JPH0359040B2 - - Google Patents

Info

Publication number
JPH0359040B2
JPH0359040B2 JP58139255A JP13925583A JPH0359040B2 JP H0359040 B2 JPH0359040 B2 JP H0359040B2 JP 58139255 A JP58139255 A JP 58139255A JP 13925583 A JP13925583 A JP 13925583A JP H0359040 B2 JPH0359040 B2 JP H0359040B2
Authority
JP
Japan
Prior art keywords
crucible
single crystal
silicon
molten silicon
inner crucible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58139255A
Other languages
Japanese (ja)
Other versions
JPS6033294A (en
Inventor
Hidekazu Taji
Mitsuhiro Yamato
Osamu Suzuki
Masaharu Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP13925583A priority Critical patent/JPS6033294A/en
Publication of JPS6033294A publication Critical patent/JPS6033294A/en
Publication of JPH0359040B2 publication Critical patent/JPH0359040B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/30Mechanisms for rotating or moving either the melt or the crystal
    • C30B15/305Stirring of the melt

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

【発明の詳細な説明】 本発明は単結晶半導体引上装置の改良に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in a single crystal semiconductor pulling apparatus.

半導体装置の製造に用いられる単結晶半導体は
主にチヨクラルスキー法(CZ法)によつて製造
されている。従来、このCZ法には第1図に示す
ような単結晶半導体引上装置が用いられている。
Single crystal semiconductors used in the manufacture of semiconductor devices are mainly manufactured by the Czyochralski method (CZ method). Conventionally, a single crystal semiconductor pulling apparatus as shown in FIG. 1 has been used in this CZ method.

すなわち、図中1は上部と下部が開口したチヤ
ンバーである。このチヤンバー1の下部開口から
は回転自在な支持棒2が挿入されており、この支
持棒2上には黒鉛製保護体3が支持され、石英ル
ツボ4を保護している。前記保護体3の外周には
円筒状のヒータ5及び保温筒6が順次配設されて
いる。また、前記チヤンバー1の上部開口からは
例えばチエーン7が吊下されており、種結晶8を
保持している。
That is, numeral 1 in the figure is a chamber whose top and bottom are open. A rotatable support rod 2 is inserted through the lower opening of the chamber 1, and a graphite protector 3 is supported on the support rod 2 to protect the quartz crucible 4. A cylindrical heater 5 and a heat insulating cylinder 6 are sequentially arranged around the outer periphery of the protector 3. For example, a chain 7 is suspended from the upper opening of the chamber 1, and holds a seed crystal 8.

上記引上装置を用いたCZ法は、単結晶シリコ
ンを製造する場合を例にとれば、ルツボ4内にシ
リコン原料を入れ、ヒータ5によりシリコン原料
を溶融させ、この溶融シリコン9に種結晶8を浸
し、ルツボ4と種結晶8とを逆方向に回転させな
がらチエーン7を引上げることにより単結晶シリ
コン10を引上げるものである。
In the CZ method using the above-mentioned pulling device, for example, when manufacturing single crystal silicon, a silicon raw material is put into a crucible 4, the silicon raw material is melted by a heater 5, and a seed crystal 8 is added to the molten silicon 9. The single crystal silicon 10 is pulled up by dipping the crucible 4 and the seed crystal 8 in opposite directions and pulling up the chain 7.

ところで、単結晶シリコンの引上げ中におい
て、ルツボ4内の溶融シリコン9中では強制対流
や熱対流が起こり、結晶成長界面近傍における溶
融シリコン9の温度分布、不純物濃度、酸素濃度
が不均一となつている。このため、引上げられた
単結晶シリコン10は成長方向、径方向ともに比
抵抗分布、酸素濃度分布の均一性が悪くなり、超
LSI用の高品質なウエハを供給することが困難で
あつた。
By the way, during the pulling of single crystal silicon, forced convection and thermal convection occur in the molten silicon 9 in the crucible 4, and the temperature distribution, impurity concentration, and oxygen concentration of the molten silicon 9 near the crystal growth interface become non-uniform. There is. For this reason, the pulled single crystal silicon 10 has poor uniformity in specific resistance distribution and oxygen concentration distribution in both the growth direction and radial direction, and
It has been difficult to supply high quality wafers for LSI.

