JPH0712030B2 - (II)-(VI) Group compound semiconductor crystal growth apparatus - Google Patents

(II)-(VI) Group compound semiconductor crystal growth apparatus

Info

Publication number
JPH0712030B2
JPH0712030B2 JP1334043A JP33404389A JPH0712030B2 JP H0712030 B2 JPH0712030 B2 JP H0712030B2 JP 1334043 A JP1334043 A JP 1334043A JP 33404389 A JP33404389 A JP 33404389A JP H0712030 B2 JPH0712030 B2 JP H0712030B2
Authority
JP
Japan
Prior art keywords
substrate
emissivity
growth
heat sink
compound semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1334043A
Other languages
Japanese (ja)
Other versions
JPH03194922A (en
Inventor
道弘 佐野
裕幸 加藤
孝浩 神庭
保男 奥野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP1334043A priority Critical patent/JPH0712030B2/en
Publication of JPH03194922A publication Critical patent/JPH03194922A/en
Publication of JPH0712030B2 publication Critical patent/JPH0712030B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は結晶成長に関し、特にZn溶媒を用いたII−VI族
化合物半導体の結晶成長に関する。
TECHNICAL FIELD The present invention relates to crystal growth, and more particularly to crystal growth of a II-VI group compound semiconductor using a Zn solvent.

[従来の技術] 第2図に従来の技術による化合物半導体の液相結晶成長
装置を示す。石英製の結晶成長用アンプル1の底部に、
カーボン等の熱伝導率のよい材料で作製したヒートシン
ク9を収納し、ヒートシンク9の一部に刻みを入れ、成
長用アンプルをそれに応じて変形させることによってヒ
ートシンクを固定している。ヒートシンク9の上には基
板結晶7を配置し、基板結晶7を基板止め5によって固
定している。基板止め5は成長用アンプル1と同様の石
英等によって作製される。基板7の上には、溶媒2が収
容され、基板止め5の上に成長原料となるソース用結晶
3が配置されている。III−V族化合物半導体の結晶成
長の場合は、溶媒2はGaやIn等成長する化合物半導体の
III族構成元素が選ばれる。また、II−VI族化合物半導
体のカルコゲナイド結晶の場合には、従来、カルコゲナ
イド元素であるSe、Te等がよく用いられた。成長アンプ
ル1内に基板7、基板止め5、溶媒2、ソース用結晶3
を収容した後、アンプル内は真空に排気され、封止され
る。このような構成からなるアンプルを図中右側に示す
ような温度勾配中に配置し、高温部分にあるソース用結
晶を溶媒2中に溶解させ、温度勾配中を輸送させて、基
板7上に析出させる。
[Prior Art] FIG. 2 shows a liquid crystal growth apparatus for a compound semiconductor according to the prior art. At the bottom of the quartz crystal growth ampoule 1,
A heat sink 9 made of a material having a good thermal conductivity such as carbon is housed, a part of the heat sink 9 is notched, and the growth ampoule is deformed accordingly, thereby fixing the heat sink. The substrate crystal 7 is arranged on the heat sink 9, and the substrate crystal 7 is fixed by the substrate stopper 5. The substrate stopper 5 is made of quartz or the like similar to the growth ampoule 1. The solvent 2 is accommodated on the substrate 7, and the source crystal 3 serving as a growth raw material is disposed on the substrate stopper 5. In the case of crystal growth of a III-V group compound semiconductor, the solvent 2 is a compound semiconductor such as Ga or In that grows.
Group III constituent elements are selected. Further, in the case of chalcogenide crystals of II-VI group compound semiconductors, chalcogenide elements such as Se and Te have been often used conventionally. Substrate 7, substrate stopper 5, solvent 2, source crystal 3 in growth ampoule 1
After housing, the ampoule is evacuated to a vacuum and sealed. An ampoule having such a configuration is arranged in a temperature gradient as shown on the right side of the figure, the source crystal in the high temperature portion is dissolved in the solvent 2, the temperature gradient is transported, and the crystal is deposited on the substrate 7. Let

ところが、第2図に示すような液相結晶成長装置を用い
てZnを溶媒とし、Znを構成要素とするII−VI族化合物半
導体等を結晶成長させようとすると、成長結晶が基板全
面には成長しなかったり、成長しても平坦な成長層が得
られなかったりする。
However, when an attempt is made to grow a II-VI group compound semiconductor or the like having Zn as a constituent element using a liquid crystal growth apparatus such as that shown in FIG. It does not grow, or even if it grows, a flat growth layer cannot be obtained.

