JPH0196093A - Method for pulling single crystal - Google Patents
Method for pulling single crystalInfo
- Publication number
- JPH0196093A JPH0196093A JP25410887A JP25410887A JPH0196093A JP H0196093 A JPH0196093 A JP H0196093A JP 25410887 A JP25410887 A JP 25410887A JP 25410887 A JP25410887 A JP 25410887A JP H0196093 A JPH0196093 A JP H0196093A
- Authority
- JP
- Japan
- Prior art keywords
- single crystal
- crucible
- shape
- melt
- crystal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 47
- 238000000034 method Methods 0.000 title claims abstract description 23
- 239000007788 liquid Substances 0.000 claims abstract description 13
- 239000002775 capsule Substances 0.000 claims abstract description 3
- 239000000155 melt Substances 0.000 claims description 17
- 238000002844 melting Methods 0.000 abstract description 4
- 230000008018 melting Effects 0.000 abstract description 4
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 239000002994 raw material Substances 0.000 description 5
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 238000010494 dissociation reaction Methods 0.000 description 3
- 230000005593 dissociations Effects 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、液体カプセルチョクラルスキー法(以下LE
C法と称す)により、単結晶を引上げる方法に関し、特
に低転位密度の単結晶を引上げる方法に関するものであ
る。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention is based on the liquid capsule Czochralski method (hereinafter referred to as LE
The present invention relates to a method of pulling a single crystal using a method (referred to as C method), and particularly to a method of pulling a single crystal with a low dislocation density.
周期律表の■−■族化合物半導体、例えば、GaAs、
InPなどの単結晶を成長させる方法として高圧LEC
法がある。Group ■-■ compound semiconductors of the periodic table, such as GaAs,
High-pressure LEC as a method for growing single crystals such as InP
There is a law.
■−V族化合物半導体は融点近傍で高い解離圧をもち、
GaAsの融点でのAsの解離圧は約1気圧、InPの
Pの解離圧は約27気圧である。そこで、高圧LEC法
では、第1図に示すように、ヒーター(5)により加熱
されるるつぼ(7)に原料と封止剤としてB20.を装
入し、耐圧容器(1)内の高圧不活性ガスの雰囲気(2
)中で原料を加熱融解して原料融液(8)とし、その表
面を8□0.融液(9)でおおい、原料融液表面に種結
晶θ0を浸漬し、なじませた後、種結晶を回転させつつ
引上げて単結晶0ωを引上げる。■-V group compound semiconductors have high dissociation pressure near their melting point,
The dissociation pressure of As at the melting point of GaAs is about 1 atm, and the dissociation pressure of P in InP is about 27 atm. Therefore, in the high-pressure LEC method, as shown in FIG. 1, B20. into the high-pressure inert gas atmosphere (2) in the pressure vessel (1).
), the raw material is heated and melted to form a raw material melt (8), and its surface is 8□0. Cover the raw material melt with melt (9), immerse the seed crystal θ0 on the surface of the raw material melt, let it blend, and then pull up the seed crystal while rotating to pull up the single crystal 0ω.
この方法は、<100>成長方向での単結晶化が容易で
あり、また大型で円形の基板を得ることができるなどの
利点を有している。This method has the advantage that single crystallization in the <100> growth direction is easy and that a large, circular substrate can be obtained.
