JPS6033297A - Pulling device for single crystal semiconductor - Google Patents
Pulling device for single crystal semiconductorInfo
- Publication number
- JPS6033297A JPS6033297A JP13925883A JP13925883A JPS6033297A JP S6033297 A JPS6033297 A JP S6033297A JP 13925883 A JP13925883 A JP 13925883A JP 13925883 A JP13925883 A JP 13925883A JP S6033297 A JPS6033297 A JP S6033297A
- Authority
- JP
- Japan
- Prior art keywords
- single crystal
- concn
- magnetic field
- silicon
- molten
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B15/00—Single-crystal growth by pulling from a melt, e.g. Czochralski method
- C30B15/30—Mechanisms for rotating or moving either the melt or the crystal
- C30B15/305—Stirring of the melt
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
Abstract
Description
【発明の詳細な説明】 本発明は単結晶半導体引上装置の改良に関する。[Detailed description of the invention] The present invention relates to improvements in single crystal semiconductor pulling equipment.
半導体装置の製造に用いられる単結晶半導体は主にチョ
クラルスキー法(CZ法)によって製造されている。従
来、このCZ法にはM1図に示すような単結晶半導体引
上装置が用いられている。Single crystal semiconductors used for manufacturing semiconductor devices are mainly manufactured by the Czochralski method (CZ method). Conventionally, a single crystal semiconductor pulling apparatus as shown in Fig. M1 has been used in this CZ method.
すなわち、図中1は上部と下部が開口したチャンバーで
ある。このチャンバー1の下部開口からは回転自在な支
持棒2が挿入されておシ、この支持棒2上には黒鉛製保
護体3が支持され、石英ルツg4’z保護している。前
記保護体3の外周には筒状のヒータ5及び保温筒6が順
次配設されている。また、前記チャンバー1の上部開口
からは例えばチェーン7が吊下されており、種結晶8を
保持している。That is, numeral 1 in the figure is a chamber whose top and bottom are open. A rotatable support rod 2 is inserted into the lower opening of the chamber 1, and a graphite protector 3 is supported on the support rod 2 to protect the quartz g4'z. A cylindrical heater 5 and a heat retaining tube 6 are sequentially arranged around the outer periphery of the protector 3. Further, a chain 7, for example, is suspended from the upper opening of the chamber 1, and holds a seed crystal 8.
上記引上装置を用いたC2法は、単結晶シリコンを製造
する場合を例にとれば、ルツボ4内にシリコン原料を入
れ、ヒータ5によシリコン原料を溶融させ、この溶融シ
リコン9に種結晶8を浸し、ルツ?4と種結晶8とを逆
方向に回転させながらチェーン7を引上げることによシ
牟結晶シリコン10を引上げるものである。In the C2 method using the above-mentioned pulling device, for example, when manufacturing single crystal silicon, a silicon raw material is put into a crucible 4, the silicon raw material is melted by a heater 5, and a seed crystal is added to this molten silicon 9. Soak 8, Ruth? By pulling up the chain 7 while rotating the seed crystal 4 and the seed crystal 8 in opposite directions, the crystalline silicon 10 is pulled up.
ところで、単結晶シリコンの引上げ中において、ルツボ
4内の溶融シリコン9中では強制対流や熱対流が起こシ
、結晶成長界Ffij近傍における溶融シリコン9の温
度分布、不純物濃度、酸素濃度が不均一となっている。By the way, during pulling of single crystal silicon, forced convection and thermal convection occur in the molten silicon 9 in the crucible 4, and the temperature distribution, impurity concentration, and oxygen concentration of the molten silicon 9 near the crystal growth field Ffij become non-uniform. It has become.
このため、引上げられた単結晶シリコン1oは成長方向
、径方向ともに比抵抗分布、酸素濃度分布の均一性が悪
くなシ、超、LSI用の高品質なウェハを供給すること
が回動′、であった。For this reason, the pulled single crystal silicon 1o has poor uniformity in resistivity distribution and oxygen concentration distribution in both the growth direction and the radial direction, making it difficult to supply high-quality wafers for ultra-large scale integrated circuits. Met.
そこで、ルツが4の両側方に対応する位置に2個の電磁
石を互いに極性の異なる極全対向させて配置し、溶融シ
リコン9に水平方向の磁場を印加する方法(以下、この
方法全横型MCZと略記する)あるいはルッが4を囲む
ようにリング状の電磁石を配置し、溶融シリコン9に鉛
直方向の磁場を印加する方法(以下、この方法を縦型M
CZと略記する)にょシ溶融シリコン9中の対流を抑制
し、単結晶シリコンの物性を均一化することが行なわれ
ている。Therefore, there is a method in which two electromagnets with different polarities are placed facing each other at positions corresponding to both sides of Ruth 4, and a horizontal magnetic field is applied to the molten silicon 9. (hereinafter referred to as vertical M
Convection in the molten silicon 9 (abbreviated as CZ) is suppressed to make the physical properties of single crystal silicon uniform.
