JP3231050B2 - Compound semiconductor crystal growth method - Google Patents

Compound semiconductor crystal growth method

Info

Publication number
JP3231050B2
JP3231050B2 JP15177791A JP15177791A JP3231050B2 JP 3231050 B2 JP3231050 B2 JP 3231050B2 JP 15177791 A JP15177791 A JP 15177791A JP 15177791 A JP15177791 A JP 15177791A JP 3231050 B2 JP3231050 B2 JP 3231050B2
Authority
JP
Japan
Prior art keywords
growth
crystal
region
compound semiconductor
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15177791A
Other languages
Japanese (ja)
Other versions
JPH054894A (en
Inventor
好隆 友村
雅彦 北川
健司 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP15177791A priority Critical patent/JP3231050B2/en
Publication of JPH054894A publication Critical patent/JPH054894A/en
Application granted granted Critical
Publication of JP3231050B2 publication Critical patent/JP3231050B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、昇華法あるいはハロゲ
ン輸送法を用いた化合物半導体バルク単結晶の成長方法
に、特に、II−VI族化合物半導体(ZnS,ZnSe
等)の結晶成長方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of growing a compound semiconductor bulk single crystal using a sublimation method or a halogen transport method, and particularly to a II-VI group compound semiconductor (ZnS, ZnSe).
Etc.).

【0002】[0002]

【従来の技術】昇華法、ハロゲン輸送法は、化合物半導
体のバルク単結晶成長法として用いられ、特にZnS,
ZnSeを初めとするII−VI族化合物半導体の単結晶成
長においては、高温高圧下でなされる熔融法等に見られ
る冷却時の相転移点の通過に伴う結晶多形の混入を回避
でき、高品質の単結晶を得る上で有効である。この昇華
法あるいはハロゲン輸送法等の結晶成長法で従来用いら
れてきた結晶成長装置(例えば、特開昭63−3549
2号公報)の概略図を図3に示す。図において11は成
長容器、12は支持棒、13は原料粉末、14は種結
晶、15は成長結晶、16,17は加熱炉、18は加熱
炉内の温度分布である。成長容器11は、例えば石英の
円筒容器からなり、この成長容器の一端に原料粉末13
が充填され、円錐形状に成型されたもう一端に種結晶1
4が支持棒12に連結されて設置されている。原料13
ならびに種結晶14を装填された成長容器は、縦型ある
いは横型の加熱炉16内に原料充填領域が高温
(T4 )、種結晶14設置領域、即ち結晶成長領域が低
温(T5 )に設定された温度分布18中に保持され、原
料充填領域と結晶成長領域との間の温度差(T4
5 )による原料蒸気の流れにより原料物質の輸送が生
じ、低温の種結晶14に結晶15の成長が進行する。
2. Description of the Related Art The sublimation method and the halogen transport method are used as bulk single crystal growth methods for compound semiconductors.
In single crystal growth of II-VI group compound semiconductors such as ZnSe, it is possible to avoid the incorporation of crystal polymorphs accompanying the passage of the phase transition point at the time of cooling which is observed in the melting method and the like performed under high temperature and high pressure. It is effective in obtaining a single crystal of high quality. A crystal growth apparatus conventionally used in a crystal growth method such as the sublimation method or the halogen transport method (for example, JP-A-63-3549).
FIG. 3 is a schematic diagram of the above publication. In the figure, 11 is a growth vessel, 12 is a support rod, 13 is a raw material powder, 14 is a seed crystal, 15 is a growth crystal, 16 and 17 are heating furnaces, and 18 is a temperature distribution in the heating furnace. The growth vessel 11 is, for example, a cylindrical vessel made of quartz.
Is filled and seed crystal 1 is formed at the other end formed into a conical shape.
4 is connected to the support rod 12 and installed. Raw material 13
The growth vessel loaded with the seed crystal 14 is set in a vertical or horizontal heating furnace 16 in which the raw material filling region is set at a high temperature (T 4 ) and the seed crystal 14 is set at a low temperature (T 5 ). The temperature difference between the material filling region and the crystal growth region (T 4
The transport of the raw material is caused by the flow of the raw material vapor due to T 5 ), and the growth of the crystal 15 proceeds on the low-temperature seed crystal 14.

