JP3005633B2 - Method for producing polycrystalline silicon ingot for solar cell - Google Patents

Method for producing polycrystalline silicon ingot for solar cell

Info

Publication number
JP3005633B2
JP3005633B2 JP3141256A JP14125691A JP3005633B2 JP 3005633 B2 JP3005633 B2 JP 3005633B2 JP 3141256 A JP3141256 A JP 3141256A JP 14125691 A JP14125691 A JP 14125691A JP 3005633 B2 JP3005633 B2 JP 3005633B2
Authority
JP
Japan
Prior art keywords
ingot
solar cell
polycrystalline silicon
silicon
quality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3141256A
Other languages
Japanese (ja)
Other versions
JPH04342496A (en
Inventor
淳也 増田
恭二郎 金子
秀幸 水本
Original Assignee
株式会社住友シチックス尼崎
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社住友シチックス尼崎 filed Critical 株式会社住友シチックス尼崎
Priority to JP3141256A priority Critical patent/JP3005633B2/en
Publication of JPH04342496A publication Critical patent/JPH04342496A/en
Application granted granted Critical
Publication of JP3005633B2 publication Critical patent/JP3005633B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、太陽電池に使用される
多結晶シリコン鋳塊の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a polycrystalline silicon ingot used for a solar cell.

【0002】[0002]

【従来の技術】高性能な太陽電池の素材として、高品質
な多結晶シリコン鋳塊が不可欠である。高品質な多結晶
シリコン鋳塊は、従来より、溶融したシリコンを一方向
に冷却して冷却方向に結晶を成長させることで製造され
ている。この一方向性凝固は、通常は、鋳型を用いたバ
ッチ式で行われるが、最近では、無底るつぼ内で電磁溶
解されたシリコンを凝固させつつ下方へ引き抜く連続的
な方法の開発も進められている。
2. Description of the Related Art As a material for a high-performance solar cell, a high-quality polycrystalline silicon ingot is indispensable. High quality polycrystalline silicon ingots have been conventionally produced by cooling molten silicon in one direction and growing crystals in the cooling direction. This unidirectional solidification is usually performed in a batch system using a mold.Recently, however, a continuous method of solidifying electromagnetically melted silicon in a bottomless crucible and pulling it downward has been developed. ing.

【0003】[0003]

【発明が解決しようとする課題】このような一方向凝固
による多結晶シリコン鋳塊の製造方法においては、シリ
コンの凝固過程における熱的条件である凝固速度および
温度勾配が、鋳塊品質を左右する重要因子として考えら
れている。これらの因子は、相互に関連しており、従来
は、これら因子の鋳塊品質に与える影響度が不明確なま
ま、複雑な冷却制御を行っていた。そのため、充分な制
御精度が得られずに鋳塊品質の低下を招いていた。ま
た、充分な制御精度が得られたとしても、種々因子の鋳
塊品質に与える影響が明確化されていない現状では、優
れた鋳塊品質は期待できない。
In such a method for producing a polycrystalline silicon ingot by unidirectional solidification, the solidification rate and temperature gradient, which are thermal conditions in the process of solidifying silicon, determine the quality of the ingot. Considered as an important factor. These factors are related to each other, and in the past, complicated cooling control was performed while the influence of these factors on ingot quality was unclear. For this reason, sufficient control accuracy has not been obtained and the quality of the ingot has been reduced. Even if sufficient control accuracy is obtained, excellent ingot quality cannot be expected under the current situation where the influence of various factors on ingot quality has not been clarified.

【0004】本発明の目的は、簡単な制御で高品質を実
現できる太陽電池用シリコン鋳塊の製造方法を提供する
ことにある。
An object of the present invention is to provide a method for producing a silicon ingot for a solar cell, which can realize high quality with simple control.

【0005】[0005]

【課題を解決するための手段】本発明者らは、多結晶シ
リコンの一方向性凝固鋳塊、特に筒状の水冷無底るつぼ
を用いた電磁溶解式の連続鋳造により製造された多結晶
シリコン鋳塊の高品質化のための研究を以前より続けて
いる。これまでに集積したデータを、凝固過程にあるシ
リコンの熱的条件と、製造されたシリコン鋳塊から採取
した太陽電池の光電変換効率との関係について整理した
ところ、次のような興味ある事実が明らかになった。
Means for Solving the Problems The present inventors have proposed a polycrystalline silicon.
Unidirectional solidified ingot of Recon, especially cylindrical water-cooled bottomless crucible
Research on high quality polycrystalline silicon ingots produced by electromagnetic melting type continuous casting using uranium has been continued. The data collected so far are summarized in terms of the relationship between the thermal conditions of silicon in the process of solidification and the photoelectric conversion efficiency of solar cells collected from the manufactured silicon ingot. It was revealed.