[発明が解決しようとする課題] III−V族化合物半導体の成長に用いた溶媒等に比べてZ
n溶媒は、熱伝導率がよい。このため、溶媒中での温度
勾配が形成しにくい。相対的に輻射率の比重が大きくな
る。ヒートシンクであるカーボンの高温時の輻射率は0.
86(1050℃)程度もあり、Znの輻射率が、たとえば1000
℃で約0.1程度と推定されるのと比べて非常に大きな値
を有する。このため、ヒートシンクが発熱体のようにな
り、基板近傍で逆向きの温度勾配を作成する傾向があ
る。基板表面上で温度勾配が形成できないと、結晶成長
は行われず、逆向きの温度勾配が形成されれば、基板が
溶媒中に溶け出すことになる。
[Problems to be Solved by the Invention] In comparison with the solvent used for the growth of III-V group compound semiconductors, Z
The n solvent has good thermal conductivity. Therefore, it is difficult to form a temperature gradient in the solvent. The specific gravity of emissivity becomes relatively large. The emissivity of the heat sink carbon at high temperature is 0.
There is about 86 (1050 ℃), and the emissivity of Zn is, for example, 1000
It has a very large value compared with the value estimated to be about 0.1 at ℃. Therefore, the heat sink becomes like a heating element, and there is a tendency to create an opposite temperature gradient in the vicinity of the substrate. If a temperature gradient cannot be formed on the substrate surface, crystal growth will not occur, and if a reverse temperature gradient is formed, the substrate will dissolve into the solvent.

基板の表面はZn溶媒と接し、その周囲を石英の基板止め
によって囲まれている。基板止めの周囲はさらに石英の
アンプルとなる。このような構成において、溶媒中の温
度分布は中央部が高く、周辺に向うに従って低くなって
いる。すなわち、等温線は下に向って凸の形状を有す
る。成長する結晶は、等温線の形状に従いコンケーブの
表面を有することとなる。
The surface of the substrate is in contact with the Zn solvent and is surrounded by a quartz substrate stopper. Around the substrate stop is a quartz ampoule. In such a structure, the temperature distribution in the solvent is high in the central portion and becomes lower toward the periphery. That is, the isotherm has a downwardly convex shape. The growing crystal will have a concave surface according to the shape of the isotherm.

本発明の目的は、Zn溶媒を用い、効率よく結晶成長を行
うことのできるII−VI族化合物半導体結晶成長装置を提
供することである。
An object of the present invention is to provide a II-VI group compound semiconductor crystal growth apparatus capable of efficiently performing crystal growth using a Zn solvent.

本発明の他の目的はZn溶媒を用い、基板上に平坦な成長
層を得ることのできるII−VI族化合物半導体結晶成長装
置を提供することである。
Another object of the present invention is to provide a II-VI group compound semiconductor crystal growth apparatus capable of obtaining a flat growth layer on a substrate by using a Zn solvent.

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明によれば、Znを主成分とした溶媒を用い、上下に
温度差を設け、ヒートシンク上に配置した基板上にII−
VI族化合物半導体結晶を液相成長させる装置において、
成長温度における輻射率がカーボンの約1/2以下である
材料で該ヒートシンクを形成し、基板を該ヒートシンク
上に密着固定させる基板止めを石英と同等以上の輻射率
を有する材料で形成したことを特徴とするII−VI族化合
物半導体結晶成長装置が提供される。
According to the present invention, a solvent containing Zn as a main component is used, a temperature difference is provided between the upper and lower sides, and II- is formed on the substrate arranged on the heat sink.
In an apparatus for growing a Group VI compound semiconductor crystal in liquid phase,
The heat sink is formed of a material whose emissivity at the growth temperature is about 1/2 or less of that of carbon, and the substrate stopper for closely fixing the substrate on the heat sink is formed of a material having an emissivity equal to or higher than that of quartz. A characteristic II-VI group compound semiconductor crystal growth apparatus is provided.

また、本発明によれば、ヒートシンク上に載置する基板
を止めるための基板止めであって、成長温度における輻
射率が石英の輻射率の約2倍以上の材料で形成された基
板止めを備えるII−VI族化合物半導体結晶成長装置が提
供される。
Further, according to the present invention, there is provided a substrate stopper for stopping a substrate placed on a heat sink, the substrate stopper being made of a material having an emissivity at a growth temperature which is about twice or more that of quartz. A II-VI compound semiconductor crystal growth apparatus is provided.