【0003】上記の成長方法を用い、例えばZnSをハ
ロゲン(ヨウ素)輸送法により成長させた場合、大型の
もので10×10×15mm3 程度の均質部分を有する
単結晶が得られている。しかしながら、成長容器内の対
流の影響により、多結晶の成長あるいは容器内壁への成
長がしばしば発生する場合があった。また、単結晶が得
られる場合においても成長結晶の一部に形状の乱れが含
まれる場合があり、形状の整った単結晶の得られる割合
は約50%以下であった。
When ZnS is grown by the halogen (iodine) transport method using the above-mentioned growth method, a large single crystal having a homogeneous portion of about 10 × 10 × 15 mm 3 is obtained. However, due to the influence of convection in the growth vessel, polycrystal growth or growth on the inner wall of the vessel often occurred. In addition, even when a single crystal is obtained, the shape of the grown crystal may be partially disordered, and the ratio of the obtained single crystal having a uniform shape is about 50% or less.

【0004】[0004]

【発明が解決しようとする課題】上記のように、従来の
成長法では、成長容器内の原料充填領域と結晶成長領域
との間の空間に、強いて容器内の気体の流れを制御する
ための手段は設けられておらず、成長容器内の対流の影
響のために再現性良く単結晶を得ることができない、さ
らにまた、得られた単結晶中にも結晶形状の乱れが含ま
れるという問題点を有していた。しかも、対流の影響は
成長容器の径大化とともに増大するため、上記の問題点
は成長容器を大型化した際により顕著に現れ、大型の単
結晶を再現性良く成長させることは極めて困難であっ
た。
As described above, in the conventional growth method, the space between the raw material filling region and the crystal growth region in the growth vessel is forced to control the gas flow in the vessel. No means is provided, and a single crystal cannot be obtained with good reproducibility due to the influence of convection in the growth vessel, and furthermore, the obtained single crystal also includes disorder in the crystal shape. Had. Moreover, since the influence of convection increases with an increase in the diameter of the growth vessel, the above-mentioned problems become more apparent when the growth vessel is enlarged, and it is extremely difficult to grow a large single crystal with good reproducibility. Was.

【0005】[0005]

【課題を解決するための手段】本発明は、かかる点に鑑
みてなされたものであって、昇華法あるいはハロゲン輸
送法を用いた化合物半導体の結晶成長方法において、成
長容器内の原料充填領域と結晶成長領域との間に容器内
の気体の対流の発生を抑制しうる構造物を設置して、結
晶成長を行うものであって、成長容器の原料充填領域と
結晶成長領域との中間の領域に少なくとも1枚の格子板
を設けること、あるいは該成長容器よりも小なる内径を
有する細管を成長容器内径に密に束ねて配設することに
より、成長容器内での原料蒸気の対流の発生を抑制する
ことを特徴とする化合物半導体の結晶成長法である。
ち、この発明(請求項1)に係る化合物半導体の結晶成
長法は、昇華法又はハロゲン輸送法を用いた化合物半導
体の気相成長法であって、成長容器内の原料充填領域と
結晶成長領域との中間の領域に、前記成長容器内の気体
の対流の発生を抑制しうる内部構造物を設置して、気相
成長を行うことによって、上記の課題を解決する。 この
発明(請求項2)に係る化合物半導体の結晶成長法は、
請求項1に記載の前記内部構造物が、少なくとも1枚の
格子板からなることによって、上記の課題を解決する。
この発明(請求項3)に係る化合物半導体の結晶成長法
は、請求項1に記載の前記内部構造物が、前記成長容器
の内径よりも小なる内径を有する細管からなることによ
って、上記の課題を解決する。 この発明(請求項4)に
係る化合物半導体の結晶成長法は、請求項1、2又は3
に記載の化合物半導体の結晶成長法において、内部構造
物設置領域が、原料充填領域よりも高温に保持されてな
ることによって、上記の課題を解決する。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and a method of growing a compound semiconductor crystal using a sublimation method or a halogen transport method, the method includes: A structure capable of suppressing generation of gas convection in the vessel is provided between the crystal growth area and the crystal growth, and a region between the raw material filling area and the crystal growth area of the growth vessel is provided. By providing at least one lattice plate in the growth vessel, or by arranging a thin tube having an inside diameter smaller than that of the growth vessel tightly bundled with the inside diameter of the growth vessel, generation of convection of the raw material vapor in the growth vessel is prevented. This is a compound semiconductor crystal growth method characterized by suppressing. Immediately
That is, the crystallization of the compound semiconductor according to the present invention (claim 1).
The long method uses a compound semi-conductor using the sublimation method or the halogen transport method.
A method for vapor-phase growth of a body, comprising:
A gas in the growth vessel is provided in a region intermediate with the crystal growth region.
Install internal structures that can suppress the generation of convection
The above problem is solved by growing. this
The compound semiconductor crystal growth method according to the present invention (claim 2)
The internal structure according to claim 1, wherein at least one
The above-mentioned problem is solved by using a lattice plate.
Crystal growth method for compound semiconductor according to the present invention (claim 3)
The said internal structure of Claim 1 is the said growth container.
Made of a thin tube having an inside diameter smaller than the inside diameter of
Thus, the above problem is solved. In this invention (claim 4)
The method for growing a compound semiconductor crystal according to claim 1, 2 or 3.
In the method for growing a compound semiconductor crystal according to
The material installation area must be kept at a higher temperature than the material filling area.
This solves the above problem.