上述した横型MCZでは浴融シリコン9中の対流の主に
鉛直方向の成分を抑11flJすることができ、単結晶
シリコンの不純物濃度、酸素濃度全ある程度均一化する
ことができるが、これらの値の低いものしか得られない
。また、上述した縦型MCZでは溶融シリコン9中の対
流の主に水平方向の成分を抑制することができ、結晶成
長界面近傍の温度分布、不純物製置分布等を均一化して
単結晶シリコンの不純物濃度、酸素濃度をかなり均一化
することができるが、これらの値の高いものしか得られ
ない。したかりて、横型MCZや縦型MCZで得られた
単結晶シリコンから加工されるウェハは、限られた用途
の素子の製造にしか用いることができない。In the horizontal MCZ described above, it is possible to suppress the mainly vertical component of the convection in the bath molten silicon 9, and it is possible to make the impurity concentration and oxygen concentration of single crystal silicon uniform to some extent, but these values You can only get something low. In addition, in the vertical MCZ described above, it is possible to suppress the mainly horizontal component of convection in the molten silicon 9, and to make the temperature distribution near the crystal growth interface, the impurity distribution, etc. uniform, and the impurity of the single crystal silicon Although it is possible to make the concentration and oxygen concentration fairly uniform, only high values of these values can be obtained. Therefore, wafers processed from single crystal silicon obtained by horizontal MCZ or vertical MCZ can only be used to manufacture devices for limited purposes.
本発明は上記事情に鑑みてなされたものであシ、製造目
的とする素子の範囲が広く、しかも微小不純物0度の不
均一性が少ない高品質の単結晶半導体を製造し得る単結
晶半導体引上装置全提供しようとするものである。The present invention has been made in view of the above circumstances, and is capable of manufacturing a single crystal semiconductor that can be manufactured in a wide range of devices and that can manufacture high quality single crystal semiconductors with little non-uniformity and zero degree of micro impurities. We try to provide all the above equipment.
すなわち、本発明の単結晶半導体引上装置は、ルツぎの
外周に対応する位置に半円弧状の磁場印加手段を2個配
設し、これらの磁場印加手段に通電する電流の方向を変
化させることによシルツボ内の溶融半導体原料に印加す
る磁場の方向を任意に変化させることを特徴とするもの
である。That is, in the single crystal semiconductor pulling apparatus of the present invention, two semicircular arc-shaped magnetic field applying means are arranged at positions corresponding to the outer periphery of the screw, and the direction of the current flowing through these magnetic field applying means is changed. This method is characterized by arbitrarily changing the direction of the magnetic field applied to the molten semiconductor raw material in the crucible.
このように溶融半導体原料に印加する磁場の方向を任意
に変化させれば、対流の抑制のし方を任意に変化させる
ことができるので、単結晶半導体中の不純物濃度を広い
範囲に亘って制御することができ、しかも微小不純物濃
lWの不拘−性全少なくすることができる。In this way, by arbitrarily changing the direction of the magnetic field applied to the molten semiconductor raw material, it is possible to arbitrarily change the way convection is suppressed, so the impurity concentration in the single crystal semiconductor can be controlled over a wide range. Moreover, the inconsistency of the fine impurity concentration lW can be completely reduced.
以下、本発明の実施例を第2図〜第5図を参照して説明
する。なお、第1図に示した従来の引上装置と同一の部
材には同一番号を伺して説明を省略する。Embodiments of the present invention will be described below with reference to FIGS. 2 to 5. Incidentally, the same members as those of the conventional lifting device shown in FIG. 1 will be designated by the same numbers and their explanation will be omitted.
第2図及び第3図に示す如く、チャンバ−1外周にはは
ホリング状の液体ヘリウムタンク1ノが配設されておシ
、この液体ヘリウムタンク11内忙は半円弧状の2個の
超電導マグネット12.13が配設されている。前記液
体ヘリウムタンク11には液体ヘリウム冷凍機14がら
液体ヘリウムが供給される。前記超電導マグネ、ト12
.13は直線電流が流れることにょシ、その周囲に円M
i場を発生させるようになっている。As shown in FIGS. 2 and 3, a Holling-shaped liquid helium tank 1 is disposed around the outer periphery of the chamber 1, and inside this liquid helium tank 11 there are two semicircular arc-shaped superconducting Magnets 12.13 are arranged. Liquid helium is supplied to the liquid helium tank 11 from a liquid helium refrigerator 14 . Said superconducting magnet, t12
.. 13 means that a straight line current flows, and a circle M is placed around it.