単結晶の品質および歩留り向上をはかるためには、融液
−個体の界面形状についての問題を解決しなければなら
ない、転位密度を低減させるためには、固液界面での温
度勾配を30″C/c11〜40℃/cmへ下げる必要
があり、その際、融液中の温度勾配は30°(:7cm
以下となる。また界面形状はフラットかメルトに対して
やや凸状であることが望ましい、このような温度勾配で
結晶成長が進行すると、結晶のテイル部で固液界面は融
液に対して大きく凸状となり、融液が減少していくと、
結晶とるつぼ底が接触し、結晶が落下してしまう。以上
述べたように、従来技術では、融液中の温度勾配を30
”C/ cn以下にすると、結晶引上げが困難になると
いう問題があった。本発明は以上のような点にかんがみ
てなされたもので、その目的とするところは、融液中の
温度勾配を30°C/ cm以下として、結晶テイル部
における界面形状をフラットか、または融液に対してや
や凸状となるように制御し、低転位密度の■−V族化合
物半導体単結晶を成長させる方法を提供することにある
。In order to improve the quality and yield of single crystals, it is necessary to solve problems regarding the shape of the melt-solid interface.In order to reduce the dislocation density, the temperature gradient at the solid-liquid interface must be increased to 30"C. /c11~40℃/cm, and at that time, the temperature gradient in the melt is 30℃ (:7cm
The following is true. In addition, it is desirable that the interface shape be flat or slightly convex with respect to the melt. When crystal growth progresses under such a temperature gradient, the solid-liquid interface becomes greatly convex with respect to the melt at the tail of the crystal. As the melt decreases,
The crystal and the bottom of the crucible come into contact and the crystal falls out. As mentioned above, in the conventional technology, the temperature gradient in the melt is
``C/cn or less, there was a problem that it became difficult to pull the crystal.The present invention was made in view of the above points, and its purpose is to reduce the temperature gradient in the melt. A method of growing a ■-V group compound semiconductor single crystal with a low dislocation density by controlling the interface shape at the crystal tail part to be flat or slightly convex with respect to the melt at a temperature of 30°C/cm or less. Our goal is to provide the following.
上記目的を達成するために本発明によれば、液体力ブセ
ルチゴクラルスキー法により単結晶を引上げる方法にお
いて、るつぼ底の形状を外側に凸となる部分球面状とし
、該部分球面状の曲率半径Rとるつぼ胴径2rとの比を
0.75≦2 r / R≦2とし、かつ、単結晶と融
液の固液界面付近における融液中の温度勾配を5“C7
cm以上、40°C/cm以下とすることを特徴とする
単結晶の引上方法が提供される。In order to achieve the above object, the present invention provides a method for pulling a single crystal using the liquid force Buseltygochralski method, in which the shape of the bottom of the crucible is made into a partially spherical shape convex to the outside. The ratio of the radius of curvature R to the crucible body diameter 2r is 0.75≦2 r/R≦2, and the temperature gradient in the melt near the solid-liquid interface between the single crystal and the melt is 5"C7.
A method for pulling a single crystal is provided, characterized in that the pulling temperature is 40° C./cm or more and 40° C./cm or less.
るつぼ内の固液界面形状は界面近傍のるつぼの中心軸(
鉛直)方向の温度勾配分布により決まる。The shape of the solid-liquid interface in the crucible is determined by the central axis of the crucible near the interface (
It is determined by the temperature gradient distribution in the vertical direction.
即ち、界面内の熱流の大小によって界面形状が決まる。That is, the shape of the interface is determined by the magnitude of the heat flow within the interface.
液相の熱伝導率をKt、固相の熱伝導率をに、 、?e
相の軸方向温度勾配をGL、固相の軸方向温度勾配をG
3、発生潜熱をL、密度をρ、結晶成長速度をVとする
と次式が成立する。The thermal conductivity of the liquid phase is Kt, and the thermal conductivity of the solid phase is , ? e
The axial temperature gradient of the phase is GL, and the axial temperature gradient of the solid phase is G.
3. Letting L be the generated latent heat, ρ be the density, and V be the crystal growth rate, the following equation holds true.
K、G、=KLGL+L・ρV
従って、v−(KSGS KLGL)/L−ρとなり
、K5、KL、L2 ρは一定である故、VはG8、G
Lによって決まる。K, G, = KLGL + L・ρV Therefore, v-(KSGS KLGL)/L-ρ, and since K5, KL, L2 ρ are constant, V is G8, G
Determined by L.