【0006】従来、鋳塊品質に大きな影響を与えるとさ
れていた凝固速度は、太陽電池の性能を決定する光電変
換効率に殆ど無関係である。光電変換効率に影響する因
子は、凝固過程にあるシリコンの温度勾配、とりわけシ
リコンの融点である1420℃から1200℃までの比
較的狭い温度域における温度勾配であり、その光電変換
効率に与える影響は大きく、その一方、他の温度域にお
ける温度勾配は、光電変換効率に殆ど無関係である。そ
のため、1420℃から1200℃までの温度域におけ
る温度勾配を制御すれば、比較的簡単な制御操作で光電
変換効率が大幅に改善される。
[0006] The solidification rate, which has hitherto been considered to greatly affect the quality of the ingot, is almost independent of the photoelectric conversion efficiency that determines the performance of the solar cell. The factor that affects the photoelectric conversion efficiency is the temperature gradient of silicon in the solidification process, particularly the temperature gradient in a relatively narrow temperature range from the melting point of silicon, 1420 ° C. to 1200 ° C. The effect on the photoelectric conversion efficiency is Large, while the temperature gradient in other temperature ranges is almost independent of the photoelectric conversion efficiency. Therefore, if the temperature gradient in the temperature range from 1420 ° C. to 1200 ° C. is controlled, the photoelectric conversion efficiency is greatly improved by a relatively simple control operation.

【0007】本発明の太陽電池用多結晶シリコン鋳塊の
製造方法は、かかる新事実に基づき開発されたもので、
太陽電池に供される一方向性凝固の多結晶シリコン鋳塊
、筒状の水冷無底るつぼを用いた電磁溶解式の連続鋳
により製造する際に、シリコンが1420℃から12
00℃までの温度域を通過するときの温度勾配を15〜
25℃/cmの範囲内に制御することにより、簡単な制
御で多結晶シリコン鋳塊の太陽電池としての品質を高め
るものである。
The method for producing a polycrystalline silicon ingot for a solar cell according to the present invention has been developed based on such a new fact.
Electromagnetic melting continuous casting of unidirectionally solidified polycrystalline silicon ingots for solar cells using a cylindrical water-cooled bottomless crucible
When manufacturing the concrete, the silicon 1420 ° C. 12
The temperature gradient when passing through the temperature range up to
By controlling the temperature within the range of 25 ° C./cm, the quality of a polycrystalline silicon ingot as a solar cell is improved with a simple control.

【0008】[0008]

【作用】太陽電池の光電変換効率を悪化させる多くの欠
陥は、シリコンが1420℃から1200℃までの温度
域を通過するときに生じる。このときの温度勾配を25
℃/cm以下に制限することにより、結晶内部に発生す
る熱応力が緩和され、太陽電池の光電変換効率を悪化さ
せる様々な欠陥の発生が抑えられる。この欠陥の抑制効
果は、温度勾配が小さいほど顕著となる。ただし、15
℃/cm未満の温度勾配は、シリコン融液の保持および
温度制御を困難にし、また、製造時間を長くして製造コ
ストの上昇をもたらすので、現実的でない。従って、1
420℃から1200℃までの温度域における温度勾配
を15〜25℃/cmとした。1200℃未満の温度域
においては、鋳塊品質が既に決定されており、この温度
域における温度勾配は鋳塊品質に殆ど影響せず、実操業
上は、1200℃以上の温度域における温度勾配制御と
のつながり、保温設備の簡素化等の観点から、20〜4
0℃/cmが望ましい。
Many defects that deteriorate the photoelectric conversion efficiency of a solar cell occur when silicon passes through a temperature range from 1420 ° C. to 1200 ° C. The temperature gradient at this time is 25
By limiting the temperature to ° C./cm or less, the thermal stress generated inside the crystal is relaxed, and the generation of various defects that deteriorate the photoelectric conversion efficiency of the solar cell can be suppressed. The effect of suppressing defects is more remarkable as the temperature gradient is smaller. However, 15
A temperature gradient of less than ° C./cm is not realistic because it makes it difficult to maintain and control the temperature of the silicon melt and increases the manufacturing time and the manufacturing cost. Therefore, 1
The temperature gradient in the temperature range from 420 ° C. to 1200 ° C. was 15 to 25 ° C./cm. In the temperature range below 1200 ° C., the ingot quality has already been determined, and the temperature gradient in this temperature range hardly affects the ingot quality. 20-4 from the viewpoint of connection with
0 ° C./cm is desirable.

【0009】[0009]

【実施例】以下に本発明の実施例を説明する。Embodiments of the present invention will be described below.

【0010】本発明の太陽電池用多結晶シリコン鋳塊の
製造方法は、例えば図1および図2に示す電磁溶解式の
連続鋳造装置を用いて実施される。この連続鋳造装置
は、気密容器1内に収容された筒状の無底るつぼ2を備
えている。無底るつぼ2は、銅等の導電性金属からな
り、内部を流通する冷却水により強制冷却される。無底
るつぼ2の上端部を除く部分は、周方向に分割されてお
り、その分割部の外側に誘導コイル3が配設されてい
る。無底るつぼ2の下方には、保温炉4が連設されてお
り、その内部には電気ヒータ5が配設されている。
The method for producing a polycrystalline silicon ingot for a solar cell according to the present invention is carried out using, for example, an electromagnetic melting type continuous casting apparatus shown in FIGS. This continuous casting apparatus includes a cylindrical bottomless crucible 2 housed in an airtight container 1. The bottomless crucible 2 is made of a conductive metal such as copper, and is forcibly cooled by cooling water flowing inside. The portion of the bottomless crucible 2 excluding the upper end is divided in the circumferential direction, and the induction coil 3 is arranged outside the divided portion. A heat insulating furnace 4 is provided below the bottomless crucible 2, and an electric heater 5 is provided therein.

【0011】本発明の製造方法を実施するには、まず、
気密容器1内を吸引口1aから真空引きした後、気密容
器1内へガス口1bから不活性ガスを注入する。これと
並行して、無底るつぼ2の底を種鋳塊で閉塞して、原料
装入器6から無底るつぼ2内へ粒塊状の原料シリコン1
0を装入する。次いで、無底るつぼ2内の原料シリコン
10を溶解させるべく、誘導コイル3に所定周波数の交
流を通じる。無底るつぼ2内のシリコン融液11は、無
底るつぼ2の内面に対して非接触の状態に保持される。
そして、無底るつぼ2内に原料シリコン10を補給しつ
つ、無底るつぼ2内のシリコン融液11を下方へ徐々に
引き抜くことにより、軸心方向に結晶が成長した多結晶
シリコンの一方向凝固鋳塊12が連続的に製造される。
In order to carry out the production method of the present invention, first,
After evacuating the airtight container 1 from the suction port 1a, an inert gas is injected into the airtight container 1 from the gas port 1b. At the same time, the bottom of the bottomless crucible 2 is closed with a seed ingot, and the raw material silicon
0 is charged. Next, in order to melt the raw material silicon 10 in the bottomless crucible 2, an alternating current of a predetermined frequency is passed through the induction coil 3. The silicon melt 11 in the bottomless crucible 2 is kept in a non-contact state with the inner surface of the bottomless crucible 2.
Then, the silicon melt 11 in the bottomless crucible 2 is gradually pulled downward while the silicon raw material 10 is supplied into the bottomless crucible 2 so that the unidirectional solidification of the polycrystalline silicon in which the crystal grows in the axial direction. The ingot 12 is manufactured continuously.

【0012】このとき、シリコンが1420℃から12
00℃までの温度域を通過するときの温度勾配が15〜
25℃/cmとなるように、保温炉4により一方向凝固
鋳塊12の放熱を抑える。この制御は、保温炉4内の電
気ヒータ5の出力調節により、一方向凝固鋳塊12の鋳
造速度(シリコンの凝固速度)とは無関係に行われる。
At this time, silicon is heated from 1420 ° C. to 12
The temperature gradient when passing through the temperature range up to 00 ° C is 15 ~
The heat radiation of the unidirectionally solidified ingot 12 is suppressed by the heat retaining furnace 4 so that the temperature becomes 25 ° C./cm. This control is performed by adjusting the output of the electric heater 5 in the heat retaining furnace 4 irrespective of the casting speed of the unidirectionally solidified ingot 12 (solidification speed of silicon).

【0013】このような多結晶シリコン鋳塊の連続製造
においては、前述したとおり、凝固過程にあるシリコン
の温度勾配の制御およびその制御温度域が鋳塊品質に大
きな影響を及ぼす。その調査結果を以下に示す。なお、
鋳塊品質は、製造された鋳塊から採取した太陽電池の光
電変換効率により評価した。
In the continuous production of such a polycrystalline silicon ingot, as described above, the control of the temperature gradient of silicon in the process of solidification and the control temperature range greatly affect the quality of the ingot. The results of the survey are shown below. In addition,
The ingot quality was evaluated based on the photoelectric conversion efficiency of a solar cell collected from the manufactured ingot.

【0014】図3は1420〜1200℃の温度域で温
度勾配を制御したときの温度勾配と鋳塊品質との関係を
示している。1420〜1200℃では、温度勾配が小
さくなる程、太陽電池としての鋳塊品質が改善される。
図4は1200〜1000℃の温度域での制御結果、図
5は1000〜800℃の温度域での制御結果をそれぞ
れ示している。1200℃より低い温度域では、温度勾
配と鋳片品質との間に相関は見られない。また、図6は
凝固速度と鋳塊品質との関係を示しているが、両者の間
にも格別の相関は見られない。
FIG. 3 shows the relationship between the temperature gradient and the quality of the ingot when the temperature gradient is controlled in the temperature range of 1240 to 1200 ° C. At 1420 to 1200 ° C., the smaller the temperature gradient, the better the ingot quality as a solar cell.
FIG. 4 shows a control result in a temperature range of 1200 to 1000 ° C., and FIG. 5 shows a control result in a temperature range of 1000 to 800 ° C., respectively. In a temperature range lower than 1200 ° C., there is no correlation between the temperature gradient and the slab quality. FIG. 6 shows the relationship between the solidification rate and the quality of the ingot, but there is no particular correlation between the two.

【0015】[0015]

【0016】[0016]

【発明の効果】以上の説明から明らかなように、本発明
の太陽電池用多結晶シリコン鋳塊の製造方法は、凝固過
程にあるシリコンの狭い温度域を制御するので、制御が
容易で簡単に実施できる。また、実施したときの品質改
善効果が大きい。従って、太陽電池の高品質化を実現で
きる。
As is apparent from the above description, the method for producing a polycrystalline silicon ingot for a solar cell according to the present invention controls a narrow temperature range of silicon in a solidification process, so that control is easy and simple. Can be implemented. In addition, the quality improvement effect when implemented is large. Therefore, high quality of the solar cell can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明法の実施に適した鋳造装置の模式図であ
る。
FIG. 1 is a schematic view of a casting apparatus suitable for carrying out the method of the present invention.

【図2】鋳造装置の主要部を破断して示した斜視図であ
る。
FIG. 2 is a perspective view showing a main part of the casting apparatus in a cutaway manner.

【図3】1420〜1200℃の温度域での温度勾配と
鋳塊品質との関係を示す図表である。
FIG. 3 is a table showing a relationship between a temperature gradient in a temperature range of 1240 to 1200 ° C. and ingot quality.

【図4】1200〜1000℃の温度域での温度勾配と
鋳塊品質との関係を示す図表である。
FIG. 4 is a chart showing a relationship between a temperature gradient in a temperature range of 1200 to 1000 ° C. and ingot quality.

【図5】1000〜800℃の温度域での温度勾配と鋳
塊品質との関係を示す図表である。
FIG. 5 is a table showing a relationship between a temperature gradient in a temperature range of 1000 to 800 ° C. and ingot quality.

【図6】凝固速度と鋳塊品質との関係を示す図表であ
る。
FIG. 6 is a table showing a relationship between a solidification rate and ingot quality.

【符号の説明】[Explanation of symbols]

2 無底るつぼ 3 誘導コイル 4 保温炉 10 原料シリコン 11 シリコン融液 12 一方向凝固鋳塊 2 Crucible without bottom 3 Induction coil 4 Insulation furnace 10 Raw material silicon 11 Silicon melt 12 Unidirectional solidified ingot

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭62−56395(JP,A) 特開 昭56−5399(JP,A) (58)調査した分野(Int.Cl.7,DB名) C30B 1/00 - 35/00 ────────────────────────────────────────────────── ─── Continuation of front page (56) References JP-A-62-56395 (JP, A) JP-A-56-5399 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C30B 1/00-35/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 太陽電池に供される一方向性凝固の多結
晶シリコン鋳塊を、筒状の水冷無底るつぼを用いた電磁
溶解式の連続鋳造により製造する際に、シリコンが14
20℃から1200℃までの温度域を通過するときの温
度勾配を15〜25℃/cmの範囲内に制御することを
特徴とする太陽電池用多結晶シリコン鋳塊の製造方法。
1. An electromagnetic casting method using a unidirectionally solidified polycrystalline silicon ingot provided to a solar cell using a cylindrical water-cooled bottomless crucible.
When manufacturing by melt-type continuous casting , 14
A method for producing a polycrystalline silicon ingot for a solar cell, wherein a temperature gradient when passing through a temperature range from 20 ° C to 1200 ° C is controlled within a range of 15 to 25 ° C / cm.
JP3141256A 1991-05-16 1991-05-16 Method for producing polycrystalline silicon ingot for solar cell Expired - Lifetime JP3005633B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3141256A JP3005633B2 (en) 1991-05-16 1991-05-16 Method for producing polycrystalline silicon ingot for solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3141256A JP3005633B2 (en) 1991-05-16 1991-05-16 Method for producing polycrystalline silicon ingot for solar cell

Publications (2)

Publication Number Publication Date
JPH04342496A JPH04342496A (en) 1992-11-27
JP3005633B2 true JP3005633B2 (en) 2000-01-31

Family

ID=15287687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3141256A Expired - Lifetime JP3005633B2 (en) 1991-05-16 1991-05-16 Method for producing polycrystalline silicon ingot for solar cell

Country Status (1)

Country Link
JP (1) JP3005633B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1254861A4 (en) * 2000-12-28 2006-06-21 Sumitomo Mitsubishi Silicon Silicon continuous casting method

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3325900B2 (en) * 1996-10-14 2002-09-17 川崎製鉄株式会社 Method and apparatus for producing polycrystalline silicon, and method for producing silicon substrate for solar cell
CA2232777C (en) * 1997-03-24 2001-05-15 Hiroyuki Baba Method for producing silicon for use in solar cells
JP4675550B2 (en) * 2003-04-28 2011-04-27 三菱マテリアル株式会社 Unidirectionally solidified silicon ingot, method for producing the same, silicon plate and substrate for solar cell
JP2011173775A (en) * 2010-02-25 2011-09-08 Sumco Corp Continuous casting method of silicon ingot
JP2011176180A (en) * 2010-02-25 2011-09-08 Sumco Corp Polycrystal silicon for solar cell
JP2012025600A (en) * 2010-07-21 2012-02-09 Sumco Corp Electromagnetic casting device for silicon ingot

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1254861A4 (en) * 2000-12-28 2006-06-21 Sumitomo Mitsubishi Silicon Silicon continuous casting method

Also Published As

Publication number Publication date
JPH04342496A (en) 1992-11-27

Similar Documents

Publication Publication Date Title
US7682472B2 (en) Method for casting polycrystalline silicon
Ciszek Techniques for the crystal growth of silicon ingots and ribbons
JPH1121120A (en) Production of polycrystalline semiconductor and apparatus therefor
JPH0633218B2 (en) Silicon single crystal manufacturing equipment
US5394825A (en) Method and apparatus for growing shaped crystals
KR100564770B1 (en) apparatus for continuously casting an low electroconductive material by induction
JPH107493A (en) Production of silicon semiconductor substrate and substrate for solar cell
JP3005633B2 (en) Method for producing polycrystalline silicon ingot for solar cell
Durand Electromagnetic continuous pulling process compared to current casting processes with respect to solidification characteristics
JP2005132671A (en) Method for producing high-quality polycrystalline silicon
JP2657240B2 (en) Silicon casting equipment
JPS63166711A (en) Production of polycrystalline silicon ingot
CN103060902B (en) Direct forming prepares method and the silicon chip direct-forming device of band silicon
JPS6272464A (en) Directional solidification of molten metal
JP2003286024A (en) Unidirectional solidified silicon ingot and manufacturing method thereof, silicon plate, substrate for solar cell and target base material for sputtering
US20150082833A1 (en) Polycrystalline silicon and method of casting the same
JP3935747B2 (en) Method for producing silicon ingot
JP3152971B2 (en) Manufacturing method of high purity copper single crystal ingot
JPS58217419A (en) Method and device for manufacturing polycrystal silicon rod
JPH1192284A (en) Production of silicon ingot having polycrystal structure solidified in one direction
JP2002522353A (en) Method and system for stabilizing dendritic web crystal growth
US3505025A (en) Jacketed,cooled crucible for crystallizing material
JP2004284892A (en) Method of producing polycrystal silicon
CN201296663Y (en) Static temperature gradient directional solidifying and purifying oven of polysilicon
JP2883910B2 (en) Manufacturing method of single crystal silicon

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071126

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091126

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101126

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101126

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111126

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111126

Year of fee payment: 12