It is designed to generate an i-field.
上記引上装置を用いた単結晶シリコン1oの引上げは、
超電ζマグネット12.13に電流を流して溶融シリコ
ン9に磁場を印加することと、ヒータ5にほぼ直流の電
流を通電する以外は、従来の装置とほぼ同様に行なわれ
る。The pulling of single crystal silicon 1o using the above-mentioned pulling device is as follows:
The operation is substantially the same as the conventional apparatus, except that a current is passed through the superelectric ζ magnets 12 and 13 to apply a magnetic field to the molten silicon 9, and a substantially direct current is passed through the heater 5.
この際、第4図に示す如く超電導マグネット12.13
に同方向に電流を流すと2個の超電導マグネット12.
13によって合成された磁場の方向は図中破線で示すよ
うな方向となる。At this time, as shown in Fig. 4, the superconducting magnet 12.13
When a current is passed in the same direction, two superconducting magnets 12.
The direction of the magnetic field synthesized by 13 is as shown by the broken line in the figure.
また、第5図に示す如く超電導マグネット12゜13に
逆方向に電流を流すと2個の超電導マグネット12.1
3によって合成された磁場の方向は図中破線で示すよう
にM%4図とは異なる方向となる。こうして印加される
磁場は溶融シリコン9のどの位置でもほぼ均一に印加さ
れる。In addition, as shown in Fig. 5, when current is passed through the superconducting magnets 12.13 in opposite directions, the two superconducting magnets 12.1
The direction of the magnetic field synthesized by 3 is different from that in the M%4 diagram, as shown by the broken line in the figure. The magnetic field thus applied is applied almost uniformly to any position of the molten silicon 9.
しかして、上記引上装置によれば、第4図のように超電
導マグネット12.13に同方向に電流を流すと、溶融
シリコン9には斜め方向の磁場が印加され、溶融シリコ
ン9中の対流の水平方向の成分及び鉛直方向の成分とも
に抑制することができる。したがって、単結晶シリコン
10中の不純物濃度(及び酸素濃度)を比較的低くする
ことができるとともに微小不純物濃度の不均一性をかな
り小さくすることができる。According to the above-mentioned pulling device, when a current is applied to the superconducting magnets 12 and 13 in the same direction as shown in FIG. Both the horizontal and vertical components of can be suppressed. Therefore, the impurity concentration (and oxygen concentration) in the single crystal silicon 10 can be made relatively low, and the non-uniformity of the minute impurity concentration can be made considerably small.
また、第5図のように超電導マグネット12゜13に逆
方向に電流を流すと、溶融シリコン9中の対流の主に水
平方向の成分を抑制することができ、鉛直方向の成分を
抑制する効果は小さい。したがって、単結晶シリコン1
0中の不純物濃度(及び酸素濃度)を比較的高くするこ
とができるとともに微小不純物濃度の不均一性を極めて
小さくすることができる。Furthermore, when current is passed in the opposite direction through the superconducting magnets 12 and 13 as shown in FIG. 5, it is possible to suppress mainly the horizontal component of the convection in the molten silicon 9, which has the effect of suppressing the vertical component. is small. Therefore, single crystal silicon 1
The impurity concentration (and oxygen concentration) in zero can be made relatively high, and the non-uniformity of the minute impurity concentration can be made extremely small.
事実、通常のCZ、横型MCZ 、縦型MCZ及び上記
実施例の引上装置により単結晶シリコンを引上げ、その
不純物濃度(比低抗値)の制御範囲、微小不純物濃度の
不均一性及び酸素濃度の制御範囲を調べたところ、下記
表に示す如く、上記実施例の引上装置を用いた場合には
不純物濃度(比抵抗匝)及び酸素濃度の制御範囲が広く
、微小不純物濃度の不均一性が小さいことが確認された
。In fact, single-crystal silicon is pulled using a normal CZ, a horizontal MCZ, a vertical MCZ, and the pulling apparatus of the above embodiment, and the control range of its impurity concentration (specific low resistance value), non-uniformity of minute impurity concentration, and oxygen concentration are As shown in the table below, the control range of impurity concentration (resistivity) and oxygen concentration is wide when using the pulling device of the above example, and the non-uniformity of minute impurity concentration is reduced. was confirmed to be small.
