a raw material for the nitrogen dopant, it is clear that since silicon nitride is sufficiently dissolved in advance, the occurrence of dislocations is suppressed and polycrystallization is suppressed. became.

また、育成したシリコン単結晶の品質確認のため、単結晶のボトム部からサンプルウェーハを採取し、SIMS(二次イオン質量分析法)により窒素濃度を測定した。その結果は、1本目の単結晶で2.75×1015atoms/cm3、2本目の単結晶で2.82×1015atoms/cm3、および3本目の単結晶で2.79×1015atoms/cm3であり、いずれの段階でも目標とする窒素濃度の範囲内であった。 In order to confirm the quality of the grown silicon single crystal, a sample wafer was taken from the bottom of the single crystal, and the nitrogen concentration was measured by SIMS (secondary ion mass spectrometry). The results are: 2.75 × 10 15 atoms / cm 3 for the first single crystal, 2.82 × 10 15 atoms / cm 3 for the second single crystal, and 2.79 × 10 3 for the third single crystal. 15 atoms / cm 3 , which was within the target nitrogen concentration range at any stage.

その他、単結晶に含有されるアルミニウム(Al)、銅(Cu)、ニッケル(Ni)、クロム(Cr)などの不純物元素の濃度についても同様の手法により測定したが、いずれも規格の範囲内であった。また、単結晶に含有されるカーボン(C)濃度についてはFTIR(フーリエ変換赤外分光光度計)により測定し、鉄(Fe)濃度についてはICP−MS(誘導結合プラズマ質量分析法)およびAAS(原子吸光分光法)により測定したが、いずれも規格の範囲内であった。   In addition, the concentration of impurity elements such as aluminum (Al), copper (Cu), nickel (Ni), chromium (Cr), etc. contained in the single crystal was also measured by the same method. there were. Further, the carbon (C) concentration contained in the single crystal is measured by FTIR (Fourier transform infrared spectrophotometer), and the iron (Fe) concentration is measured by ICP-MS (inductively coupled plasma mass spectrometry) and AAS ( Atomic absorption spectroscopy), the values were all within the standard range.

本発明の窒素ドープシリコン単結晶の製造方法によれば、窒素ドープシリコン単結晶を引き上げた後のルツボ内に残存する窒素濃度の高い融液を、窒素ドーパント用原料として再利用するため、高価な高純度の窒素ドーパント用原料の使用量を十分に低減することができ、その結果、原料調達コストの抑制を実現することが可能になる。しかも、単結晶育成の際、残存融液の溶融はあらためて要することがなく、単結晶育成の初期における多結晶化が抑制されることから、生産効率を向上させることができる。よって、本発明は、CZ法による窒素ドープシリコン単結晶の製造に極めて有用な技術である。   According to the method for producing a nitrogen-doped silicon single crystal of the present invention, a high nitrogen concentration melt remaining in the crucible after pulling up the nitrogen-doped silicon single crystal is reused as a nitrogen dopant raw material, which is expensive. The amount of high-purity nitrogen dopant raw material used can be sufficiently reduced, and as a result, the raw material procurement cost can be suppressed. In addition, when the single crystal is grown, the remaining melt does not need to be melted again, and the polycrystallization at the initial stage of the single crystal growth is suppressed, so that the production efficiency can be improved. Therefore, the present invention is an extremely useful technique for producing a nitrogen-doped silicon single crystal by the CZ method.

CZ法による窒素ドープシリコン単結晶の引き上げを実施するのに適した単結晶引き上げ装置の要部構成を模式的に示す図である。It is a figure which shows typically the principal part structure of the single crystal pulling apparatus suitable for implementing the pulling of the nitrogen dope silicon single crystal by CZ method. シリコン単結晶の育成における固化率と単結晶中の不純物濃度の関係を示す図である。It is a figure which shows the relationship between the solidification rate in the growth of a silicon single crystal, and the impurity concentration in a single crystal. シリコン単結晶の育成における固化率と原料融液中の不純物濃度の関係を示す図である。It is a figure which shows the relationship between the solidification rate in the growth of a silicon single crystal, and the impurity concentration in a raw material melt. 本発明の一実施形態である窒素ドープシリコン単結晶の製造方法における工程を模式的に示す図である。It is a figure which shows typically the process in the manufacturing method of the nitrogen dope silicon single crystal which is one Embodiment of this invention.