【0006】本発明において用いる成長容器の形状とし
ては、生産性、耐圧性等から円筒形状とすることが好ま
しく、その寸法としては、成長させる結晶の大きさ(原
料充填量)に依存するが、実用的な大きさ(15×15
×15mm3 〜75×75×150mm3 )の結晶を得
るためには内径20〜100mm、長さ50〜800m
m程度とすることが好ましい。そして、容器内の対流の
発生を抑制するための内部構造として格子板を用いる場
合、その設置位置としては例えば、成長結晶の設定寸法
(成長終端)から成長容器内径の0.2〜1倍程度の位
置とすることで、結晶成長領域での対流の発生を有効に
抑え、なおかつ設定寸法の結晶を成長させるのに必要な
空間を確保することができ好適である。さらに、複数の
格子板を配設する場合には、成長領域に最近接して設置
された格子板より順次原料領域に向かって成長容器内径
と同程度以下の間隔をもって設置することが好ましい。
なお、格子板の構造としては、例えば平板に多数の貫通
穴を設けたもの、あるいは格子状のものを用いることが
できる。その貫通孔もしくは格子の開口部の大きさとし
ては、成長容器内径よりも十分小さく(1/5以下)す
ることで対流の抑制を十分に抑えることができる。
The shape of the growth vessel used in the present invention is preferably cylindrical in view of productivity, pressure resistance, etc., and its size depends on the size of the crystal to be grown (the amount of raw material charged). Practical size (15 × 15
× 15 mm 3 to 75 × 75 × 150 mm 3 ) in order to obtain a crystal having an inner diameter of 20 to 100 mm and a length of 50 to 800 m.
m is preferable. When a lattice plate is used as an internal structure for suppressing the generation of convection in the container, the position of the lattice plate is, for example, about 0.2 to 1 times the inner diameter of the growth container from the set size (growth end) of the grown crystal. By setting the position, the generation of convection in the crystal growth region can be effectively suppressed, and a space necessary for growing a crystal of a set size is preferably secured. Further, when a plurality of lattice plates are provided, it is preferable that the lattice plates are disposed at intervals approximately equal to or less than the inner diameter of the growth vessel from the lattice plate disposed closest to the growth region to the raw material region in order.
As the structure of the lattice plate, for example, a plate having a large number of through holes in a flat plate, or a lattice-like structure can be used. The size of the through hole or the opening of the lattice is sufficiently smaller than the inner diameter of the growth vessel (1/5 or less), so that the suppression of convection can be sufficiently suppressed.

【0007】一方、成長容器内に細管の束を設置して、
対流の発生を抑制する場合、その設置位置としては、格
子板を用いた場合と同様に、成長結晶の設定寸法より成
長容器内径の0.2〜1倍程度の間隔をあけて設置する
ことが好ましい。また、その内径は、成長容器内径の1
/5以下とすることが好ましい。成長時に温度分布に関
しては、例えば、高温の原料領域ならびに低温の結晶成
長領域をそれぞれ均一な温度に保ち、2つの温度領域間
に急峻な温度勾配をつけた階段状の2温度分布を用い
る。あるいはまた、中間領域に設置された対流抑制のた
めの構造物への自然核発生の抑止を確実にするために中
間領域の温度を原料領域よりも僅かに高温に設定した温
度分布を用いる。
On the other hand, a bundle of thin tubes is set in a growth vessel,
In the case of suppressing the generation of convection, the installation position may be set at an interval of about 0.2 to 1 times the inner diameter of the growth vessel from the set size of the grown crystal, as in the case of using the lattice plate. preferable. In addition, the inner diameter is 1 of the inner diameter of the growth vessel.
/ 5 or less. Regarding the temperature distribution at the time of growth, for example, a step-like two-temperature distribution in which a high-temperature raw material region and a low-temperature crystal growth region are each maintained at a uniform temperature and a steep temperature gradient is provided between the two temperature regions is used. Alternatively, a temperature distribution in which the temperature of the intermediate region is set to be slightly higher than that of the raw material region is used in order to surely suppress the generation of natural nuclei in a structure for suppressing convection installed in the intermediate region.

