JPS60180993A - Pulling method of gaas single crystal - Google Patents

Pulling method of gaas single crystal

Info

Publication number
JPS60180993A
JPS60180993A JP3491584A JP3491584A JPS60180993A JP S60180993 A JPS60180993 A JP S60180993A JP 3491584 A JP3491584 A JP 3491584A JP 3491584 A JP3491584 A JP 3491584A JP S60180993 A JPS60180993 A JP S60180993A
Authority
JP
Japan
Prior art keywords
single crystal
seed crystal
crystal
pulling
seed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3491584A
Other languages
Japanese (ja)
Inventor
Riyuusuke Nakai
龍資 中井
Koji Tada
多田 紘二
Masamichi Omori
大森 正道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Sumitomo Electric Industries Ltd
Original Assignee
Nippon Telegraph and Telephone Corp
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Sumitomo Electric Industries Ltd filed Critical Nippon Telegraph and Telephone Corp
Priority to JP3491584A priority Critical patent/JPS60180993A/en
Publication of JPS60180993A publication Critical patent/JPS60180993A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/36Single-crystal growth by pulling from a melt, e.g. Czochralski method characterised by the seed, e.g. its crystallographic orientation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To dispense with formation of a flanging part of complicated shape, and to grow easily the titled single crystal by specifying the size of the seed crystal to be used in the method for pulling a GaAs single crystal with the liquid-capsule Czochralski method. CONSTITUTION:The material melt 1 is charged into a crucible which is heated with a heater, and the surface is covered with a B2O3 melt 2. A seed crystal 9 fixed at the lower end of a pulling shaft 7 is immersed into the surface of the melt 1. And a single crystal is pulled up while rotating the seed crystal 9. The size of the cross section of the seed crystal 9 is regulated so that the diameter of the seed crystal may be equal to the outer diameter of the single crystal or close to the outer diameter (>50% of the outer diameter). The shape of the cross section of the seed crystal 9 is not limited to circular form, and other shapes such as a square of a polygon can also be used. Namely, any shape having cross- sectional area close to that of the single crystal can be used.

Description

【発明の詳細な説明】 (技術分野) 本発明は、液体カプセルチョクラルスキー法(以下、L
EC法と称す)によりGaAs単結晶を引上げる方法に
関するものである。
Detailed Description of the Invention (Technical Field) The present invention is based on the liquid capsule Czochralski method (hereinafter referred to as L
The present invention relates to a method for pulling GaAs single crystals using the EC method (referred to as the EC method).

(背景技術) LIC法は、第1図に例を示すように、ヒータ5により
加熱されるるつは6に原料融液Iを収容し、その表面を
B2O3融液2でおおい、融液1表面に引上げ軸7の下
端に取付けられた種結晶3を浸漬し、なじませた後、種
結晶3を回転しながら引上げて単結晶4を引上げる方法
である。
(Background Art) In the LIC method, as shown in an example in FIG. In this method, the seed crystal 3 attached to the lower end of the pulling shaft 7 is immersed in the water, and the single crystal 4 is pulled up by pulling up the seed crystal 3 while rotating it.

この方法では、従来、目的とする単結晶の外径よりも遥
かに細い径の種結晶3を用い、図に示すような形状の単
結晶に徐々に成長させていた。しかし結晶が所定の最大
径に達するまでの形状を制御することがむつかしく、肩
出し部8の形状に再現性がなく、直胴部の品質もばらつ
きが大きいものであった。
Conventionally, in this method, a seed crystal 3 having a diameter much smaller than the outer diameter of the desired single crystal was used to gradually grow a single crystal having the shape shown in the figure. However, it is difficult to control the shape of the crystal until it reaches a predetermined maximum diameter, there is no reproducibility in the shape of the shouldered portion 8, and the quality of the straight body portion also varies widely.

(発明の開示) 本発明は、上述の問題点を解決するため成されたもので
、引上げる単結晶の外径に近い種結晶を用いることによ
シ、複雑な形状の肩出し部を形成する必要がなく、単藷
晶の成長が容易で、又単結晶中の温度勾配のコントロー
ルが簡単なGaAs単結晶の引上方法を提供せんとする
ものである。
(Disclosure of the Invention) The present invention has been made to solve the above-mentioned problems, and by using a seed crystal close to the outer diameter of the single crystal to be pulled, a protruding part with a complicated shape can be formed. It is an object of the present invention to provide a method for pulling a GaAs single crystal, which does not require the following steps, allows easy growth of the single crystal, and allows easy control of the temperature gradient in the single crystal.