符号の説明Explanation of symbols

1 ルツボ
1a 石英ルツボ
1b 黒鉛ルツボ
2 ヒータ
3 原料融液
3a 残存融液
4 窒素ドープシリコン単結晶
5 引き上げ軸
6 支持軸
7 種結晶
8 シリコン原料
9 慣用の窒素ドーパント用原料
DESCRIPTION OF SYMBOLS 1 Crucible 1a Quartz crucible 1b Graphite crucible 2 Heater 3 Raw material melt 3a Residual melt 4 Nitrogen dope silicon single crystal 5 Lifting shaft 6 Support shaft 7 Seed crystal 8 Silicon material 9 Conventional material for nitrogen dopant

Claims (1)

チョクラルスキー法により、窒素をドープされたシリコン単結晶を製造する方法であって、
窒素ドーパント用原料として窒化珪素膜付きウェーハまたは窒化珪素粉末を溶融させた初期原料融液からシリコン単結晶を引き上げた後、ルツボ内に残存する残存融液にシリコン原料を供給して溶融し、この融液からシリコン単結晶を引き上げる窒素ドープシリコン単結晶の製造方法であり、
前記残存融液へのシリコン原料の供給、および前記シリコン単結晶の引き上げを複数回繰り返すシリコン単結晶の育成の際、
直前のシリコン単結晶の引き上げ終了時の固化率に基づいて、このときの残存融液中の窒素の濃度を算出して当該残存融液中に含まれる窒素の量を算出し、当該残存融液と供給するシリコン原料とが溶融して成る原料融液中の窒素濃度が初期原料融液中の初期濃度に合致するように、当該残存融液の重量および当該残存融液中の窒素の量から、供給するシリコン原料の必要重量を算出し、この量のシリコン原料のみを当該残存融液に供給することを特徴とする窒素ドープシリコン単結晶の製造方法。
A method for producing a silicon single crystal doped with nitrogen by the Czochralski method,
After pulling up the silicon single crystal from the initial raw material melt obtained by melting the silicon nitride film wafer or silicon nitride powder as the nitrogen dopant raw material , the silicon raw material is supplied to the residual melt remaining in the crucible and melted. It is a method for producing a nitrogen-doped silicon single crystal that pulls the silicon single crystal from the melt,
During the growth of the silicon single crystal, the supply of the silicon raw material to the remaining melt and the pulling up of the silicon single crystal are repeated a plurality of times .
Based on the solidification rate at the end of pulling of the immediately preceding silicon single crystal, the concentration of nitrogen in the residual melt at this time is calculated to calculate the amount of nitrogen contained in the residual melt, and the residual melt From the weight of the residual melt and the amount of nitrogen in the residual melt so that the nitrogen concentration in the raw material melt formed by melting the supplied silicon raw material matches the initial concentration in the initial raw material melt A method for producing a nitrogen-doped silicon single crystal, wherein a necessary weight of a silicon raw material to be supplied is calculated, and only this amount of silicon raw material is supplied to the remaining melt .
JP2008102208A 2008-04-10 2008-04-10 Method for producing nitrogen-doped silicon single crystal Active JP5262257B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008102208A JP5262257B2 (en) 2008-04-10 2008-04-10 Method for producing nitrogen-doped silicon single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008102208A JP5262257B2 (en) 2008-04-10 2008-04-10 Method for producing nitrogen-doped silicon single crystal

Publications (2)

Publication Number Publication Date
JP2009249265A JP2009249265A (en) 2009-10-29
JP5262257B2 true JP5262257B2 (en) 2013-08-14