【0008】[0008]

【作用】成長容器の原料充填領域と結晶成長領域との中
間の領域に、容器内の気体の流れに作用する内部構造物
を設置することにより成長容器内での原料蒸気の対流の
発生が抑制され、形状の整った単結晶を再現性良く成長
させることが可能となった。特に、径大化した成長容器
を用いた場合に対流の発生を抑制することが顕著であ
り、従来より大型の単結晶を成長させること可能となっ
た。
[Function] By installing an internal structure acting on the gas flow in the vessel in a region between the raw material filling region and the crystal growth region of the growth vessel, generation of convection of the source vapor in the growth vessel is suppressed. As a result, it has become possible to grow a single crystal having a uniform shape with good reproducibility. In particular, when a growth vessel having a large diameter is used, it is remarkable to suppress the generation of convection, and it has become possible to grow a single crystal larger than before.

【0009】[0009]

【実施例】【Example】

実施例1 図1に本発明の化合物半導体結晶成長方法に用いる結晶
成長装置の概略図を示す。同図において、1は成長容
器、2は支持棒、3は原料粉末、4は種結晶、5は成長
結晶、6は格子板、7は加熱炉、8は加熱炉の温度分布
である。成長容器1は基本的には図4に示されるような
従来例と同様の石英製の円筒形容器であって、その内径
は50mm、長さは200mmとし、平坦終焉された底
部より60mm、85mm、110mm、135mmの
位置に直径3mm程度の貫通孔を多数設けた厚さ約2m
m格子板を設置した。昇華法の場合、原料粉末を容器の
底部に充填し、種結晶4は円錐形終焉部の頭頂部に支持
棒2により固定支持して設置した。ハロゲン輸送法の場
合には、さらに輸送媒体であるハロゲンを充填した。こ
の成長容器を、原料充填領域、格子板設置領域(中間領
域)、結晶成長領域の3つの領域がそれぞれ、T1 ,T
2 , T3 (T2 ≧T1 > T3 )の均一な温度に保たれ
た温度分布8を持つ加熱炉7内に保持することにより成
長を行った。
Example 1 FIG. 1 is a schematic view of a crystal growth apparatus used in the compound semiconductor crystal growth method of the present invention. In the figure, 1 is a growth vessel, 2 is a support rod, 3 is a raw material powder, 4 is a seed crystal, 5 is a growth crystal, 6 is a lattice plate, 7 is a heating furnace, and 8 is a temperature distribution of the heating furnace. The growth vessel 1 is basically a quartz cylindrical vessel similar to the conventional example as shown in FIG. 4 and has an inner diameter of 50 mm, a length of 200 mm, and a distance of 60 mm and 85 mm from the flat-ended bottom. , 110mm, 135mm, about 2m thick with many through holes of about 3mm in diameter
An m grid plate was installed. In the case of the sublimation method, the raw material powder was filled in the bottom of the vessel, and the seed crystal 4 was fixedly supported by the support rod 2 at the top of the end of the cone and placed. In the case of the halogen transport method, halogen as a transport medium was further filled. The growth vessel, a raw material filling region, grid plate installation area (intermediate area), three regions of the crystal growth region, respectively, T 1, T
The growth was carried out by holding in a heating furnace 7 having a temperature distribution 8 maintained at a uniform temperature of 2 , T 3 (T 2 ≧ T 1 > T 3 ).