本発明は、引上げる単結晶の外径に近い断面寸法の種結
晶を用いて* GaAs単結晶を液体カプセルチョクラ
ルスキー法によシ引上げることを特徴とするGaAs単
結晶の引上方法である。
The present invention is a method for pulling a GaAs single crystal, which is characterized in that the GaAs single crystal is pulled by the liquid capsule Czochralski method using a seed crystal with a cross-sectional dimension close to the outer diameter of the single crystal to be pulled. be.

以下、本発明を図面を用いて実施例により説明す号はそ
れぞれ同一の部分を示す。図において、9は種結晶で、
その断面寸法が単結晶の外径に等しいか、又はそれに近
い(外径の50%以上)太いものである。
Hereinafter, the present invention will be explained by examples using the drawings, and the numbers indicate the same parts. In the figure, 9 is a seed crystal,
The cross-sectional dimension is equal to or close to the outer diameter of the single crystal (50% or more of the outer diameter).

ただし、種結晶9の断面形状は円形に限定されるもので
はなく、他の、例えば正方形、多角形等でも良く、その
断面積が単結晶の断面積に近いものであれば良い。
However, the cross-sectional shape of the seed crystal 9 is not limited to a circle, and may be other shapes such as a square or a polygon, as long as its cross-sectional area is close to that of a single crystal.

このGaAs種結晶は、例えば水平ブリッジマン法(以
下、HB法と称す)で作られた低転位のGaAs′単結
晶より所定の径を持った円筒状に加工して作成される。
This GaAs seed crystal is produced by processing a low-dislocation GaAs' single crystal produced by, for example, the horizontal Bridgman method (hereinafter referred to as HB method) into a cylindrical shape having a predetermined diameter.

この種結晶9の上部は、適当な覆い、例えば断熱材10
でおおい、引上げ軸7の下端に取付金具11によシ取付
けられている。又種結晶の側面を適当な覆い(例、断熱
材)でおおっても良い。
The upper part of this seed crystal 9 is covered with a suitable covering, such as a heat insulating material 10.
It is covered with a metal fitting 11 and attached to the lower end of the pulling shaft 7. Further, the sides of the seed crystal may be covered with a suitable covering (eg, a heat insulating material).

このように種結晶9の上部又は側面に覆いを設けると、
第4図に示すように種結晶9から引上げ軸7へ移動する
熱が抑止されるため、単結晶12内の温度勾配を低くす
ることができ、低転位化が可能となる。
When a cover is provided on the top or side of the seed crystal 9 in this way,
As shown in FIG. 4, since the heat transferred from the seed crystal 9 to the pulling shaft 7 is suppressed, the temperature gradient within the single crystal 12 can be lowered, and dislocations can be reduced.

これに対し、従来の方法では、第3図に示すように単結
晶4の頭部からの放熱が大きく、急温度勾配となるため
、転位が増加していた。
On the other hand, in the conventional method, as shown in FIG. 3, heat radiation from the head of the single crystal 4 is large, resulting in a steep temperature gradient, resulting in an increase in dislocations.

第5図は本発明の他の実施例に用いられる種結晶部の例
を示す縦断面図である。図において第2図と同一の符号
はそれぞれ同一の部分を示す。図において、I8は前述
と同様な断面の太い種結晶で、その上部にボ・ロンナイ
トランド(BN)litのヒーターブロック+4がねじ
16によシ固着され、ヒーターブロックI4は引上−軸
7の下端に取付けられている。ヒーターブロック14に
は補助ヒーター15が装着され1種結晶13を上部から
加熱する。な−おこの補助ヒーターは種結晶の側面に設
けても良い。17は種結晶部熱電対である。
FIG. 5 is a longitudinal sectional view showing an example of a seed crystal section used in another embodiment of the present invention. In the figure, the same reference numerals as in FIG. 2 indicate the same parts. In the figure, I8 is a thick seed crystal with a cross section similar to that described above, and a Boron nitland (BN) lit heater block +4 is fixed on top of the seed crystal with screws 16. is attached to the bottom end of the An auxiliary heater 15 is attached to the heater block 14 and heats the first seed crystal 13 from above. Note that this auxiliary heater may be provided on the side of the seed crystal. 17 is a seed crystal part thermocouple.