Family

ID=41310303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008102208A Active JP5262257B2 (en) 2008-04-10 2008-04-10 Method for producing nitrogen-doped silicon single crystal

Country Status (1)

Country Link
JP (1) JP5262257B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220140520A (en) 2020-02-18 2022-10-18 신에쯔 한도타이 가부시키가이샤 Method for manufacturing silicon single crystal

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107151818A (en) * 2016-03-03 2017-09-12 上海新昇半导体科技有限公司 The growing method of monocrystalline silicon and its monocrystal silicon of preparation

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2935337B2 (en) * 1994-11-21 1999-08-16 信越半導体株式会社 Apparatus and method for supplying granular raw material
JP3496388B2 (en) * 1996-02-08 2004-02-09 信越半導体株式会社 Supply method and supply pipe for granular silicon raw material
JP3606037B2 (en) * 1998-03-13 2005-01-05 信越半導体株式会社 Raw material additional supply equipment for single crystal pulling equipment
JP2001332594A (en) * 2000-05-25 2001-11-30 Shin Etsu Handotai Co Ltd Method for producing single crystal silicon wafer for particle monitor
JP4595450B2 (en) * 2004-09-02 2010-12-08 信越半導体株式会社 Method for producing carbon-doped silicon single crystal
JP4661204B2 (en) * 2004-12-16 2011-03-30 信越半導体株式会社 Method for producing single crystal, method for producing annealed wafer, and annealed wafer
JP2006315869A (en) * 2005-05-10 2006-11-24 Sumco Corp Method for manufacturing nitrogen-doped silicon single crystal
JP4961753B2 (en) * 2006-01-20 2012-06-27 株式会社Sumco Single crystal production management system and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220140520A (en) 2020-02-18 2022-10-18 신에쯔 한도타이 가부시키가이샤 Method for manufacturing silicon single crystal
DE112020006111T5 (en) 2020-02-18 2022-11-03 Shin-Etsu Handotai Co., Ltd. Process for producing a silicon single crystal

Also Published As

Publication number Publication date
JP2009249265A (en) 2009-10-29

Similar Documents

Publication Publication Date Title
US10544517B2 (en) Growth of a uniformly doped silicon ingot by doping only the initial charge
TWI402384B (en) Manufacturing method of single crystal
US9885122B2 (en) Method of manufacturing silicon single crystal
JPH11189495A (en) Silicon single crystal and its production
JPWO2007013189A1 (en) Silicon wafer and manufacturing method thereof
KR100955887B1 (en) Method for growing silicon single crystal and method for manufacturing silicon wafer
JP5170061B2 (en) Resistivity calculation program and single crystal manufacturing method
EP2679706B1 (en) Method for manufacturing n-type silicon single crystal
US8840721B2 (en) Method of manufacturing silicon single crystal
CN109415841A (en) The manufacturing method of monocrystalline silicon
JP5262257B2 (en) Method for producing nitrogen-doped silicon single crystal
US7582159B2 (en) Method for producing a single crystal
US7214268B2 (en) Method of producing P-doped silicon single crystal and P-doped N-type silicon single crystal wafer
JP2009249262A (en) Method of manufacturing silicon single crystal
JP4273793B2 (en) Single crystal manufacturing method
JP4595450B2 (en) Method for producing carbon-doped silicon single crystal
JP2009023851A (en) Method for producing raw material for producing silicon single crystal, and method for producing silicon single crystal
JP4407192B2 (en) Single crystal manufacturing method
WO2004065667A1 (en) Process for producing single crystal
JP2013121891A (en) Method of manufacturing single crystal
JP5500138B2 (en) Method for producing carbon-doped silicon single crystal
CN113272479A (en) Controlling dopant concentration in silicon melt to enhance ingot quality
JPH03183685A (en) Silicon single crystal rod and production thereof
JP5652232B2 (en) Manufacturing method of silicon epitaxial wafer
JP2005289751A (en) Method for pulling silicon single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130415

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5262257

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250