[作用] Znを溶媒として用いて結晶成長を行う場合、Znの熱的な
性質を考慮することが必要である。Znが結晶成長温度付
近の高温では、極めて低い輻射率を有するのに対して、
カーボンは極めて高い輻射率を有する。このため、Znと
カーボンとが近傍に配置されていると、カーボンから多
くの熱輻射線が発生する。この輻射線を受けたZnは温度
上昇を起こす。すなわち、カーボンをヒートシンクとし
て用いた場合、ヒートシンクとして働かずに、逆に熱発
生器的に働いてしまう。このため、上下方向の温度勾配
が作成し難くなり、結晶成長を阻害する。熱輻射率が結
晶成長温度においてカーボンの熱輻射率の約1/2以下と
いう低い材料を使用することによって、逆方向温度勾配
を作成する傾向が著しく弱まり、上下方向の温度勾配を
作成し易くなる。このため、結晶成長が容易になる。
[Operation] When performing crystal growth using Zn as a solvent, it is necessary to consider the thermal properties of Zn. Zn has an extremely low emissivity at a high temperature near the crystal growth temperature, whereas
Carbon has a very high emissivity. Therefore, if Zn and carbon are arranged in the vicinity, a large amount of heat radiation will be generated from carbon. Zn which receives this radiation causes a temperature rise. That is, when carbon is used as a heat sink, it does not work as a heat sink but rather works as a heat generator. For this reason, it becomes difficult to create a temperature gradient in the vertical direction, which hinders crystal growth. By using a material whose thermal emissivity is less than about 1/2 of the thermal emissivity of carbon at the crystal growth temperature, the tendency to create a reverse temperature gradient is significantly weakened, making it easier to create a vertical temperature gradient. . Therefore, crystal growth becomes easy.

また、基板止めとして成長温度における輻射率が石英の
輻射率の約2倍以上の材料を用いることによって、周囲
から溶媒に熱輻射を発生させ、周囲に放熱することによ
って、溶媒中心部より周辺部が温度が低くなる傾向を妨
げることができる。
Further, by using a material whose emissivity at the growth temperature is about twice or more the emissivity of quartz as a substrate stopper, thermal radiation is generated from the surroundings to the solvent and is radiated to the surroundings, so that the peripheral part from the solvent central part is radiated. Can prevent the tendency for the temperature to drop.

[実施例] 第1図に本発明の実施例によるII−VI族化合物半導体結
晶成長装置を示す。Znを構成元素に有するII−VI族化合
物半導体の代表として、ZnSeを例にとり、以下説明す
る。
[Embodiment] FIG. 1 shows a II-VI group compound semiconductor crystal growth apparatus according to an embodiment of the present invention. As a representative of II-VI group compound semiconductors having Zn as a constituent element, ZnSe will be described below as an example.

成長用アンプル1の下部に、高温時において輻射率の小
さい石英の無垢棒からなるヒートシンク8を容着する。
成長アンプル1の内部空間内には、ヒートシンク8にマ
ウントされるように、基板7を収容し、基板7を押さえ
る基板止め4として高温時の輻射率が溶媒であるZnの輻
射率よりもかなりよい、より具体的には石英の輻射率の
約2倍以上の材質、たとえばカーボンを用いる。溶媒2
としては、Znを用い、ソース用結晶3としては低温で合
成されたZnSe多結晶を使用する。
A heat sink 8 made of a solid quartz rod having a small emissivity at high temperature is attached to the lower part of the growth ampoule 1.
In the internal space of the growth ampoule 1, the substrate 7 is housed so as to be mounted on the heat sink 8 and the emissivity at high temperature is much better than the emissivity of Zn which is a solvent as the substrate stopper 4 that holds down the substrate 7. More specifically, a material having an emissivity of about twice or more of quartz, for example, carbon is used. Solvent 2
Zn is used as the material, and ZnSe polycrystal synthesized at low temperature is used as the source crystal 3.

ここで、溶媒Znとヒートシンクを構成する石英および基
板止めを構成するカーボンの熱的特性を比較すると、以
下の表のようになる。
Here, the thermal characteristics of the solvent Zn, the quartz constituting the heat sink, and the carbon constituting the substrate stopper are compared as shown in the following table.

