JPH04342496A - Production of polycrystal silicon cast mass for solar cell - Google Patents

Production of polycrystal silicon cast mass for solar cell

Info

Publication number
JPH04342496A
JPH04342496A JP14125691A JP14125691A JPH04342496A JP H04342496 A JPH04342496 A JP H04342496A JP 14125691 A JP14125691 A JP 14125691A JP 14125691 A JP14125691 A JP 14125691A JP H04342496 A JPH04342496 A JP H04342496A
Authority
JP
Japan
Prior art keywords
ingot
quality
silicon
temperature gradient
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14125691A
Other languages
Japanese (ja)
Other versions
JP3005633B2 (en
Inventor
Junya Masuda
増田 淳也
Kyojiro Kaneko
恭二郎 金子
Hideyuki Mizumoto
水本 秀幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Titanium Co Ltd
Original Assignee
Osaka Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Titanium Co Ltd filed Critical Osaka Titanium Co Ltd
Priority to JP3141256A priority Critical patent/JP3005633B2/en
Publication of JPH04342496A publication Critical patent/JPH04342496A/en
Application granted granted Critical
Publication of JP3005633B2 publication Critical patent/JP3005633B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To produce a polycrystal silicon cast mass for solar cell having excellent efficiency of photoelectric conversion. CONSTITUTION:In producing a polycrystal silicon cast mass by one-direciton solidification, temperature gradient when silicon is passed through a temperature area from 1420 deg.C to 1200 deg.C is controlled within the range of 15 to 25 deg.C/cm. Thereby controlled temperature area is narrowed and the control is facilitated. When the control is carried out, a larger effect on improving the efficiency of photoelectric conversion is achieved.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、太陽電池に使用される
多結晶シリコン鋳塊の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing polycrystalline silicon ingots used in solar cells.

【0002】0002

【従来の技術】高性能な太陽電池の素材として、高品質
な多結晶シリコン鋳塊が不可欠である。高品質な多結晶
シリコン鋳塊は、従来より、溶融したシリコンを一方向
に冷却して冷却方向に結晶を成長させることで製造され
ている。この一方向性凝固は、通常は、鋳型を用いたバ
ッチ式で行われるが、最近では、無底るつぼ内で電磁溶
解されたシリコンを凝固させつつ下方へ引き抜く連続的
な方法の開発も進められている。
BACKGROUND OF THE INVENTION High-quality polycrystalline silicon ingots are essential as materials for high-performance solar cells. High-quality polycrystalline silicon ingots have conventionally been produced by cooling molten silicon in one direction and growing crystals in the cooling direction. This unidirectional solidification is usually carried out in a batch process using a mold, but recently a continuous method has been developed in which electromagnetically melted silicon is solidified in a bottomless crucible and then pulled downward. ing.

【0003】0003

【発明が解決しようとする課題】このような一方向凝固
による多結晶シリコン鋳塊の製造方法においては、シリ
コンの凝固過程における熱的条件である凝固速度および
温度勾配が、鋳塊品質を左右する重要因子として考えら
れている。これらの因子は、相互に関連しており、従来
は、これら因子の鋳塊品質に与える影響度が不明確なま
ま、複雑な冷却制御を行っていた。そのため、充分な制
御精度が得られずに鋳塊品質の低下を招いていた。また
、充分な制御精度が得られたとしても、種々因子の鋳塊
品質に与える影響が明確化されていない現状では、優れ
た鋳塊品質は期待できない。
[Problems to be Solved by the Invention] In this method of producing polycrystalline silicon ingots by unidirectional solidification, the solidification rate and temperature gradient, which are thermal conditions during the solidification process of silicon, affect the quality of the ingot. It is considered as an important factor. These factors are interrelated, and in the past, complicated cooling control was performed without clarifying the degree of influence of these factors on ingot quality. Therefore, sufficient control accuracy could not be obtained, leading to a decline in the quality of the ingot. Furthermore, even if sufficient control accuracy is obtained, excellent ingot quality cannot be expected because the effects of various factors on ingot quality have not yet been clarified.