このように種結晶の上部又は側面に補助ヒーターを設け
ると、種結晶を加熱することにより、種結晶を通じて引
上げ軸に移動する熱が抑制されるだめ、単結晶内の温度
勾配を低くすることができ、低転位化が可能となる。
By providing an auxiliary heater on the top or side of the seed crystal in this way, by heating the seed crystal, the heat transferred to the pulling axis through the seed crystal is suppressed, and the temperature gradient within the single crystal can be lowered. This makes it possible to reduce dislocation.

(実施例) 第5図に示すような種結晶および装置を用い、GaAs
単結晶をLEC法により引上げた。
(Example) Using a seed crystal and an apparatus as shown in FIG.
The single crystal was pulled by the LEC method.

HB法により作成したGaAs単結晶よりく100〉方
向に切シ出された直径50+u+、長さ80rsmの種
結晶13ヲ作成し、ヒーターブロック14に固着した。
A seed crystal 13 having a diameter of 50+u+ and a length of 80 rsm was cut out in the 100> direction from a GaAs single crystal produced by the HB method, and was fixed to the heater block 14.

パイロリチック、ポロン、ナイトライド(PBN)製の
るつぼに高純度Ga0.5#、高純度As0.6#、B
2080.2峠をチャージし、As圧60気圧下で加熱
し、反応させてGaAa多結晶を合成し、さらに加熱し
てこれを融解させた。
High purity Ga0.5#, high purity As0.6#, B in a pyrolytic, poron, nitride (PBN) crucible
2080.2 was charged, heated under an As pressure of 60 atmospheres, reacted to synthesize GaAa polycrystals, and further heated to melt this.

これを一旦降温し、融液上に小結晶を発生させ、再びこ
れを十分ゆっくり溶かすことによシ、融液表面をGaA
sの融点付近とし、上記種結晶13をゆっくりとCB2
0B融液につけた後は20 am1時)嘩下方へ下げた
。この間、種結晶重量をモニターし、B2O3浮力(こ
れは円筒形状のため簡単に計算可)を計算で除き、種結
晶が溶けないように温度を調節した。この間引上げ軸回
転数O1るつぼ軸回転数1Or、p、m、とじた。
By lowering the temperature of the melt, generating small crystals on the melt, and melting it slowly enough again, the surface of the melt can be changed to GaA.
The seed crystal 13 is slowly heated to around the melting point of CB2.
After soaking in the 0B melt, the temperature was lowered at 20 am (1 o'clock). During this time, the weight of the seed crystal was monitored, the B2O3 buoyancy (which could be easily calculated due to the cylindrical shape) was excluded from the calculation, and the temperature was adjusted so that the seed crystal did not melt. During this time, the pulling shaft rotation speed was O1 and the crucible shaft rotation speed was 1Or, p, m, and closed.

又種結晶部熱電対が約1200℃になるよう補助ヒータ
ー+5を調節した。種結晶がGaAs融液に着くと種結
晶から固体が成長しないことを確かめ、十分なじませた
後、徐々に炉内加熱(メイン)ヒータ一温度を下げで行
った。ある程度温度を下げると単結晶が成長しようとし
、第6図に示すようにメニスカス18が下がシ、結晶の
密度が融液よりも小さいGaAsでは重量が減るという
信号が出る。
Further, the auxiliary heater +5 was adjusted so that the thermocouple of the seed crystal part was about 1200°C. When the seed crystal arrived at the GaAs melt, it was confirmed that no solid material would grow from the seed crystal, and after the seed crystal was fully absorbed, the temperature of the furnace heating (main) heater was gradually lowered. When the temperature is lowered to a certain extent, a single crystal tends to grow, and as shown in FIG. 6, the meniscus 18 is lowered, giving a signal that the weight of GaAs, where the crystal density is lower than that of the melt, is decreasing.

第6図において左図は種結晶がGaAs融液に着いた時
、右図は冷却して行った時を示す。
In FIG. 6, the left diagram shows when the seed crystal has arrived at the GaAs melt, and the right diagram shows when it has been cooled.

約3yの重量低下を・確認して、種結晶を約6mm/時
の速度で引上げ初め、後は種結晶部熱電対I7の温度を
徐々に下げつつ、通常の引上げを行なった。
After confirming that the weight had decreased by about 3 years, the seed crystal was pulled up at a speed of about 6 mm/hour, and the temperature of the seed crystal thermocouple I7 was gradually lowered while normal pulling was carried out.