(Znの溶融状態での輻射率の正確なデータは見出だせな
いが、1000℃において約0.1程度と類推することが可能
であろう。) 結晶成長装置の寸法は、たとえばヒートシンク8の直径
Dは8〜12mm、ヒートシンク8の長さl1は約80〜100m
m、アンプル部の長さl2は約70〜100mm、ソース用結晶3
と基板7との間の距離dは5〜15mmに設定する。また、
成長用アンプル1は円筒形であり、ヒートシンク8は円
柱形である。
(Exact data on the emissivity of Zn in the molten state cannot be found, but it can be inferred to be about 0.1 at 1000 ° C.) The size of the crystal growth apparatus is, for example, the diameter D of the heat sink 8. Is 8 to 12 mm, and the length l1 of the heat sink 8 is about 80 to 100 m
m, length l2 of ampoule is about 70-100mm, crystal for source 3
The distance d between the substrate 7 and the substrate 7 is set to 5 to 15 mm. Also,
The growth ampoule 1 has a cylindrical shape, and the heat sink 8 has a cylindrical shape.

このような構成とした結晶成長装置においては、結晶成
長温度において、ヒートシンクは熱を吸収する一方、輻
射率が低いので溶媒2に熱を与えることが少ない。一方
基板止め4は輻射率が高いので、周囲から溶媒2に熱を
与える作用を果たす。
In the crystal growth apparatus having such a structure, the heat sink absorbs heat at the crystal growth temperature, but the emissivity is low, and therefore heat is less applied to the solvent 2. On the other hand, since the substrate stopper 4 has a high emissivity, it serves to heat the solvent 2 from the surroundings.

使用においては、先ずヒートシンク8上にZnSe単結晶か
らなる基板7を配置し、カーボンで形成した基板止め4
によって基板7とヒートシンク8とが確実に密着するよ
うにし、その後ソース用結晶3および溶媒Zn2を挿入
し、1×10-6Torr以下で真空封止した。その後、図中右
側に示すような温度勾配を設定した炉中に成長用アンプ
ルを配置し、結晶成長を行った。なお、Zn溶媒中に不純
物を添加することにより、伝導型の制御を行う事も可能
である。
In use, first, the substrate 7 made of ZnSe single crystal is placed on the heat sink 8 and the substrate stopper 4 made of carbon is used.
Then, the substrate 7 and the heat sink 8 were surely brought into close contact with each other, then the source crystal 3 and the solvent Zn2 were inserted, and vacuum sealing was performed at 1 × 10 −6 Torr or less. After that, a growth ampoule was placed in a furnace in which a temperature gradient was set as shown on the right side of the figure, and crystal growth was performed. The conductivity type can be controlled by adding impurities to the Zn solvent.

なお、基板止め4として、石英を使用することもでき
る。
Note that quartz can be used as the substrate stopper 4.

以上説明した実施例を従来の技術と比較するため、基板
止めとして石英を使用し、ヒートシンク8として従来の
技術によるカーボンを使用した場合と上述の実施例によ
り石英を使用した場合との成長速度を比較した。
In order to compare the embodiment described above with the prior art, the growth rates of the case where quartz is used as the substrate stopper and the case where carbon according to the conventional technology is used as the heat sink 8 and the case where quartz is used according to the above-mentioned embodiment are shown. Compared.

第3図に得られた結果を示す。カーボンを使用した場
合、成長速度は時には負になり(成長した結晶が溶融し
てしまう)、不安定である外、その絶対値も限定されて
いる。ヒートシンクを石英にした場合は、負の成長速度
となることはなく、その値も増加した。
The results obtained are shown in FIG. When carbon is used, the growth rate sometimes becomes negative (the grown crystal melts) and is unstable, and its absolute value is also limited. When the heat sink was made of quartz, the growth rate did not become negative and the value increased.

なお、石英はZnと比較すると、高い輻射率を有している
が、基板止めとして石英を用いた場合は、基板上に得ら
れた成長層の膜厚分布は第4図白丸(○)に示すようで
あった。サンプル点A,B,C,D,Eは図中上部に示すように
1つの直径に沿ってとった。基板中心部Cでは、成長膜
厚が10μm以下であるのに対して、周辺部A、Eでは50
μm程度となっている。このように、全面成長は得られ
たものの、膜厚差が5倍以上と大きい。
It should be noted that quartz has a higher emissivity than Zn, but when quartz is used as a substrate stopper, the film thickness distribution of the growth layer obtained on the substrate is shown by the white circles (○) in FIG. It was as shown. The sample points A, B, C, D and E were taken along one diameter as shown in the upper part of the figure. In the central portion C of the substrate, the grown film thickness is 10 μm or less, while in the peripheral portions A and E, it is 50 μm or less.
It is about μm. Thus, although the entire surface growth was obtained, the film thickness difference was as large as 5 times or more.