【0004】本発明の目的は、簡単な制御で高品質を実
現できる太陽電池用シリコン鋳塊の製造方法を提供する
ことにある。
[0004] An object of the present invention is to provide a method for manufacturing silicon ingots for solar cells that can achieve high quality with simple control.

【0005】[0005]

【課題を解決するための手段】本発明者らは、多結晶シ
リコン鋳塊の高品質化のための研究を以前より続けてい
る。これまでに集積したデータを、凝固過程にあるシリ
コンの熱的条件と、製造されたシリコン鋳塊から採取し
た太陽電池の光電変換効率との関係について整理したと
ころ、次のような興味ある事実が明らかになった。
[Means for Solving the Problems] The present inventors have been conducting research to improve the quality of polycrystalline silicon ingots. When we organized the data accumulated so far on the relationship between the thermal conditions of silicon during the solidification process and the photoelectric conversion efficiency of solar cells collected from manufactured silicon ingots, we found the following interesting facts. It was revealed.

【0006】従来、鋳塊品質に大きな影響を与えるとさ
れていた凝固速度は、太陽電池の性能を決定する光電変
換効率に殆ど無関係である。光電変換効率に影響する因
子は、凝固過程にあるシリコンの温度勾配、とりわけシ
リコンの融点である1420℃から1200℃までの比
較的狭い温度域における温度勾配であり、その光電変換
効率に与える影響は大きく、その一方、他の温度域にお
ける温度勾配は、光電変換効率に殆ど無関係である。そ
のため、1420℃から1200℃までの温度域におけ
る温度勾配を制御すれば、比較的簡単な制御操作で光電
変換効率が大幅に改善される。
[0006] The solidification rate, which was conventionally thought to have a great influence on the quality of the ingot, has almost no relation to the photoelectric conversion efficiency, which determines the performance of solar cells. The factor that affects photoelectric conversion efficiency is the temperature gradient of silicon during the solidification process, especially the temperature gradient in a relatively narrow temperature range from 1420°C to 1200°C, which is the melting point of silicon, and its influence on photoelectric conversion efficiency is On the other hand, temperature gradients in other temperature ranges have almost no relation to photoelectric conversion efficiency. Therefore, by controlling the temperature gradient in the temperature range from 1420° C. to 1200° C., the photoelectric conversion efficiency can be significantly improved with a relatively simple control operation.

【0007】本発明の太陽電池用多結晶シリコン鋳塊の
製造方法は、かかる新事実に基づき開発されたもので、
太陽電池に供される多結晶シリコン鋳塊を一方向凝固に
より製造する際に、シリコンが1420℃から1200
℃までの温度域を通過するときの温度勾配を15〜25
℃/cmの範囲内に制御することにより、簡単な制御で
多結晶シリコン鋳塊の太陽電池としての品質を高めるも
のである。
The method for producing polycrystalline silicon ingots for solar cells of the present invention was developed based on this new fact.
When manufacturing polycrystalline silicon ingots for use in solar cells by unidirectional solidification, silicon is heated from 1420°C to 1200°C.
The temperature gradient when passing through the temperature range up to 15-25℃
By controlling the temperature within the range of °C/cm, the quality of the polycrystalline silicon ingot as a solar cell can be improved with simple control.