そこで、溶融シリコンに水平方向あるいは鉛直
方向に磁場を印加することにより対流を抑制し、
単結晶シリコンの比抵抗分布、酸素濃度分布の均
一化を図ることが行なわれている。しかし、この
ような溶融シリコンに磁場を印加しても単結晶シ
リコンの物性がそれほど向上するわけではない。
これは、溶融シリコンに磁場を印加しただけでは
結晶成長界面近傍における温度分布、不純物濃度
分布、酸素濃度分布を十分に均一化することがで
きないためであると考えられる。
Therefore, convection is suppressed by applying a magnetic field horizontally or vertically to molten silicon.
Efforts are being made to make the resistivity distribution and oxygen concentration distribution of single crystal silicon uniform. However, applying a magnetic field to such molten silicon does not significantly improve the physical properties of single crystal silicon.
This is considered to be because the temperature distribution, impurity concentration distribution, and oxygen concentration distribution near the crystal growth interface cannot be made sufficiently uniform just by applying a magnetic field to molten silicon.

本発明は上記事情に鑑みてなされたものであ
り、成長方向、径方向のいずれにおいても物性の
均一化した高品質の単結晶半導体を製造し得る単
結晶半導体引上装置を提供できるものである。
The present invention has been made in view of the above circumstances, and is capable of providing a single-crystal semiconductor pulling apparatus capable of manufacturing high-quality single-crystal semiconductors with uniform physical properties both in the growth direction and in the radial direction. .

すなわち、通常のCZ法では融液シリコンはル
ツボ内でヒータからの熱により、鉛直方向断面で
は大きく円を描くように対流するのに対して、融
液シリコンに鉛直方向の磁場をかけると融液はヒ
ータからの熱を受けても水平方向にはほとんど動
かず上下方向にのみ対流する。
In other words, in the normal CZ method, the molten silicon convects in a large circle in the vertical cross section due to the heat from the heater in the crucible, but when a vertical magnetic field is applied to the molten silicon, the molten silicon Even when it receives heat from the heater, it hardly moves in the horizontal direction and only convects in the vertical direction.

このような鉛直方向の磁場をかける手段を伴う
本発明の単結晶半導体引上装置は、ルツボとして
側壁を共有しない二重構造のものを用い、その内
側ルツボ側面の所望位置に貫通孔を穿設すること
を特徴とするものである。こうした単結晶半導体
引上装置によれば、鉛直方向の磁場を印加するこ
とによる溶融半導体原料の水平方向の対流の抑制
効果と、二重構造のルツボによる不純物濃度、酸
素濃度の均一化効果に加えて、両者を組合せたこ
とにより、すなわち、内側ルツボ側壁に融液シリ
コン導入用の貫通孔があいており、融液シリコン
の対流が上下方向にのみしかしないため、外側ル
ツボ内の融液シリコンの対流が内側ルツボ内まで
入り込むことがなく、内側ルツボ内の融液シリコ
ンはきわめて安定し、熱対流の影響をほぼ完全に
なくすことができ、結晶成長界面近傍の温度分布
を均一化することができ、単結晶半導体の成長方
向、径方向のいずれにおいても物性を著しく向上
することができる。
The single-crystal semiconductor pulling device of the present invention, which includes means for applying such a vertical magnetic field, uses a double-structured crucible that does not share a side wall, and a through hole is bored at a desired position on the side surface of the inner crucible. It is characterized by: This single-crystal semiconductor pulling device has the effect of suppressing horizontal convection of the molten semiconductor raw material by applying a vertical magnetic field, and the effect of uniformizing impurity concentration and oxygen concentration by the double-structured crucible. By combining the two, there is a through hole in the side wall of the inner crucible for introducing molten silicon, and convection of the molten silicon only occurs in the vertical direction, so the molten silicon in the outer crucible is Convection does not penetrate into the inner crucible, and the molten silicon in the inner crucible is extremely stable. The influence of thermal convection can be almost completely eliminated, and the temperature distribution near the crystal growth interface can be made uniform. , the physical properties of the single crystal semiconductor can be significantly improved in both the growth direction and the radial direction.