【0010】本実施例によりヨウ素を輸送媒体としたハ
ロゲン輸送法でZnSを成長させる場合、高純度ZnS
原料粉末(200g)、ヨウ素、ならびに種結晶(7m
m×7mmの(111)A方位のZnS単結晶片)を成
長容器中に封入し、原料領域温度T1 =850℃、中間
領域温度T2 =855℃、結晶成長領域温度T3 =84
0℃に設定された温度分布中に30日間保持すること
で、30mm×30mm×40mm程度の均質部分が結
晶のほぼ85%を絞める形状の整った大型のZnSバル
ク単結晶を80%以上の高い確率で得ることができた。 実施例2 図2に本発明の第2の実施例に用いる成長装置の概略図
を示す。同図において1は成長容器、2は支持棒、3は
原料粉末、4は種結晶、5は成長結晶、9は細管束であ
り、成長装置の中間領域に設けられた細管束9以外は実
施例1で示した成長容器と同様のものである。細管束9
は、内径3mm、肉厚0.5mm、長さ70mmの石英
製細管を成長容器の底部から60〜130mmの中間領
域に成長容器内径中に密に束ねて設置したものである。
加熱炉の温度分布として、実施例1と同様の階段状のも
のを用いることができる。あるいはまた、高温の原料充
填領域と低温の結晶成長領域との間に温度勾配を有する
傾斜型の温度分布10を用いることもできる。この成長
容器を用いた場合も実施例1の場合と同様に、ヨウ素輸
送法によるZnSの大型バルク単結晶を再現性良く成長
させることができた。 実施例3 本発明の結晶成長方法を用いて、昇華法によりZnSe
の成長を行った。成長容器としては、実施例1あるいは
2と同様の形状、寸法を持つものを用い、原料として高
純度のZnSe粉末(150g)を、種結晶として(1
11)面のZnSe小単結晶(10mm×10mm)を
充填し、原料領域温度920℃、成長領域温度900
℃、中間領域の温度勾配2℃/cmの傾斜型温度分布中
で成長を行った。約30日間の成長で、20×20×3
0mm3 程度の均質部分を有する大型の単結晶を再現性
良く得ることができた。 実施例4 本発明の結晶成長方法を用い、ヨウ素輸送法によりZn
0.4 Se0.6 の成長を行った。成長容器、あるいは加
熱炉の温度分布等は実施例1あるいは2と同様のものを
用いた。原料として高純度のZnSおよびZnSe粉末
を4:6のモル比で混合焼成したものを、種結晶として
(111)A面のZnS0.4 Se0.6 単結晶の小片をヨ
ウ素とともに成長容器に封入した。成長は、原料部温度
850℃、成長部温度840℃、中間領域の温度勾配
1.5℃/cmの傾斜型の温度分布中で約30日間成長
させることにより30×30×40mm3 のZnS0.4
Se 0.6 単結晶を再現性良く得ることができた。なお、
成長させるZnSSe単結晶の混晶組成は、原料の仕込
み組成と等しいものが得られ、全混晶組成範囲のものを
再現性良く得る事ができた。また、結晶中の組成のばら
つきは0.1%以下であり、均一性の高い混晶結晶を得
ることができた。 実施例5 本発明の結晶成長方法を用い、ヨウ素輸送法によりZn
0.5 Cd0.5 Sの成長を行った。成長容器、あるいは加
熱炉の温度分布等は実施例1あるいは2と同様のものを
用いた。原料として高純度のZnSおよびCdS粉末を
1:1のモル比で混合したものを、種結晶として(11
1)A面のZn0.5 Cd0.5 S単結晶の小片をヨウ素と
ともに成長容器に封入した。成長は、原料部温度800
℃、成長部温度792℃、中間領域の温度803℃の階
段状の温度分布中で約30日成長させることにより30
×30×40mm3 のZn0.5 Cd0.5 S単結晶を再現
性良く得ることができた。本実施例においても実施例4
のZnSSeの成長と同様に原料仕込み組成により全組
成範囲のZnCdSを再現性良く成長させることができ
た。 実施例6 本発明の結晶成長方法を用い、ヨウ素輸送法によりZn
0.3 Cd0.7 0.4 Se0.6 の成長を行った。成長容
器、あるいは加熱炉の温度分布等は実施例1あるいは2
と同様のものを用いた。原料として高純度ZnS、Zn
Se、CdSならびにCdSe粉末を6:9:14:2
1のモル比で混合焼成したものを、種結晶として(11
1)A面のZn0.3 Cd0.7 0.4 Se0.6 単結晶の小
片をヨウ素とともに成長容器に封入した。成長は、原料
部温度820℃、成長部温度812℃、中間領域の温度
822℃の階段状の温度分布中で約30日間成長させる
ことにより30×30×40mm3 のZn0.3 Cd0.7
0.4 Se0.6 単結晶を再現性良く得ることができた。
本実施例においても実施例4、5のZnSSeあるいは
ZnCdSの成長と同様に原料仕込み組成により全組成
範囲のZnCdSSeを再現性良く成長させることがで
きた。
According to this embodiment, the iodine is used as a transport medium.
When ZnS is grown by the logen transport method, high purity ZnS
Raw material powder (200 g), iodine, and seed crystal (7 m
mx 7 mm (111) A oriented ZnS single crystal piece)
Sealed in a long container,1= 850 ° C, middle
Region temperature TTwo= 855 ° C., crystal growth region temperature TThree= 84
Keep for 30 days in a temperature distribution set at 0 ° C
To form a homogeneous part of about 30 mm x 30 mm x 40 mm.
Large ZnS balm with a well-defined shape that can squeeze almost 85% of the crystal
Quartz single crystals were obtained with a high probability of 80% or more. Embodiment 2 FIG. 2 is a schematic view of a growth apparatus used in a second embodiment of the present invention.
Is shown. In the figure, 1 is a growth vessel, 2 is a support rod, 3 is
Raw material powder, 4 is a seed crystal, 5 is a grown crystal, 9 is a capillary bundle
Except for the bundle of tubules 9 provided in the intermediate region of the growth apparatus.
This is the same as the growth container shown in the first embodiment. Thin tube bundle 9
Is quartz with an inner diameter of 3 mm, a wall thickness of 0.5 mm, and a length of 70 mm
Place the capillary in the middle area 60-130 mm from the bottom of the growth vessel.
In the area, it is installed tightly bundled in the inside diameter of the growth vessel.
As the temperature distribution of the heating furnace, the same step-like shape as in Example 1 was used.
Can be used. Alternatively, hot material charging
Temperature gradient between filling region and low temperature crystal growth region
An inclined temperature distribution 10 can also be used. This growth