得られたGaAs単結晶の種結晶上部から長さ9cmを
ウェハ化し、特性の評価を行なった。元の種結晶はアン
ドープであシ、この種結晶、種結晶上部より46Inお
よび6cmの所のウエノへの抵抗、転位密度は表1に示
す通シである。
A 9 cm long section from the top of the seed crystal of the obtained GaAs single crystal was formed into a wafer and its characteristics were evaluated. The original seed crystal was undoped, and the resistance and dislocation density of this seed crystal to 46In and 6 cm from the top of the seed crystal were as shown in Table 1.

表 1 表1よシ、本発明により、LEC法の特徴である高純度
化のために抵抗が高くなり、又結晶内の低温度勾配化の
ため転位密度が低くなっていることが分る。
Table 1 From Table 1, it can be seen that according to the present invention, the resistance is increased due to the high purity that is a feature of the LEC method, and the dislocation density is decreased due to the low temperature gradient within the crystal.

(発明の効果) 上述のように構成された本発明のGaAs単結晶の引上
方法は次のような効果がある。
(Effects of the Invention) The GaAs single crystal pulling method of the present invention configured as described above has the following effects.

((イ)引上げる単結晶の外径に近い断面寸法の種結晶
を用いるため、従来のような肩出し部形成の必要がなく
、操作が容易で、困難なく所定の□径の単結晶を製造し
得る。
((a) Since a seed crystal with a cross-sectional size close to the outer diameter of the single crystal to be pulled is used, there is no need to form an exposed shoulder as in the conventional method, and the operation is easy and the single crystal of a predetermined diameter can be easily pulled. Can be manufactured.

即ち、低転位化を目的とする低温度勾配の炉(例、As
圧圧制燐炉等では、従来のように種結晶が細く、熱容量
が小さい場合には、ちょっとした温度変動で溶は落ちな
どがおこる。又るつは中心部は温度変動が大きく、テ゛
ンドライト状成長をおこし易いので、従来のように中心
から成長を始めることは不利である。これに対し、本発
明は種付は時このような現象がない。
That is, a furnace with a low temperature gradient (e.g., As
In pressurized phosphor furnaces, etc., if the seed crystals are thin and have a small heat capacity, as in conventional methods, even small temperature fluctuations can cause the melt to drop. Furthermore, since the temperature fluctuations in the center are large and tendritic growth is likely to occur, it is disadvantageous to start growth from the center as in the conventional method. In contrast, in the present invention, such a phenomenon does not occur during seeding.

(ロ)種結晶の上部又は側面に覆いを設けるか、又は補
助ヒーターを設けることが可能であり、これらにより、
前述のように単結晶内の上方向の温度勾配を簡単に低く
することができ、転位密度を低下することができる。
(b) It is possible to provide a cover or an auxiliary heater on the top or side of the seed crystal, and by these,
As described above, the upward temperature gradient within the single crystal can be easily lowered, and the dislocation density can be lowered.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の引上方法の例を説明するための縦断面図
である。 第2図は本発明方法の実施例を説明するための縦断面図
である。 第8図および第4図はそれぞれ従来法および本発明方法
における単結晶内の温度勾配を示す縦断面図である。 第5図は本発明方法の他の実施例に用いられる種、結晶
部の例を示す縦断面図である。 第6図は本発明方法の実施例におけるメニスカスの状態
を示す縦断面図である。 ・・・引上げ軸、8・胸出し部、10・・・断熱材、I
I・・・取付金JL、!4・・ヒーターブロック、15
・・補助ヒーター、16・・・ねじ、17・・・種結晶
部熱電対。 肯l閏 大2図 7Y3M ”A’4図
FIG. 1 is a longitudinal sectional view for explaining an example of a conventional pulling method. FIG. 2 is a longitudinal sectional view for explaining an embodiment of the method of the present invention. FIG. 8 and FIG. 4 are longitudinal cross-sectional views showing temperature gradients within a single crystal in the conventional method and the method of the present invention, respectively. FIG. 5 is a longitudinal sectional view showing an example of a seed and a crystal portion used in another embodiment of the method of the present invention. FIG. 6 is a longitudinal sectional view showing the state of the meniscus in an embodiment of the method of the present invention. ... Pulling shaft, 8. Chest part, 10... Insulation material, I
I...Mounting fee JL,! 4... Heater block, 15
...Auxiliary heater, 16...Screw, 17...Seed crystal part thermocouple. Kanl Leap University 2 figure 7Y3M ``A'4 figure

Claims (3)