表
なお、本発明の引上装置は上記実施例で示した構造のも
のに限らず、第6図及び第7図に示す如く、超電導マグ
ネット12’、13’が液体ヘリウムタンク11′内で
上下動できるような機構にしておき、超電導マグネット
12’l13’の高さを変えてルツ?4内の溶融シリコ
ン9に磁場を印加してもよい。なお、M6図は超電導マ
グネット12’、13’に同方向に電流′f、ηLした
場合第7図は超電導マグネット12’、13’に逆方向
に電流を流した場合全それぞれ示す。Note that the pulling device of the present invention is not limited to the structure shown in the above embodiment, and as shown in FIGS. Make the mechanism so that it can move, and change the height of the superconducting magnet 12'l13'. A magnetic field may be applied to the molten silicon 9 within 4. Note that FIG. M6 shows the case where currents 'f and ηL are applied to the superconducting magnets 12' and 13' in the same direction, and FIG. 7 shows the case where the currents are applied to the superconducting magnets 12' and 13' in opposite directions.
このように超電導マグネット12’、13’の高さを変
えられるようにしておけば、超電導マグネット12’、
13’に流す電流の方向の変化だけでなく、これらの1
δさの変化によっても溶融シリコン9に印加する磁場の
方向を変化させることができるので、不純物濃度の制御
がより容易となる。If the heights of the superconducting magnets 12' and 13' can be changed in this way, the superconducting magnets 12', 13',
In addition to changing the direction of the current flowing through 13', these 1
Since the direction of the magnetic field applied to the molten silicon 9 can be changed by changing the δ value, the impurity concentration can be more easily controlled.
また、以上の説明では単結晶シリコンを製造する場合に
ついて説明したが、これに限らすGaAs+等の単結晶
tm造する場合にも同様に適用できることは勿論である
。In addition, although the above description has been made regarding the case of manufacturing single crystal silicon, it goes without saying that the present invention is similarly applicable to the case of manufacturing single crystal tm of GaAs+ or the like.
以上詳述した如く本発明の単結晶半導体引上装置によれ
ば、単結晶半導体の不純物濃度の1lilJ御範囲を広
くすることができ、しかも微小不純物濃度の不均一性を
少なくできる等顕著な効果を奏するものである。As detailed above, according to the single crystal semiconductor pulling apparatus of the present invention, it is possible to widen the control range of 1 lilJ of the impurity concentration of a single crystal semiconductor, and moreover, it has remarkable effects such as being able to reduce the non-uniformity of the minute impurity concentration. It is something that plays.
第1図は従来の単結晶半導体引上装置の断面図、第2図
は本発明の実施例における単結晶半導体引上装置の断面
図、第3図は同装置の概略平面図、第4図及び第5図は
それぞれ同装置を用いた場合の磁場の方向を示す説明図
、第6図及び第7図はそれぞれ本発明の他の実施例にお
ける単結晶半導体引上装置を用いfc ’a合の磁場の
方向を示す説明図である。
1・・・チャンバー、2・・・支持棒、3・・・保護体
、4・・・ルッデ、5・・・ヒータ、6・・・保温筒、
7・・・チェーン、8・・・種結晶、9・・・溶融シリ
コン、10・・・単結晶シリコン、11.11’・・・
液体ヘリウムタンク、12 、12’、 13 、13
’・・・超電導マグネット、14・・・液体ヘリウム冷
凍機。
出願人代理人 弁理士 鈴 江 武 彦第1図
第2図
第3図
第 4 図
第5図FIG. 1 is a sectional view of a conventional single crystal semiconductor pulling device, FIG. 2 is a sectional view of a single crystal semiconductor pulling device in an embodiment of the present invention, FIG. 3 is a schematic plan view of the same device, and FIG. 4 is a sectional view of a conventional single crystal semiconductor pulling device. and FIG. 5 are explanatory diagrams showing the direction of the magnetic field when the same apparatus is used, and FIGS. 6 and 7 are explanatory diagrams showing the direction of the magnetic field when the same apparatus is used, respectively. FIG. 2 is an explanatory diagram showing the direction of a magnetic field. DESCRIPTION OF SYMBOLS 1... Chamber, 2... Support rod, 3... Protector, 4... Ludde, 5... Heater, 6... Heat insulation cylinder,
7... Chain, 8... Seed crystal, 9... Molten silicon, 10... Single crystal silicon, 11.11'...