In the case of using a container, iodine transport was performed in the same manner as in Example 1.
Growth of large bulk single crystal of ZnS by reproducible method
I was able to. Example 3 Using the crystal growth method of the present invention, ZnSe was formed by a sublimation method.
Grew. Example 1 or Example 1
Use the same shape and size as 2
Purified ZnSe powder (150 g) was used as seed crystals (1
11) Small ZnSe single crystal (10mm × 10mm)
Filling, raw material area temperature 920 ° C, growth area temperature 900
℃, temperature gradient in the middle region 2 ° C / cm in gradient temperature distribution
Grow in. 20x20x3 with about 30 days of growth
0mmThreeReproducibility of large single crystal with homogeneous part
I was able to get good. Example 4 Using the crystal growth method of the present invention, Zn was transported by the iodine transport method.
S0.4Se0.6Grew. Growth vessels or
The temperature distribution of the heating furnace is the same as in Example 1 or 2.
Using. High purity ZnS and ZnSe powder as raw material
Are mixed and fired at a molar ratio of 4: 6, and are used as seed crystals.
ZnS on (111) A plane0.4Se0.6Single crystal piece
It was sealed in a growth container together with iodine. The growth depends on the temperature of the raw material
850 ° C, growth temperature 840 ° C, temperature gradient in the middle area
Growing for about 30 days in 1.5 ° C / cm inclined temperature distribution
30 × 30 × 40mmThreeZnS0.4
Se 0.6A single crystal was obtained with good reproducibility. In addition,
The mixed crystal composition of the grown ZnSSe single crystal depends on the
Of the same composition, and those of the entire mixed crystal composition range
Good reproducibility was obtained. Also, the composition roses in the crystal.
With less than 0.1%, highly homogeneous mixed crystal is obtained.
I was able to. Example 5 Using the crystal growth method of the present invention, Zn was transported by the iodine transport method.
0.5Cd0.5S growth was performed. Growth vessels or
The temperature distribution of the heating furnace is the same as in Example 1 or 2.
Using. High purity ZnS and CdS powder as raw material
A mixture at a molar ratio of 1: 1 was used as a seed crystal (11
1) Zn on A side0.5Cd0.5Small piece of S single crystal with iodine
Both were sealed in a growth vessel. The growth is performed at a raw material temperature of 800
℃, growth part temperature 792 ℃, middle area temperature 803 ℃
By growing for about 30 days in a step temperature distribution, 30
× 30 × 40mmThreeZn0.5Cd0.5Reproduce S single crystal
I was able to get good. Also in this embodiment, Embodiment 4
All sets are based on the raw material charge composition as in the growth of ZnSSe
ZnCdS in the range of growth can be grown with good reproducibility
Was. Example 6 Using the crystal growth method of the present invention, Zn was transported by the iodine transport method.
0.3Cd0.7S0.4Se0.6Grew. Growth volume
Example 1 or 2
The same one as described above was used. High purity ZnS, Zn as raw materials
Se, CdS and CdSe powder were added at 6: 9: 14: 2
What was mixed and fired at a molar ratio of 1 was used as a seed crystal (11
1) Zn on A side0.3Cd0.7S0.4Se0.6Single crystal small
The pieces were sealed in a growth vessel with iodine. Growth is a raw material
Temperature 820 ° C, growth temperature 812 ° C, temperature in the middle area
Grow for about 30 days in a stepwise temperature distribution of 822 ° C
30 × 30 × 40mmThreeZn0.3Cd0.7
S0.4Se0.6A single crystal was obtained with good reproducibility.
In this embodiment, the ZnSSe of Examples 4 and 5 or
Total composition by raw material composition as well as ZnCdS growth
Range of ZnCdSSe can be grown with good reproducibility.
Came.