【特許請求の範囲】[Claims] (1)引上げる単結晶の外径に近い断面寸法の種結晶を
用いて、 GaAs単結晶を液体力プセルチョクラルヌ
キー法により引上げることを特徴とするGaAs単結晶
の引上方法。
(1) A method for pulling a GaAs single crystal, characterized in that the GaAs single crystal is pulled by the liquid force Pselchoklarnuki method using a seed crystal with a cross-sectional dimension close to the outer diameter of the single crystal to be pulled.
(2)種結晶が、上部又は側面に覆いを設けたものであ
シ、それによシ単結晶中の温度勾配を低くする特許請求
の範囲第蓋積記載のGaAs単結晶の引上方法。
(2) The method for pulling a GaAs single crystal according to claim 1, wherein the seed crystal is provided with a cover on its top or side surface, thereby lowering the temperature gradient in the single crystal.
(3)種結晶が、上部又は側面に補助ヒーターを設けた
ものであり、それによシ単結晶中の温度勾配を低くする
特許請求の範囲第1項又は第2項記載のGaA@単結晶
の引上方法。
(3) The seed crystal is provided with an auxiliary heater on the top or side, thereby lowering the temperature gradient in the single crystal. How to pull up.
JP3491584A 1984-02-24 1984-02-24 Pulling method of gaas single crystal Pending JPS60180993A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3491584A JPS60180993A (en) 1984-02-24 1984-02-24 Pulling method of gaas single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3491584A JPS60180993A (en) 1984-02-24 1984-02-24 Pulling method of gaas single crystal

Publications (1)

Publication Number Publication Date
JPS60180993A true JPS60180993A (en) 1985-09-14

Family

ID=12427508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3491584A Pending JPS60180993A (en) 1984-02-24 1984-02-24 Pulling method of gaas single crystal

Country Status (1)

Country Link
JP (1) JPS60180993A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997032059A1 (en) * 1996-02-29 1997-09-04 Sumitomo Sitix Corporation Method and apparatus for withdrawing single crystal
EP1029956A1 (en) * 1998-08-07 2000-08-23 Shin-Etsu Handotai Co., Ltd Seed crystal and method for preparing single crystal
DE10255981A1 (en) * 2002-11-26 2004-06-17 Forschungsverbund Berlin E.V. Device for drawing a crystal from a melt or melt solution by the Czochralski method comprises a crucible containing the molten raw material, a seed crystal of predetermined crystal orientation, and a crystal holder

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997032059A1 (en) * 1996-02-29 1997-09-04 Sumitomo Sitix Corporation Method and apparatus for withdrawing single crystal
EP1029956A1 (en) * 1998-08-07 2000-08-23 Shin-Etsu Handotai Co., Ltd Seed crystal and method for preparing single crystal
EP1029956A4 (en) * 1998-08-07 2002-05-08 Shinetsu Handotai Kk Seed crystal and method for preparing single crystal
DE10255981A1 (en) * 2002-11-26 2004-06-17 Forschungsverbund Berlin E.V. Device for drawing a crystal from a melt or melt solution by the Czochralski method comprises a crucible containing the molten raw material, a seed crystal of predetermined crystal orientation, and a crystal holder

Similar Documents

Publication Publication Date Title
US4645560A (en) Liquid encapsulation method for growing single semiconductor crystals
JPH02133389A (en) Production device of silicon single crystal
JPS6046993A (en) Device for pulling up single crystal
JPS60180993A (en) Pulling method of gaas single crystal
JP3005633B2 (en) Method for producing polycrystalline silicon ingot for solar cell
JPS60103097A (en) Device for pulling up single crystal
JPS5930795A (en) Apparatus for pulling up single crystal
Otani et al. Preparation of LaB6 single crystals by the floating zone method
JP3018738B2 (en) Single crystal manufacturing equipment
JPH02172885A (en) Production of silicon single crystal
JP2814796B2 (en) Method and apparatus for producing single crystal
JPH026382A (en) Apparatus for pulling up single crystal
JPS644998B2 (en)
JP2757865B2 (en) Method for producing group III-V compound semiconductor single crystal
JP2002234792A (en) Method of producing single crystal
JP3247829B2 (en) Crystal growth furnace and crystal growth method
JPH0940492A (en) Production of single crystal and apparatus for production therefor
JP2700145B2 (en) Method for manufacturing compound semiconductor single crystal
JPH0848591A (en) Crucible for cyrstal growth
JPH03193689A (en) Production of compound semiconductor crystal
JPH0196093A (en) Method for pulling single crystal
JPS62119189A (en) Device for producing single crystal
JPH0397690A (en) Producing device for oxide single crystal
JPS6126519B2 (en)
JPH0825834B2 (en) Single crystal pulling device