基板止めとして更に輻射率の高いカーボンを使用した場
合、基板上に得られた成長層の膜厚分布は第4図黒丸
(●)に示すようになった。すなわち、中心部Cで最も
膜厚が厚く、周辺部に向って徐々に減少はしたが、周辺
部A、Eにおいても40μm以上の膜厚が得られた。すな
わち、全面成長が得られ、かつ極めて均質性のよい成長
層が得られた。
When carbon having a higher emissivity was used as the substrate stopper, the film thickness distribution of the growth layer obtained on the substrate was as shown by the black circles (●) in FIG. That is, the film thickness was thickest in the central portion C and gradually decreased toward the peripheral portions, but in the peripheral portions A and E, a film thickness of 40 μm or more was obtained. That is, the growth over the entire surface was obtained, and the growth layer having extremely good homogeneity was obtained.

なお、ヒートシンクとして石英を用いる場合を説明した
が、カーボンの輻射率の約1/2以下の輻射率を示す材料
であれば、縦方向の温度勾配を形成し、基板上に全面成
長を得ることができるであろう。
Although the case where quartz is used as the heat sink has been described, if the material has an emissivity that is about 1/2 or less of the emissivity of carbon, a temperature gradient in the vertical direction is formed to obtain the entire surface growth on the substrate. Will be possible.

また、基板止めとして石英およびカーボンを用いる場合
を説明したが、溶媒Znの輻射率と比較して十分高い輻射
率を有する材料であれば、好適な結果が得られるものと
考えられるが、具体的には石英と同等以上の輻射率を有
する材料を用いる。より好ましくは、石英の約2倍以上
の輻射率を有する材料を用いるのがよい。石英とカーボ
ンとの組み合わせを用いてもよい。
Although the case where quartz and carbon are used as the substrate stopper has been described, it is considered that suitable results can be obtained as long as the material has a sufficiently high emissivity as compared with the emissivity of the solvent Zn. For the material, a material having an emissivity equal to or higher than that of quartz is used. More preferably, a material having an emissivity about twice or more that of quartz is used. A combination of quartz and carbon may be used.

以上実施例に沿って本発明を説明したが、本発明はこれ
らに制限されるものではない。たとえば、種々の変更、
改良、組み合わせ等が可能なことは当業者に自明であろ
う。
Although the present invention has been described above with reference to the embodiments, the present invention is not limited thereto. For example, various changes,
It will be apparent to those skilled in the art that modifications, combinations and the like are possible.

[発明の効果] 以上説明したように、本発明によれば、Znを溶媒として
用い、II−VI族半導体結晶を成長する際に、基板上に全
面成長を得ることが容易になる。
[Effects of the Invention] As described above, according to the present invention, when Zn is used as a solvent and a II-VI group semiconductor crystal is grown, it is easy to obtain the entire surface growth on the substrate.

さらに、輻射率の高い基板止めを用いることによって、
成長層内の膜厚分布を均質化することができる。
Furthermore, by using a board stopper with high emissivity,
The film thickness distribution in the growth layer can be homogenized.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例によるII−VI族半導体結晶成長
装置を説明する断面図および温度分布図、 第2図は従来技術による半導体結晶液相成長装置を説明
する断面図および温度分布図、 第3図は従来の技術と本発明の実施例の成長速度を比較
するグラフ、 第4図は本発明の実施例により得られる膜厚分布を示す
グラフである。 図において、 1……成長用アンプル 2……Zn溶媒 3……ソース用結晶 4……基板止め 7……基板 8……ヒートシンク
FIG. 1 is a sectional view and a temperature distribution diagram for explaining a II-VI group semiconductor crystal growth device according to an embodiment of the present invention, and FIG. 2 is a sectional view and a temperature distribution diagram for explaining a conventional semiconductor crystal liquid phase growth device. FIG. 3 is a graph comparing the growth rates of the conventional technique and the example of the present invention, and FIG. 4 is a graph showing the film thickness distribution obtained by the example of the present invention. In the figure, 1 ... Ampule for growth 2 ... Zn solvent 3 ... Crystal for source 4 ... Stopping substrate 7 ... Substrate 8 ... Heat sink