【0011】[0011]

【発明の効果】本発明によれば、昇華法あるいはハロゲ
ン輸送法を用いた化合物半導体の結晶成長方法におい
て、複数の気流により成長容器内の原料蒸気の対流の発
生を抑制するため、大型の単結晶を、効率的かつ再現性
良く成長させることが可能となり、化合物半導体デバイ
ス用及びエピタキシャル成長基板用の結晶材料として産
業上実用的な大きさ、結晶品質の化合物半導体結晶を提
供することが可能となる。
According to the present invention, in a method for growing a compound semiconductor crystal using a sublimation method or a halogen transport method, the generation of convection of a source vapor in a growth vessel by a plurality of gas flows is suppressed. Crystals can be grown efficiently and with good reproducibility, and it is possible to provide industrially practical compound semiconductor crystals of a size and crystal quality as crystal materials for compound semiconductor devices and epitaxial growth substrates. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例の化合物半導体の結晶成
長法において用いる成長装置の概略図である。
FIG. 1 is a schematic diagram of a growth apparatus used in a compound semiconductor crystal growth method according to a first embodiment of the present invention.

【図2】本発明の第2の実施例において用いる成長装置
の概略図である。
FIG. 2 is a schematic view of a growth apparatus used in a second embodiment of the present invention.

【図3】従来の化合物半導体の結晶成長法において用い
られる成長装置の概略図である。
FIG. 3 is a schematic view of a growth apparatus used in a conventional compound semiconductor crystal growth method.

【符号の説明】[Explanation of symbols]

1,11 成長容器 2,12 支持棒 3,13 原料粉末 4,14 種結晶 5,15 成長結晶 6 格子板 7,16,17 加熱炉 8,18 加熱炉内の温度分布 9 細管束 Reference Signs List 1,11 Growth container 2,12 Support rod 3,13 Raw material powder 4,14 Seed crystal 5,15 Growth crystal 6 Lattice plate 7,16,17 Heating furnace 8,18 Temperature distribution in heating furnace 9 Thin tube bundle

フロントページの続き (56)参考文献 実開 昭61−43275(JP,U) J.Phys.Chem.Solid s,Pergamon Press, 1946年,第25巻,p.187−190 (58)調査した分野(Int.Cl.7,DB名) C30B 1/00 - 35/00 C23C 16/00 - 16/56 H01L 21/205 Continuation of the front page (56) References Japanese Utility Model Showa Sho 61-43275 (JP, U) Phys. Chem. Solids, Pergamon Press, 1946, Vol. 25, p. 187-190 (58) Fields investigated (Int.Cl. 7 , DB name) C30B 1/00-35/00 C23C 16/00-16/56 H01L 21/205

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 昇華法又はハロゲン輸送法を用いた化合
物半導体の気相成長方法であって、成長容器内の原料充
填領域と結晶成長領域との中間の領域に、複数の気流に
より前記成長容器内の気体の対流の発生を抑制しうる、
原料充填領域から結晶成長領域に向かう複数の貫通孔を
有する内部構造物を設置して、気相成長を行うことを特
徴とする化合物半導体の結晶成長方法。
1. A method for vapor-phase growth of a compound semiconductor using a sublimation method or a halogen transport method, wherein a plurality of airflows flow in a region between a raw material filling region and a crystal growth region in a growth container. Can suppress the generation of convection of the gas inside,
A method for growing a compound semiconductor crystal, comprising: installing an internal structure having a plurality of through holes extending from a raw material filling region to a crystal growth region, and performing vapor phase growth.
【請求項2】 昇華法又はハロゲン輸送法を用いた化合
物半導体の気相成長方法であって、成長容器内の原料充
填領域と結晶成長領域との中間の領域に、複数の気流に
より前記成長容器内の気体の対流の発生を抑制しうる、
少なくとも1枚の格子板からなる内部構造物を設置し
て、気相成長を行うことを特徴とする化合物半導体の結
晶成長方法。
2. A method for vapor-phase growth of a compound semiconductor using a sublimation method or a halogen transport method, wherein a plurality of airflows flow in a region between a raw material filling region and a crystal growth region in a growth container. Can suppress the generation of convection of the gas inside,
A method for growing a crystal of a compound semiconductor, comprising: installing an internal structure comprising at least one lattice plate and performing vapor phase growth.
【請求項3】 昇華法又はハロゲン輸送法を用いた化合
物半導体の気相成長方法であって、成長容器内の原料充
填領域と結晶成長領域との中間の領域に、複数の気流に
より前記成長容器内の気体の対流の発生を抑制しうる、
成長容器の内径よりも小さい内径を有する複数の細管か
らなる内部構造物を設置して、気相成長を行うことを特
徴とする化合物半導体の結晶成長方法。
3. A method for vapor-phase growth of a compound semiconductor using a sublimation method or a halogen transport method, wherein a plurality of airflows flow in a region between a raw material filling region and a crystal growth region in a growth container. Can suppress the generation of convection of the gas inside,
A method for growing a crystal of a compound semiconductor, comprising: installing an internal structure comprising a plurality of thin tubes having an inner diameter smaller than the inner diameter of a growth vessel and performing vapor phase growth.
【請求項4】 内部構造物が、複数の細管束からなる請
求項1又は3に記載の化合物半導体の結晶成長法。
4. The method according to claim 1, wherein the internal structure comprises a plurality of capillary bundles.
【請求項5】 内部構造物設置領域が、原料充填領域よ
りも高温に保持されてなる請求項1〜4のいずれか1つ
に記載の化合物半導体の結晶成長法。
5. The method according to claim 1, wherein the internal structure installation region is maintained at a higher temperature than the raw material filling region.
JP15177791A 1991-06-24 1991-06-24 Compound semiconductor crystal growth method Expired - Fee Related JP3231050B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15177791A JP3231050B2 (en) 1991-06-24 1991-06-24 Compound semiconductor crystal growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15177791A JP3231050B2 (en) 1991-06-24 1991-06-24 Compound semiconductor crystal growth method