Liquid helium tank, 12, 12', 13, 13
'...Superconducting magnet, 14...Liquid helium refrigerator. Applicant's Representative Patent Attorney Takehiko Suzue Figure 1 Figure 2 Figure 3 Figure 4 Figure 5
Claims (1)
ボ内の溶融半導体原料にルツボ上方から回転自在に吊下
された種結晶ヶ浸して該種結晶を引上げることによシ単
結晶牛専体を造る装置において、ルッがの外周に対応す
る位置に半円弧状の磁場印加手段ft2個配設し、これ
らの磁場印加手段に通電する電流の方向を変化させるこ
とによシルツブ内の溶融半導体原料に印加する磁場の方
向を任意に変化させることを特徴とする単結晶半導体引
上装置。A single crystal is rotatably supported in a chamber, and a seed crystal suspended rotatably from above the crucible is immersed in the molten semiconductor raw material in the crucible, and the seed crystal is pulled up. In the manufacturing equipment, two semicircular arc-shaped magnetic field applying means ft are arranged at positions corresponding to the outer periphery of the sill tube, and by changing the direction of the current flowing through these magnetic field applying means, the molten semiconductor raw material in the silt is heated. A single crystal semiconductor pulling device characterized by arbitrarily changing the direction of an applied magnetic field.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13925883A JPS6033297A (en) | 1983-07-29 | 1983-07-29 | Pulling device for single crystal semiconductor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13925883A JPS6033297A (en) | 1983-07-29 | 1983-07-29 | Pulling device for single crystal semiconductor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6033297A true JPS6033297A (en) | 1985-02-20 |
JPH0142916B2 JPH0142916B2 (en) | 1989-09-18 |
Family
ID=15241101
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13925883A Granted JPS6033297A (en) | 1983-07-29 | 1983-07-29 | Pulling device for single crystal semiconductor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6033297A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6036391A (en) * | 1983-08-05 | 1985-02-25 | Toshiba Corp | Apparatus for pulling single crystal |
JPS60221392A (en) * | 1984-04-16 | 1985-11-06 | Toshiba Corp | Device for forming single crystal |
US5817176A (en) * | 1995-04-17 | 1998-10-06 | Korea Advanced Institute Of Science And Technology | Apparatus for preparing a single crystal of silicon |
-
1983
- 1983-07-29 JP JP13925883A patent/JPS6033297A/en active Granted
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6036391A (en) * | 1983-08-05 | 1985-02-25 | Toshiba Corp | Apparatus for pulling single crystal |
JPH0361630B2 (en) * | 1983-08-05 | 1991-09-20 | Tokyo Shibaura Electric Co | |
JPS60221392A (en) * | 1984-04-16 | 1985-11-06 | Toshiba Corp | Device for forming single crystal |
JPH0478591B2 (en) * | 1984-04-16 | 1992-12-11 | Tokyo Shibaura Electric Co | |
US5817176A (en) * | 1995-04-17 | 1998-10-06 | Korea Advanced Institute Of Science And Technology | Apparatus for preparing a single crystal of silicon |
Also Published As
Publication number | Publication date |
---|---|
JPH0142916B2 (en) | 1989-09-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1336061C (en) | High-oxygen-content silicon monocrystal substrate for semiconductor devices and production method therefor | |
EA017453B1 (en) | Method and apparatus for producing a single crystal | |
KR20070013843A (en) | Method of manufacturing silicon single crystal | |
US2743200A (en) | Method of forming junctions in silicon | |
US6607594B2 (en) | Method for producing silicon single crystal | |
JP3086850B2 (en) | Method and apparatus for growing single crystal | |
JPH0212920B2 (en) | ||
JP2004189559A (en) | Single crystal growth method | |
JPS6033297A (en) | Pulling device for single crystal semiconductor | |
JP3132412B2 (en) | Single crystal pulling method | |
JPH0359040B2 (en) | ||
CN114855284A (en) | Method for growing monocrystalline silicon | |
JPS6027684A (en) | Apparatus for producing single crystal | |
JP6672481B2 (en) | Method for manufacturing single crystal silicon semiconductor wafer, apparatus for manufacturing single crystal silicon semiconductor wafer, and single crystal silicon semiconductor wafer | |
JP2000044387A (en) | Production of silicon single crystal | |
JP2016216306A (en) | Method of controlling resistivity of silicon single crystal in the axial direction | |
KR100221087B1 (en) | Silicon single crystal and its growing method | |
JP3018738B2 (en) | Single crystal manufacturing equipment | |
JPS6259598A (en) | Indium phosphide single crystal and production thereof | |
JPS6033290A (en) | Preparation of single crystal semiconductor | |
JPS6033293A (en) | Pulling device for single crystal semiconductor | |
KR101100862B1 (en) | Silicon wafer and method of manufacturing silicon single crystal ingot | |
JPS5891097A (en) | Producing device for single crystal | |
JPH055796B2 (en) | ||
JPH08333189A (en) | Apparatus for pulling up crystal |