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】Znを主成分とした溶媒を用い、上下に温度
差を設け、ヒートシンク上に配置した基板上にII−VI族
化合物半導体結晶を液相成長させる装置において、 成長温度における輻射率がカーボンの約1/2以下である
材料で該ヒートシンクを形成し、基板を該ヒートシンク
上に密着固定させる基板止めを石英と同等以上の輻射率
を有する材料で形成したことを特徴とするII−VI族化合
物半導体結晶成長装置。
1. An apparatus for growing a II-VI group compound semiconductor crystal in a liquid phase on a substrate placed on a heat sink by using a solvent containing Zn as a main component with a temperature difference between the upper and lower sides, and the emissivity at the growth temperature. Characterized in that the heat sink is formed of a material that is less than about 1/2 of carbon, and the substrate stopper for closely fixing the substrate on the heat sink is formed of a material having an emissivity equal to or higher than that of quartz II- Group VI compound semiconductor crystal growth equipment.
【請求項2】さらに前記ヒートシンク上に載置する基板
を止めるための基板止めであって、成長温度における輻
射率が石英の輻射率の約2倍以上の材料で形成された基
板止めを備える請求項1記載のII−VI族化合物半導体結
晶成長装置。
2. A substrate stopper for stopping a substrate placed on the heat sink, comprising a substrate stopper made of a material having an emissivity at a growth temperature which is about twice or more that of quartz. Item 2. A II-VI compound semiconductor crystal growth apparatus according to Item 1.
JP1334043A 1989-12-22 1989-12-22 (II)-(VI) Group compound semiconductor crystal growth apparatus Expired - Lifetime JPH0712030B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1334043A JPH0712030B2 (en) 1989-12-22 1989-12-22 (II)-(VI) Group compound semiconductor crystal growth apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1334043A JPH0712030B2 (en) 1989-12-22 1989-12-22 (II)-(VI) Group compound semiconductor crystal growth apparatus

Publications (2)

Publication Number Publication Date
JPH03194922A JPH03194922A (en) 1991-08-26
JPH0712030B2 true JPH0712030B2 (en) 1995-02-08

Family

ID=18272871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1334043A Expired - Lifetime JPH0712030B2 (en) 1989-12-22 1989-12-22 (II)-(VI) Group compound semiconductor crystal growth apparatus

Country Status (1)

Country Link
JP (1) JPH0712030B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4936829B2 (en) * 2006-09-11 2012-05-23 住友金属鉱山株式会社 Method for growing zinc oxide crystals

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62256792A (en) * 1986-04-30 1987-11-09 Sharp Corp Method for growing compound semiconductor single crystal in vapor phase
JPH0519340Y2 (en) * 1987-09-16 1993-05-21

Also Published As

Publication number Publication date
JPH03194922A (en) 1991-08-26

Similar Documents

Publication Publication Date Title
Brice et al. Crystal growth
Joyce The growth and structure of semiconducting thin films
US3632431A (en) Method of crystallizing a binary semiconductor compound
JPH03122097A (en) Preparation of single crystal ii-vi group or iii-v group compound and product made of it
US4315796A (en) Crystal growth of compound semiconductor mixed crystals under controlled vapor pressure
US3129061A (en) Process for producing an elongated unitary body of semiconductor material crystallizing in the diamond cubic lattice structure and the product so produced
US5871580A (en) Method of growing a bulk crystal
US4923561A (en) Crystal growth method
US4365588A (en) Fixture for VPE reactor
Su et al. Growth of ZnTe by physical vapor transport and traveling heater method
Lynch Vapor Growth of Cadmium Telluride Single Crystals
Capper Bulk crystal growth: methods and materials
JP3087065B1 (en) Method for growing liquid phase of single crystal SiC
US3785884A (en) Method for depositing a semiconductor material on the substrate from the liquid phase
JPH0712030B2 (en) (II)-(VI) Group compound semiconductor crystal growth apparatus
Roksnoer et al. Growth of dislocation-free gallium-phosphide crystals from a stoichiometric melt
US3413098A (en) Process for varying the width of sheets of web material
US4869776A (en) Method for the growth of a compound semiconductor crystal
Haisma et al. Hetero-epitaxial growth of GaAs on garnets
CN110114519B (en) Indium phosphide single-crystal and indium phosphide single-crystal substrate
Vanier et al. Current controlled liquid phase epitaxial growth of Hg l− x Cd x Te
Szeles et al. Semi-insulating CdZnTe with improved structural perfection for radiation detector applications
JP3018738B2 (en) Single crystal manufacturing equipment
JP4870859B2 (en) Liquid phase epitaxial growth apparatus and growth method
JP3042168B2 (en) Single crystal manufacturing equipment