【0008】[0008]

【作用】太陽電池の光電変換効率を悪化させる多くの欠
陥は、シリコンが1420℃から1200℃までの温度
域を通過するときに生じる。このときの温度勾配を25
℃/cm以下に制限することにより、結晶内部に発生す
る熱応力が緩和され、太陽電池の光電変換効率を悪化さ
せる様々な欠陥の発生が抑えられる。この欠陥の抑制効
果は、温度勾配が小さいほど顕著となる。ただし、15
℃/cm未満の温度勾配は、シリコン融液の保持および
温度制御を困難にし、また、製造時間を長くして製造コ
ストの上昇をもたらすので、現実的でない。従って、1
420℃から1200℃までの温度域における温度勾配
を15〜25℃/cmとした。1200℃未満の温度域
においては、鋳塊品質が既に決定されており、この温度
域における温度勾配は鋳塊品質に殆ど影響せず、実操業
上は、1200℃以上の温度域における温度勾配制御と
のつながり、保温設備の簡素化等の観点から、20〜4
0℃/cmが望ましい。
[Operation] Many defects that deteriorate the photoelectric conversion efficiency of solar cells occur when silicon passes through a temperature range of 1420°C to 1200°C. The temperature gradient at this time is 25
By limiting the temperature to below .degree. C./cm, the thermal stress generated inside the crystal is relaxed, and the generation of various defects that deteriorate the photoelectric conversion efficiency of the solar cell is suppressed. This defect suppression effect becomes more pronounced as the temperature gradient becomes smaller. However, 15
A temperature gradient of less than 0.degree. C./cm is not practical because it makes it difficult to maintain and control the temperature of the silicon melt, and it also lengthens production time and increases production costs. Therefore, 1
The temperature gradient in the temperature range from 420°C to 1200°C was 15 to 25°C/cm. In the temperature range below 1200°C, the quality of the ingot has already been determined, and the temperature gradient in this temperature range has little effect on the quality of the ingot.In actual operation, temperature gradient control in the temperature range above 1200°C is necessary. 20 to 4 from the viewpoint of connection with
0°C/cm is desirable.

【0009】[0009]

【実施例】以下に本発明の実施例を説明する。[Examples] Examples of the present invention will be described below.

【0010】本発明の太陽電池用多結晶シリコン鋳塊の
製造方法は、例えば図1および図2に示す電磁溶解式の
連続鋳造装置を用いて実施される。この連続鋳造装置は
、気密容器1内に収容された無底るつぼ2を備えている
。無底るつぼ2は、銅等の導電性金属からなり、内部を
流通する冷却水により強制冷却される。無底るつぼ2の
上端部を除く部分は、周方向に分割されており、その分
割部の外側に誘導コイル3が配設されている。無底るつ
ぼ2の下方には、保温炉4が連設されており、その内部
には電気ヒータ5が配設されている。
The method for manufacturing a polycrystalline silicon ingot for solar cells according to the present invention is carried out using, for example, an electromagnetic melting type continuous casting apparatus shown in FIGS. 1 and 2. This continuous casting apparatus includes a bottomless crucible 2 housed in an airtight container 1. The bottomless crucible 2 is made of a conductive metal such as copper, and is forcibly cooled by cooling water flowing inside. A portion of the bottomless crucible 2 excluding the upper end portion is divided in the circumferential direction, and an induction coil 3 is disposed outside the divided portion. A heat-retaining furnace 4 is connected below the bottomless crucible 2, and an electric heater 5 is installed inside the furnace 4.

【0011】本発明の製造方法を実施するには、まず、
気密容器1内を吸引口1aから真空引きした後、気密容
器1内へガス口1bから不活性ガスを注入する。これと
並行して、無底るつぼ2の底を種鋳塊で閉塞して、原料
装入器6から無底るつぼ2内へ粒塊状の原料シリコン1
0を装入する。次いで、無底るつぼ2内の原料シリコン
10を溶解させるべく、誘導コイル3に所定周波数の交
流を通じる。無底るつぼ2内のシリコン融液11は、無
底るつぼ2の内面に対して非接触の状態に保持される。 そして、無底るつぼ2内に原料シリコン10を補給しつ
つ、無底るつぼ2内のシリコン融液11を下方へ徐々に
引き抜くことにより、軸心方向に結晶が成長した多結晶
シリコンの一方向凝固鋳塊12が連続的に製造される。
[0011] To carry out the manufacturing method of the present invention, first,
After the inside of the airtight container 1 is evacuated through the suction port 1a, an inert gas is injected into the airtight container 1 through the gas port 1b. In parallel with this, the bottom of the bottomless crucible 2 is closed with a seed ingot, and the granular raw material silicon 1 is transferred from the raw material charger 6 into the bottomless crucible 2.
Charge 0. Next, in order to melt the raw material silicon 10 in the bottomless crucible 2, an alternating current of a predetermined frequency is passed through the induction coil 3. The silicon melt 11 in the bottomless crucible 2 is held in a non-contact state with respect to the inner surface of the bottomless crucible 2. Then, while replenishing the raw material silicon 10 into the bottomless crucible 2, the silicon melt 11 inside the bottomless crucible 2 is gradually drawn downward, thereby unidirectionally solidifying polycrystalline silicon in which crystals have grown in the axial direction. Ingots 12 are produced continuously.

【0012】このとき、シリコンが1420℃から12
00℃までの温度域を通過するときの温度勾配が15〜
25℃/cmとなるように、保温炉4により一方向凝固
鋳塊12の放熱を抑える。この制御は、保温炉4内の電
気ヒータ5の出力調節により、一方向凝固鋳塊12の鋳
造速度(シリコンの凝固速度)とは無関係に行われる。
[0012] At this time, silicon cooled from 1420°C to 12°C.
The temperature gradient when passing through the temperature range up to 00℃ is 15~
Heat radiation of the unidirectionally solidified ingot 12 is suppressed by the heat retention furnace 4 so that the temperature becomes 25° C./cm. This control is performed by adjusting the output of the electric heater 5 in the heat retention furnace 4, regardless of the casting speed of the unidirectionally solidified ingot 12 (solidification speed of silicon).

【0013】このような多結晶シリコン鋳塊の連続製造
においては、前述したとおり、凝固過程にあるシリコン
の温度勾配の制御およびその制御温度域が鋳塊品質に大
きな影響を及ぼす。その調査結果を以下に示す。なお、
鋳塊品質は、製造された鋳塊から採取した太陽電池の光
電変換効率により評価した。
In the continuous production of such polycrystalline silicon ingots, as described above, the control of the temperature gradient of the silicon during the solidification process and the controlled temperature range have a great influence on the quality of the ingot. The survey results are shown below. In addition,
The quality of the ingot was evaluated by the photoelectric conversion efficiency of the solar cells collected from the produced ingot.

【0014】図3は1420〜1200℃の温度域で温
度勾配を制御したときの温度勾配と鋳塊品質との関係を
示している。1420〜1200℃では、温度勾配が小
さくなる程、太陽電池としての鋳塊品質が改善される。 図4は1200〜1000℃の温度域での制御結果、図
5は1000〜800℃の温度域での制御結果をそれぞ
れ示している。1200℃より低い温度域では、温度勾
配と鋳片品質との間に相関は見られない。また、図6は
凝固速度と鋳塊品質との関係を示しているが、両者の間
にも格別の相関は見られない。
FIG. 3 shows the relationship between the temperature gradient and the quality of the ingot when the temperature gradient is controlled in the temperature range of 1420 to 1200°C. At 1420 to 1200°C, the smaller the temperature gradient, the better the quality of the ingot as a solar cell. FIG. 4 shows the control results in the temperature range of 1200 to 1000°C, and FIG. 5 shows the control results in the temperature range of 1000 to 800°C. In the temperature range lower than 1200°C, no correlation is seen between temperature gradient and slab quality. Furthermore, although FIG. 6 shows the relationship between solidification rate and ingot quality, no particular correlation is observed between the two.

【0015】なお、上記実施例は、電磁溶解式の連続鋳
造装置を用いているが、鋳型を使用したバッチ式の鋳造
装置を用いることも可能である。
Although the above embodiment uses an electromagnetic melting type continuous casting apparatus, it is also possible to use a batch type casting apparatus using a mold.

【0016】[0016]

【発明の効果】以上の説明から明らかなように、本発明
の太陽電池用多結晶シリコン鋳塊の製造方法は、凝固過
程にあるシリコンの狭い温度域を制御するので、制御が
容易で簡単に実施できる。また、実施したときの品質改
善効果が大きい。従って、太陽電池の高品質化を実現で
きる。
[Effects of the Invention] As is clear from the above explanation, the method for manufacturing polycrystalline silicon ingots for solar cells of the present invention controls the narrow temperature range of silicon in the solidification process, so it is easy to control. Can be implemented. In addition, the quality improvement effect when implemented is large. Therefore, high quality solar cells can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明法の実施に適した鋳造装置の模式図であ
る。
1 is a schematic diagram of a casting apparatus suitable for carrying out the method of the invention; FIG.

【図2】鋳造装置の主要部を破断して示した斜視図であ
る。
FIG. 2 is a perspective view showing a main part of the casting device in a cutaway manner.

【図3】1420〜1200℃の温度域での温度勾配と
鋳塊品質との関係を示す図表である。
FIG. 3 is a chart showing the relationship between temperature gradient and ingot quality in the temperature range of 1420 to 1200°C.

【図4】1200〜1000℃の温度域での温度勾配と
鋳塊品質との関係を示す図表である。
FIG. 4 is a chart showing the relationship between temperature gradient and ingot quality in a temperature range of 1200 to 1000°C.

【図5】1000〜800℃の温度域での温度勾配と鋳
塊品質との関係を示す図表である。
FIG. 5 is a chart showing the relationship between temperature gradient and ingot quality in the temperature range of 1000 to 800°C.

【図6】凝固速度と鋳塊品質との関係を示す図表である
FIG. 6 is a chart showing the relationship between solidification rate and ingot quality.

【符号の説明】[Explanation of symbols]

2  無底るつぼ 3  誘導コイル 4  保温炉 10  原料シリコン 11  シリコン融液 12  一方向凝固鋳塊 2 Bottomless crucible 3 Induction coil 4 Heat retention furnace 10 Raw material silicon 11 Silicon melt 12 One-way solidified ingot

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  太陽電池に供される多結晶シリコン鋳
塊を一方向凝固により製造する際に、シリコンが142
0℃から1200℃までの温度域を通過するときの温度
勾配を15〜25℃/cmの範囲内に制御することを特
徴とする太陽電池用多結晶シリコン鋳塊の製造方法。
Claim 1: When manufacturing polycrystalline silicon ingots to be used in solar cells by unidirectional solidification, silicon is
A method for manufacturing a polycrystalline silicon ingot for solar cells, characterized by controlling a temperature gradient within a range of 15 to 25°C/cm when passing through a temperature range from 0°C to 1200°C.
JP3141256A 1991-05-16 1991-05-16 Method for producing polycrystalline silicon ingot for solar cell Expired - Lifetime JP3005633B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3141256A JP3005633B2 (en) 1991-05-16 1991-05-16 Method for producing polycrystalline silicon ingot for solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3141256A JP3005633B2 (en) 1991-05-16 1991-05-16 Method for producing polycrystalline silicon ingot for solar cell

Publications (2)

Publication Number Publication Date
JPH04342496A true JPH04342496A (en) 1992-11-27
JP3005633B2 JP3005633B2 (en) 2000-01-31

Family

ID=15287687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3141256A Expired - Lifetime JP3005633B2 (en) 1991-05-16 1991-05-16 Method for producing polycrystalline silicon ingot for solar cell

Country Status (1)

Country Link
JP (1) JP3005633B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5961944A (en) * 1996-10-14 1999-10-05 Kawasaki Steel Corporation Process and apparatus for manufacturing polycrystalline silicon, and process for manufacturing silicon wafer for solar cell
US6090361A (en) * 1997-03-24 2000-07-18 Kawasaki Steel Corporation Method for producing silicon for use in solar cells
JP2004322195A (en) * 2003-04-28 2004-11-18 Mitsubishi Materials Corp Unidirectionally solidified silicon ingot and method for manufacturing the same, and silicon plate and substrate for solar battery
WO2011104799A1 (en) * 2010-02-25 2011-09-01 株式会社Sumco Method for continuously casting silicon ingots
WO2011104796A1 (en) * 2010-02-25 2011-09-01 株式会社Sumco Polycrystalline silicon for solar cell
WO2012011160A1 (en) * 2010-07-21 2012-01-26 株式会社Sumco Electromagnetic casting device for silicon ingots

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60037944T2 (en) * 2000-12-28 2009-01-22 Sumco Corp. CONTINUOUS CASTING METHOD FOR SILICON

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5961944A (en) * 1996-10-14 1999-10-05 Kawasaki Steel Corporation Process and apparatus for manufacturing polycrystalline silicon, and process for manufacturing silicon wafer for solar cell
US6090361A (en) * 1997-03-24 2000-07-18 Kawasaki Steel Corporation Method for producing silicon for use in solar cells
JP2004322195A (en) * 2003-04-28 2004-11-18 Mitsubishi Materials Corp Unidirectionally solidified silicon ingot and method for manufacturing the same, and silicon plate and substrate for solar battery
JP4675550B2 (en) * 2003-04-28 2011-04-27 三菱マテリアル株式会社 Unidirectionally solidified silicon ingot, method for producing the same, silicon plate and substrate for solar cell
WO2011104799A1 (en) * 2010-02-25 2011-09-01 株式会社Sumco Method for continuously casting silicon ingots
WO2011104796A1 (en) * 2010-02-25 2011-09-01 株式会社Sumco Polycrystalline silicon for solar cell
WO2012011160A1 (en) * 2010-07-21 2012-01-26 株式会社Sumco Electromagnetic casting device for silicon ingots

Also Published As

Publication number Publication date
JP3005633B2 (en) 2000-01-31

Similar Documents

Publication Publication Date Title
Ciszek Techniques for the crystal growth of silicon ingots and ribbons
JP5496674B2 (en) Method for refining metallic silicon by directional solidification
CN105442037A (en) High-speed single crystal growth device
CN103343387B (en) A kind of polycrystalline silicon ingot or purifying furnace and casting ingot method thereof
CN102191542B (en) Equipment and method for preparing high-purity directionally crystallized polysilicon
CN105887186A (en) Silicon single-crystal pulling equipment and growing method
JP2007019209A (en) Polycrystalline silicone for solar cell and its manufacturing method
WO1993017158A1 (en) Method and apparatus for growing shaped crystals
JP2005132671A (en) Method for producing high-quality polycrystalline silicon
JPH04342496A (en) Production of polycrystal silicon cast mass for solar cell
JPS63166711A (en) Production of polycrystalline silicon ingot
CN103060902B (en) Direct forming prepares method and the silicon chip direct-forming device of band silicon
US9546436B2 (en) Polycrystalline silicon and method of casting the same
US4561930A (en) Process for the production of coarsely crystalline silicon
JP3935747B2 (en) Method for producing silicon ingot
CN213652724U (en) Thermal field structure of continuous crystal pulling single crystal furnace
CN213203273U (en) Double-layer crucible for continuously pulling crystal
CN115216831A (en) Crystal growth device and method capable of controlling temperature gradient
JP3152971B2 (en) Manufacturing method of high purity copper single crystal ingot
JPS58217419A (en) Method and device for manufacturing polycrystal silicon rod
CN103409789A (en) Directional solidifying device of polycrystalline silicon
JP2004284892A (en) Method of producing polycrystal silicon
JPH1192284A (en) Production of silicon ingot having polycrystal structure solidified in one direction
CN201296663Y (en) Static temperature gradient directional solidifying and purifying oven of polysilicon
JPS5899115A (en) Casting method for polycrystalline silicon ingot

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071126

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091126

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101126

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101126

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111126

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111126

Year of fee payment: 12