以下、本発明の実施例を第2図を参照して説明
する。なお、第1図に示した従来の引上装置と同
一の部材には同一番号を付して説明を省略する。
Hereinafter, embodiments of the present invention will be described with reference to FIG. Note that the same members as those of the conventional lifting device shown in FIG. 1 are designated by the same numbers and their explanations will be omitted.

図中11は保護体3によつて保護された二重ル
ツボであり、外側ルツボ11aと有底の内側ルツ
ボ11bとからなる。この内側ルツボ11b側面
の所定位置には貫通孔11cが穿設されている。
この内側ルツボ11bは上方から吊り下げられる
か、または外側ルツボ11aに取付けられた支持
部材によつて支持されている。また、チヤンバー
1の外周にはリング状の超電導コイル12が配設
されている。この超電導コイル12には図示しな
い液体ヘリウム冷凍器から液体ヘリウムが供給さ
れる。
In the figure, 11 is a double crucible protected by a protector 3, which is composed of an outer crucible 11a and an inner crucible 11b with a bottom. A through hole 11c is bored at a predetermined position on the side surface of the inner crucible 11b.
This inner crucible 11b is suspended from above or supported by a support member attached to the outer crucible 11a. Furthermore, a ring-shaped superconducting coil 12 is arranged around the outer periphery of the chamber 1 . This superconducting coil 12 is supplied with liquid helium from a liquid helium refrigerator (not shown).

しかして上記引上装置によれば、超電導コイル
12により溶融シリコン9に鉛直方向の磁場を印
加しているので、主に対流の水平方向の成分を有
効に抑制することができる。この結果、単結晶シ
リコン10中の酸素濃度の絶対値の制御が容易と
なる。また、二重ルツボ11を用いているので、
内側ルツボ11bの溶融シリコン9中の不純物濃
度及び酸素濃度をほぼ一定に保つたことができ
る。つまり、単結晶シリコン10の引上げが進ん
で偏析現象により内側ルツボ11b内の不純物濃
度が変化しても、内側ルツボ11bの側面に穿設
された貫通孔11cから溶融シリコン9が供給さ
れるので、内側ルツボ11b内の不純物濃度をほ
ぼ一定に保つことができる。
According to the above-mentioned pulling device, since a vertical magnetic field is applied to the molten silicon 9 by the superconducting coil 12, it is possible to effectively suppress mainly the horizontal component of convection. As a result, the absolute value of the oxygen concentration in single crystal silicon 10 can be easily controlled. In addition, since the double crucible 11 is used,
The impurity concentration and oxygen concentration in the molten silicon 9 in the inner crucible 11b can be kept substantially constant. In other words, even if the impurity concentration in the inner crucible 11b changes due to the segregation phenomenon as the pulling of the single crystal silicon 10 progresses, the molten silicon 9 is supplied from the through hole 11c drilled in the side surface of the inner crucible 11b. The impurity concentration within the inner crucible 11b can be kept approximately constant.

更に、上述したように溶融シリコン9の対流の
水平方向の成分が抑制されていることと、内側ル
ツボ11bの貫通孔が側壁に設けられていて外側
ルツボ11aの上下方向の対流が内側ルツボ11
b内に入り込まないこと内側ルツボ11bの溶融
シリコン9の液面から突出している部分は放熱板
として作用していることから、内側ルツボ11b
内の水平方向の温度分布を均一化することができ
る。この結果、単結晶シリコン10の径方向の不
純物濃度分布及び酸素濃度分布を均一化すること
ができる。なお、上記実施例の引上装置において
は、内側ルツボ11bの底面によつて対流の鉛直
方向成分の影響が内側ルツボ11b内の溶融シリ
コン9に及ぶのを防止することができるので、単
結晶シリコン10の物性の均一化にとつてより一
層効果的となる。以上のように、内側ルツボ11
b側壁に貫通孔11cを有する二重ルツボ11を
用いるとともに超電導コイル12により溶融シリ
コン9に鉛直方向の磁場を印加することにより、
単結晶シリコン10の成長方向、径方向いずれに
おいても不純物濃度分布、酸素濃度分布を均一化
することができる。
Furthermore, as described above, the horizontal component of the convection of the molten silicon 9 is suppressed, and the through hole of the inner crucible 11b is provided in the side wall, so that the vertical convection of the outer crucible 11a is suppressed.
Do not enter the inside of the inner crucible 11b.The part of the inner crucible 11b that protrudes from the liquid surface of the molten silicon 9 acts as a heat sink.
It is possible to equalize the horizontal temperature distribution within. As a result, the impurity concentration distribution and oxygen concentration distribution in the radial direction of single crystal silicon 10 can be made uniform. In addition, in the pulling device of the above embodiment, since the bottom surface of the inner crucible 11b can prevent the influence of the vertical component of convection from reaching the molten silicon 9 in the inner crucible 11b, single crystal silicon This is even more effective in making the physical properties of 10 uniform. As mentioned above, the inner crucible 11
By using a double crucible 11 having a through hole 11c in the b side wall and applying a vertical magnetic field to the molten silicon 9 by a superconducting coil 12,
The impurity concentration distribution and oxygen concentration distribution can be made uniform in both the growth direction and the radial direction of the single crystal silicon 10.

なお、以上の説明では単結晶シリコンを製造す
る場合について述べたが、これに限らず例えば
GaAs等の単結晶半導体を製造する場合にも同様
に適用できることは勿論である。
In addition, in the above explanation, the case of manufacturing single crystal silicon was described, but it is not limited to this, for example,
Of course, the present invention can also be similarly applied to the production of single crystal semiconductors such as GaAs.

以上詳述した如く、本発明の単結晶半導体引上
装置によれば、成長方向、径方向のいずれにおい
ても不純物濃度等の物性の均一化した高品質の単
結晶半導体を製造することができる等顕著な効果
を奏するものである。
As detailed above, according to the single crystal semiconductor pulling apparatus of the present invention, it is possible to manufacture a high quality single crystal semiconductor with uniform physical properties such as impurity concentration in both the growth direction and the radial direction. This has a remarkable effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の単結晶半導体引上装置の断面
図、第2図は本発明の実施例における単結晶半導
体引上装置の断面図である。 1……チヤンバー、2……支持棒、3……保護
体、5……ヒータ、6……保温筒、7……チエー
ン、8……種結晶、9……溶融シリコン、10…
…単結晶シリコン、11……二重ルツボ、11a
……外側ルツボ、11b……内側ルツボ、11c
……貫通孔、12……超電導コイル。
FIG. 1 is a sectional view of a conventional single crystal semiconductor pulling apparatus, and FIG. 2 is a sectional view of a single crystal semiconductor pulling apparatus in an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Chamber, 2... Support rod, 3... Protector, 5... Heater, 6... Heat insulation tube, 7... Chain, 8... Seed crystal, 9... Molten silicon, 10...
...Single crystal silicon, 11...Double crucible, 11a
...Outer crucible, 11b...Inner crucible, 11c
...Through hole, 12...Superconducting coil.

Claims (1)

【特許請求の範囲】[Claims] 1 チヤンバー内にルツボを回転自在に支持し、
該ルツボ内の溶融半導体原料にルツボ上方から回
転自在に吊下された種結晶を浸して該種結晶を引
上げることにより単結晶半導体を造る装置におい
て、前記ルツボを側壁を共有しない二重構造と
し、その内側ルツボの側面の所望箇所に貫通孔を
穿設するとともに前記ルツボ内の溶融半導体原料
に鉛直方向に磁場を印加する手段を設けたことを
特徴とする単結晶半導体引上装置。
1 A crucible is rotatably supported in a chamber,
In an apparatus for producing a single crystal semiconductor by dipping a seed crystal rotatably suspended from above the crucible into a molten semiconductor raw material in the crucible and pulling the seed crystal, the crucible has a double structure that does not share a side wall. A single-crystal semiconductor pulling device, characterized in that a through hole is bored at a desired location on the side surface of the inner crucible, and means is provided for applying a magnetic field in the vertical direction to the molten semiconductor raw material in the crucible.
JP13925583A 1983-07-29 1983-07-29 Pulling device for single crystal semiconductor Granted JPS6033294A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13925583A JPS6033294A (en) 1983-07-29 1983-07-29 Pulling device for single crystal semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13925583A JPS6033294A (en) 1983-07-29 1983-07-29 Pulling device for single crystal semiconductor

Publications (2)

Publication Number Publication Date
JPS6033294A JPS6033294A (en) 1985-02-20
JPH0359040B2 true JPH0359040B2 (en) 1991-09-09

Family

ID=15241041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13925583A Granted JPS6033294A (en) 1983-07-29 1983-07-29 Pulling device for single crystal semiconductor

Country Status (1)

Country Link
JP (1) JPS6033294A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6311595A (en) * 1986-07-01 1988-01-19 Sumitomo Electric Ind Ltd Method for doping impurity uniformly
JP2755588B2 (en) * 1988-02-22 1998-05-20 株式会社東芝 Crystal pulling method
JPH026382A (en) * 1988-06-13 1990-01-10 Toshiba Ceramics Co Ltd Apparatus for pulling up single crystal
JPH0248492A (en) * 1988-08-08 1990-02-19 Osaka Titanium Co Ltd Single crystal growth apparatus
JPH0825835B2 (en) * 1988-09-20 1996-03-13 東芝セラミックス株式会社 Single crystal pulling device
US5196085A (en) * 1990-12-28 1993-03-23 Massachusetts Institute Of Technology Active magnetic flow control in Czochralski systems
JPH09194289A (en) * 1996-01-12 1997-07-29 Mitsubishi Materials Shilicon Corp Apparatus for pulling up single crystal

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5547300A (en) * 1978-09-27 1980-04-03 Sony Corp Crystal pulling device
JPS57149894A (en) * 1981-03-09 1982-09-16 Nippon Telegr & Teleph Corp <Ntt> Method and apparatus for growing grystal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5547300A (en) * 1978-09-27 1980-04-03 Sony Corp Crystal pulling device
JPS57149894A (en) * 1981-03-09 1982-09-16 Nippon Telegr & Teleph Corp <Ntt> Method and apparatus for growing grystal

Also Published As

Publication number Publication date
JPS6033294A (en) 1985-02-20

Similar Documents

Publication Publication Date Title
US6702892B2 (en) Production device for high-quality silicon single crystals
US4645560A (en) Liquid encapsulation method for growing single semiconductor crystals
US3798007A (en) Method and apparatus for producing large diameter monocrystals
JP2012126644A (en) Method and apparatus for growing semiconductor crystal with a rigid support with carbon doping, resistivity control and thermal gradient control
KR20070013843A (en) Method of manufacturing silicon single crystal
US6607594B2 (en) Method for producing silicon single crystal
JPH0359040B2 (en)
JPH034517B2 (en)
JPH01317189A (en) Production of single crystal of silicon and device therefor
KR100906281B1 (en) Heat shield structure for growing silicon single crystal ingot and grower using the same
JPH0142916B2 (en)
KR100810565B1 (en) Apparatus for growing silicon single crystal ingot
JPS5950627B2 (en) Single crystal silicon pulling equipment
JPS5891097A (en) Producing device for single crystal
JPS61261288A (en) Apparatus for pulling up silicon single crystal
JP3018738B2 (en) Single crystal manufacturing equipment
JPH08750B2 (en) Single crystal growth method and apparatus using high-pressure synthesizer
TWI701363B (en) Method of growing silicon single crystal
JPH0157079B2 (en)
KR101100862B1 (en) Silicon wafer and method of manufacturing silicon single crystal ingot
JPH0138078B2 (en)
JPH03193694A (en) Crystal growing device
JPH01145391A (en) Device for pulling up single crystal
JPS6033287A (en) Preparation of single crystal semiconductor
JPH0782084A (en) Single crystal growing method and single crystal growing apparatus