Publications (2)

Publication Number Publication Date
JPH054894A JPH054894A (en) 1993-01-14
JP3231050B2 true JP3231050B2 (en) 2001-11-19

Family

ID=15526074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15177791A Expired - Fee Related JP3231050B2 (en) 1991-06-24 1991-06-24 Compound semiconductor crystal growth method

Country Status (1)

Country Link
JP (1) JP3231050B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2709272B2 (en) * 1994-10-21 1998-02-04 住友電気工業株式会社 Measurement method of crystallization rate in sublimation method
JP3129236B2 (en) * 1996-07-15 2001-01-29 住友電気工業株式会社 Method for suppressing convection of fluid in cylindrical vessel
JP5527344B2 (en) * 2012-03-21 2014-06-18 住友電気工業株式会社 Group III nitride semiconductor crystal growth method and group III nitride semiconductor crystal growth apparatus
CN104962989A (en) * 2015-07-15 2015-10-07 中国电子科技集团公司第四十六研究所 Carrier gas flow controllable single crystal furnace prepared by adopting PVT method for single crystal

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J.Phys.Chem.Solids,Pergamon Press,1946年,第25巻,p.187−190

Also Published As

Publication number Publication date
JPH054894A (en) 1993-01-14

Similar Documents

Publication Publication Date Title
US5746827A (en) Method of producing large diameter silicon carbide crystals
JP3231050B2 (en) Compound semiconductor crystal growth method
JPH1045499A (en) Production of silicon carbide single crystal and seed crystal used therefor
JPH03295898A (en) Method and device for growing silicon carbide single crystal
US5047112A (en) Method for preparing homogeneous single crystal ternary III-V alloys
US4869776A (en) Method for the growth of a compound semiconductor crystal
JPH0977594A (en) Production of low resistance single crystal silicon carbide
JPH06298600A (en) Method of growing sic single crystal
JP2004203721A (en) Apparatus and method for growing single crystal
JPH06168890A (en) Crystal growth method for compound semiconductor
JPH04187585A (en) Device of growing crystal
JPH11274537A (en) Manufacture of polycrystalline silicon of large grain size
JP2582318B2 (en) Method for manufacturing compound semiconductor single crystal
JP2726887B2 (en) Method for manufacturing compound semiconductor single crystal
JP3125681B2 (en) Method for growing ZnSe single crystal
JP4117813B2 (en) Method for producing compound semiconductor single crystal
JP3154351B2 (en) Single crystal growth method
Rudolph et al. The state of the art of ZnSe melt growth and new steps towards twin-free bulk crystals
JPS62153192A (en) Method for growing crystal of compound semiconductor
JPS60239389A (en) Pulling device for single crystal
JPH0369880B2 (en)
CN116163021A (en) Growth device and growth method of tellurium-zinc-cadmium crystal
JPH08290991A (en) Method for growing compound semiconductor single crystal
JPH0559873B2 (en)
JPH11180792A (en) Production of compound semiconductor single crystal

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees