JPS6117489A - Production of silicon single crystal - Google Patents

Production of silicon single crystal

Info

Publication number
JPS6117489A
JPS6117489A JP13962284A JP13962284A JPS6117489A JP S6117489 A JPS6117489 A JP S6117489A JP 13962284 A JP13962284 A JP 13962284A JP 13962284 A JP13962284 A JP 13962284A JP S6117489 A JPS6117489 A JP S6117489A
Authority
JP
Japan
Prior art keywords
crucible
single crystal
silicon single
melted
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13962284A
Other languages
Japanese (ja)
Inventor
Yoshio Miura
三浦 義男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP13962284A priority Critical patent/JPS6117489A/en
Publication of JPS6117489A publication Critical patent/JPS6117489A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/10Crucibles or containers for supporting the melt

Abstract

PURPOSE:A single crystal is pulled up from the starting material which is melted in a crucible which has inner walls made of nonoxides to enable easy product of silicon single crystals of a large diameter and a low oxygen content. CONSTITUTION:For example, a quartz crucible 10 is covered with Si3N4 layer of about 30mu 11. The Si3N4 layer 11 can be formed, e.g., by the low-temperature plasma method. SiC may be used instead of Si3N4. The resultant Si3N4-coated quartzd crucible 10 is used to pull up a single crystal from the starting material melted in the crucible whereby a single crystal of Si is obtained. Since the starting material is melted in a crucible of nonoxide materials, the dissolution of oxygen from the crucible is prevented, resulting in the formation of a single crystal of low oxygen concentration.

Description

【発明の詳細な説明】 〔技術分野〕 本発ツ」はシリコン単結晶の製造方法に関する。[Detailed description of the invention] 〔Technical field〕 This invention relates to a method for producing silicon single crystals.

〔従来技術〕[Prior art]

従来、シリコン単結晶を製造する方法としては、結晶原
料の溶解液に目的とする結晶方位を持つ種結晶の先端を
つけ、徐々に引上げながら単結晶を成長させるチミクラ
ルスキー法(CZ法)、多結晶シリコン棒を垂直にして
その下軸を種結晶で保持し、この接触部の多結晶シリコ
ンを高周波ボイルで溶解したのち、この溶融帯を移動さ
せてシリコンの単結晶化を行なうフロートゾーン法(F
Z法)等が知られている。このうち、最も一般的なCZ
法について説明する。
Conventionally, methods for manufacturing silicon single crystals include the Chmichralski method (CZ method), in which the tip of a seed crystal with the desired crystal orientation is attached to a solution of a crystal raw material, and the single crystal is grown while being gradually pulled up. A float zone method in which a polycrystalline silicon rod is held vertically and its lower axis is held by a seed crystal, and the polycrystalline silicon in the contact area is melted using high-frequency boiling, and the melted zone is moved to single-crystallize the silicon. (F
Z method) etc. are known. Among these, the most common CZ
Explain the law.

第1図は、C2法を採用した7リコン単結晶の引上げ、
装置の要部断面図である。
Figure 1 shows the pulling of a 7-licon single crystal using the C2 method.
FIG. 2 is a sectional view of a main part of the device.

第1図に示すように、石英等からなる反応容器1の内部
には結晶原料を溶解する石英製ルツボ3がおかれ、軸4
により支持されると共に矢印方向に回転されるように構
成されている。ルツボ3の周囲には;黒鉛からなるヒー
タ5がおかれ、ルツボ3を均一に加熱できるようになっ
ている。そして、アルゴン等の非酸化性雰囲気で結晶原
料が溶解されると、この溶解液2に保持具6に取付けた
シリコンの種結晶7を浸すように構成されている。
As shown in FIG. 1, a quartz crucible 3 for melting crystal raw materials is placed inside a reaction vessel 1 made of quartz or the like, and a shaft 4
It is configured to be supported by and rotated in the direction of the arrow. A heater 5 made of graphite is placed around the crucible 3 to uniformly heat the crucible 3. When the crystal raw material is dissolved in a non-oxidizing atmosphere such as argon, the silicon seed crystal 7 attached to the holder 6 is immersed in the solution 2.

このように構成された引上げ装置によりシリコン単結晶
を成長させるには、ルツボ3中の溶解液2を約1500
℃の所定温度に保ち、種結晶7の先端を浸し回転させる
と同時に、ルツボ3も回転させる。そして、保持具6を
回転させながら引上げると共K、ルツボ3の温度を徐々
に下降させることKより所望の直径を有するシリコン単
結晶8を得ることができる。
In order to grow a silicon single crystal using the pulling device configured in this way, the solution 2 in the crucible 3 must be heated to about 1500 ml.
While keeping the temperature at a predetermined temperature of .degree. C., the tip of the seed crystal 7 is immersed and rotated, and at the same time, the crucible 3 is also rotated. Then, by pulling up the holder 6 while rotating it and gradually lowering the temperature of the crucible 3, a silicon single crystal 8 having a desired diameter can be obtained.

しかしながら、このようにして得られたシリコン単結晶
には1、石英製ルツボ3から溶けだしたS i 021
Cヨリ、10〜20×1017/d の高濃度の酸素が
含まれるのが普通である。この高濃度の酸素を含むシリ
コン基板を用いて半導体素子を形成する場合、800〜
1200℃程度の熱処理工程によりシリコン結晶中に、
酸素に起因する結晶欠陥が発生し、素子の電気的特性を
劣化させる欠点がある。
However, the silicon single crystal obtained in this way contains 1 and S i 021 melted from the quartz crucible 3.
Generally, carbon contains a high concentration of oxygen of 10 to 20 x 1017/d. When forming a semiconductor element using a silicon substrate containing this high concentration of oxygen,
In the silicon crystal by a heat treatment process of about 1200℃,
This has the disadvantage that crystal defects caused by oxygen occur, deteriorating the electrical characteristics of the device.

低酸素濃度のシリコン単結晶を得るには、磁場引上法(
MCZ法)やFZ法が用いられるが、大口径のシリコン
単結晶を作るのが難しく、また高価になるという欠点が
ある。
To obtain silicon single crystals with low oxygen concentration, magnetic field pulling method (
The MCZ method) and the FZ method are used, but they have the disadvantage that it is difficult to produce a silicon single crystal with a large diameter and is expensive.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記欠点を除去し、大口径でかつ低酸
素濃度のシリコン単結晶を容易に製造する方法を提供す
ることにある。
An object of the present invention is to provide a method for eliminating the above-mentioned drawbacks and easily producing a silicon single crystal having a large diameter and a low oxygen concentration.

〔発明の構成〕[Structure of the invention]

本発明のシリコン単結晶の製造方法は、ルツボ内に溶解
した結晶原料より単結晶を引上げて成長させるシリコン
単結晶の製造方法であって、少くとも内壁が非酸化物よ
りなるルツボを用いて結晶原料を溶解するものである。
The method for producing a silicon single crystal of the present invention is a method for producing a silicon single crystal in which a single crystal is pulled and grown from a crystal raw material dissolved in a crucible, and the method is a method for producing a silicon single crystal, in which a crucible having at least an inner wall made of a non-oxide is used to produce a silicon single crystal. It dissolves raw materials.

本発明によれば、非酸化物のルツボによ抄結晶原料を溶
解するため、ルツボからの酸素の溶解がなく、従って低
酸素製置のシリコン単結晶を得ることができる。
According to the present invention, since the raw crystal material is melted in a non-oxide crucible, there is no dissolution of oxygen from the crucible, and therefore a low-oxygen silicon single crystal can be obtained.

〔実施例の説明〕[Explanation of Examples]

次に本発明の実施例を図面を用いて説明する。 Next, embodiments of the present invention will be described using the drawings.

第2図は、本発明の一実施例を説明するためのルツボの
断面図である。
FIG. 2 is a sectional view of a crucible for explaining one embodiment of the present invention.

第2図において、石英製ルツボ10の表面は、厚さ約3
0μmの窒化ケイ素(SisN4)層11により覆われ
ている。この5isN、層11の形成は、例えば、低温
プラズマ法を用いて行うことができる。8isN、の代
りに炭化ケイ素’(8iC)  を成長させて用いても
よい。
In FIG. 2, the surface of the quartz crucible 10 has a thickness of about 3
It is covered with a 0 μm silicon nitride (SisN4) layer 11. This 5isN layer 11 can be formed using, for example, a low temperature plasma method. Silicon carbide' (8iC) may be grown and used instead of 8isN.

このように表面を8isNa層11で覆った石英製ルツ
ボ10を用い、第1図に示したと同様の装置を構成した
。そして、従来と同様の工程を含むC2法により、口型
で直径約125目のシリコン単結晶を製造した。製造さ
れた複数個のシリコン単結晶の酸素濃度を赤外吸収法で
測定した結果は、酸素濃度は全て1 x 1 (17/
cdt以下であり、ルツボ10からの酸素の溶解がない
事が判明した。
Using the quartz crucible 10 whose surface was covered with the 8isNa layer 11 in this manner, an apparatus similar to that shown in FIG. 1 was constructed. Then, a silicon single crystal with a diameter of approximately 125 meshes was manufactured using the C2 method, which includes the same steps as the conventional method. The results of measuring the oxygen concentration of multiple manufactured silicon single crystals using an infrared absorption method show that the oxygen concentration is all 1 x 1 (17/
cdt or less, and it was found that there was no dissolution of oxygen from the crucible 10.

このように本発明によれば、低酸素濃度のシリコン単結
晶が、従来のC2法と同様な工程で容易に製造できるた
め整流素子や高耐圧パワー用トランジスタ基板が安価に
得られる。また、低酸素濃度のIC基板は、ヒートサイ
クルによる結晶欠陥の発生が少いためICの歩留りおよ
び信頼性の向上に未効がある。
As described above, according to the present invention, a silicon single crystal with a low oxygen concentration can be easily manufactured in a process similar to the conventional C2 method, so that a rectifying element and a transistor substrate for high breakdown voltage power can be obtained at low cost. Furthermore, IC substrates with low oxygen concentrations are less likely to generate crystal defects due to heat cycles, and are therefore ineffective in improving IC yield and reliability.

上記実施例においては、8taNifffiで表面を覆
ったルツボを用いたが、8 i s Naや8iC等の
酸素を含まないセラミック材料の粉末を成製・焼成して
作ったルツボを用いても低酸素濃度のシリコン単結晶を
得ることができる。
In the above example, a crucible whose surface was covered with 8taNiffi was used, but a crucible made by forming and firing a powder of a ceramic material that does not contain oxygen, such as 8i s Na or 8iC, would also have low oxygen content. A high concentration silicon single crystal can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように、本発明によれば、大口径で
かつ低酸素濃度のシリコン単結晶を容易に製造できるの
で、整流器やIC等の製造に大きな効果がある。
As described in detail above, according to the present invention, silicon single crystals having a large diameter and a low oxygen concentration can be easily manufactured, which is highly effective in manufacturing rectifiers, ICs, and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はCZ法を説明するための装置の要部断面図、第
2図は本発明の一実施例を説明するためのルツボの断面
図である。 1・・・・・・反応容器、2・・・・・・溶解液、3・
・・・・・ルツボ、4・・・・・・軸、5・・・・・・
ヒータ、6・・・・・・保持具、7・・・・・・種結晶
、8・・・・・・シリコン単結晶、10・・・・・・ル
ツボ、11・・・・・・Sj、f’L層。
FIG. 1 is a sectional view of a main part of an apparatus for explaining the CZ method, and FIG. 2 is a sectional view of a crucible for explaining one embodiment of the present invention. 1...Reaction container, 2...Dissolution liquid, 3.
・・・・・・Crucible, 4・・・・Axis, 5・・・・・・
Heater, 6... Holder, 7... Seed crystal, 8... Silicon single crystal, 10... Crucible, 11... Sj , f'L layer.

Claims (1)

【特許請求の範囲】[Claims] ルツボ内に溶解した結晶原料より単結晶を引上げて成長
させるシリコン単結晶の製造方法において、少くとも内
壁が非酸化物よりなるルツボを用いて結晶原料を溶解す
ることを特徴とするシリコン単結晶の製造方法。
A method for producing a silicon single crystal in which the single crystal is grown by pulling it from a crystal raw material dissolved in a crucible, characterized in that the crystal raw material is melted using a crucible whose inner wall is made of a non-oxide. Production method.
JP13962284A 1984-07-05 1984-07-05 Production of silicon single crystal Pending JPS6117489A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13962284A JPS6117489A (en) 1984-07-05 1984-07-05 Production of silicon single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13962284A JPS6117489A (en) 1984-07-05 1984-07-05 Production of silicon single crystal

Publications (1)

Publication Number Publication Date
JPS6117489A true JPS6117489A (en) 1986-01-25

Family

ID=15249568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13962284A Pending JPS6117489A (en) 1984-07-05 1984-07-05 Production of silicon single crystal

Country Status (1)

Country Link
JP (1) JPS6117489A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011057471A (en) * 2009-09-07 2011-03-24 Mitsubishi Materials Techno Corp Method for removing residual silicon melt, method and apparatus for producing single crystal silicon and suction device for residual silicon melt
JP2011057469A (en) * 2009-09-07 2011-03-24 Mitsubishi Materials Techno Corp Crucible opening retaining member and method and apparatus for producing single crystal silicon
CN107299392A (en) * 2017-07-12 2017-10-27 晶科能源有限公司 A kind of high fine and close silica crucible barrier layer preparation method and polycrystalline ingot furnace

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011057471A (en) * 2009-09-07 2011-03-24 Mitsubishi Materials Techno Corp Method for removing residual silicon melt, method and apparatus for producing single crystal silicon and suction device for residual silicon melt
JP2011057469A (en) * 2009-09-07 2011-03-24 Mitsubishi Materials Techno Corp Crucible opening retaining member and method and apparatus for producing single crystal silicon
CN107299392A (en) * 2017-07-12 2017-10-27 晶科能源有限公司 A kind of high fine and close silica crucible barrier layer preparation method and polycrystalline ingot furnace

Similar Documents

Publication Publication Date Title
US3173765A (en) Method of making crystalline silicon semiconductor material
US3088853A (en) Method of purifying gallium by recrystallization
JP2010059031A (en) Aluminum oxide single crystal and method for manufacturing the same
JPH03115188A (en) Production of single crystal
JPS61247683A (en) Pulling device for single crystal sapphire
JPS6117489A (en) Production of silicon single crystal
US3021198A (en) Method for producing semiconductor single crystals
US3296036A (en) Apparatus and method of producing semiconductor rods by pulling the same from a melt
JPS6027684A (en) Apparatus for producing single crystal
JPS6018638B2 (en) Silicon single crystal pulling equipment
JPS61201692A (en) Method for pulling and growing silicon single crystal with less generation of defect
JPS61122185A (en) Production of silicon single crystal
JPS58181792A (en) Apparatus for pulling up single crystal silicon
JP2543449B2 (en) Crystal growth method and apparatus
JPS5938199B2 (en) Compound semiconductor crystal growth equipment
JP2542434B2 (en) Compound semiconductor crystal manufacturing method and manufacturing apparatus
JPS6111920B2 (en)
JPS5891097A (en) Producing device for single crystal
JPH10338594A (en) Apparatus for growing single crystal by pulling up method
JPH0316988A (en) Production device of single crystal of compound semiconductor
JPS61127697A (en) Production of silicon single crystal
JPH07291783A (en) Silicon single crystal and production thereof
JPH05306190A (en) Production of silicon single crystal
JPS63215594A (en) Growth of crystal by double crucible
JPS60127287A (en) Production of gaas single crystal