近似的にG、を一定とすると、結晶成長速度は融液の温
度勾配分布に従って変化し、温度勾配の小さいところで
は結晶成長が促進される。第2図(a)に示すようにる
つぼの中心軸位置の界面温度勾配が小さい場合は、中心
軸付近の結晶成長が速く、結晶は融液中を凸状に成長し
、るつぼの底が平面であると、結晶のテイルがるつぼの
底と接触し、結晶は引上げ軸から落下してしまう。次に
、るつぼ底を球面状にした場合には、第2図0〕)に示
すようにるつぼ底が平坦な場合に比較して、界面周辺で
の温度勾配はほぼ一様になり、従って界面の形状は融液
に対して平坦或いはやや凸形状になり、るつぼ底が平面
である場合に生ずる問題を避けることができる。るつぼ
の胴径を2r、るつぼ底の曲率半径をRとすると、実験
の結果から、2r/R21であることがもっとも望まし
いが、少なくとも2r/R≧0.75であることが望ま
しい。Assuming that G is approximately constant, the crystal growth rate changes according to the temperature gradient distribution of the melt, and crystal growth is promoted where the temperature gradient is small. As shown in Figure 2 (a), when the interface temperature gradient at the center axis of the crucible is small, crystal growth near the center axis is fast, the crystals grow in a convex shape in the melt, and the bottom of the crucible is flat. If so, the tail of the crystal will come into contact with the bottom of the crucible and the crystal will fall off the pulling shaft. Next, when the bottom of the crucible is made spherical, the temperature gradient around the interface becomes almost uniform compared to when the bottom of the crucible is flat, as shown in Figure 2 [0]). The shape of the crucible is flat or slightly convex with respect to the melt, thereby avoiding the problems that would occur if the bottom of the crucible was flat. Assuming that the diameter of the body of the crucible is 2r and the radius of curvature of the bottom of the crucible is R, from the results of experiments, it is most desirable that 2r/R21, but it is desirable that at least 2r/R≧0.75.
また、低転位密度化のためには、界面温度勾配を小さく
することが必要であり、そこから界面温度勾配に制約が
生ずる。Furthermore, in order to lower the dislocation density, it is necessary to reduce the interface temperature gradient, which imposes restrictions on the interface temperature gradient.
転位密度(EPD)を5 xlo’ Clm−”以下に
するとすれば、界面温度勾配は40°(: / Cm以
下であることが必要になり、また単結晶の成長を持続さ
せるためには5°C/以上でなければならない。If the dislocation density (EPD) is to be less than 5 xlo'Clm-'', the interfacial temperature gradient must be less than 40° (: / Cm), and in order to sustain the growth of the single crystal, the interface temperature gradient must be less than 5°. Must be C/ or higher.
(実施例) 以下実施例に基づいて本発明を説明する。(Example) The present invention will be explained below based on Examples.
高圧LEC法により、直径約4インチのアンドープ半絶
縁性GaAs単結晶を育成し、本発明の方法では、るつ
ぼ庭球面の曲率半径を156庇、界面近傍融液中の温度
勾配を20°C/cva、従来方法では、るつぼ底を平
面とし、界面近傍融液中の温度勾配を50°(/ cm
とした。An undoped semi-insulating GaAs single crystal with a diameter of approximately 4 inches is grown by the high-pressure LEC method. In the method of the present invention, the radius of curvature of the spherical surface of the crucible is set to 156 eaves, and the temperature gradient in the melt near the interface is set to 20°C/ cva, in the conventional method, the bottom of the crucible is made flat and the temperature gradient in the melt near the interface is set at 50° (/cm
And so.
単結晶の育成条件は下記の通りである。The single crystal growth conditions are as follows.
Ga(純度99.99995%) 2500gAs
(純度99.99999%) 2718gBzOi
700gるつぼ
PBN (パイロリティクボロン ナイトライド)製
A「ガス圧 10kg/cJ引上速度
5〜10+a / llr上軸回転
6rρm下軸回転
2Orpm形成された単結晶の重量は、本発明の方
法では約5100 g、従来方法では約4000 gで
あった。単結晶のフロント部とテイル部の平均転位密度
(EPD)を測定した結果を第1表に示す。Ga (purity 99.99995%) 2500gAs
(Purity 99.99999%) 2718gBzOi
700g crucible
PBN (pyrolytic boron nitride) A “Gas pressure 10kg/cJ Pulling speed
5~10+a/llr upper shaft rotation
6rρm lower shaft rotation
The weight of the single crystal formed at 2Orpm was about 5100 g in the method of the present invention and about 4000 g in the conventional method. Table 1 shows the results of measuring the average dislocation density (EPD) of the front and tail portions of the single crystal.
第 1 表
以上の結果より、従来の方法に比較して本発明によれば
、転位密度を減少させることができるとともに、形成さ
れる単結晶の重量を大きくすることができる。From the results shown in Table 1, the present invention can reduce the dislocation density and increase the weight of the single crystal formed compared to the conventional method.
以上説明したように本発明によれば、るつぼ底の形状を
部分球面状にし、固液界面近傍の融液中の温度勾配を5
°C/ ctaから40”C7cmの間に制御しである
ため、結晶界面が凸状に成長してるつぼ底と接触するこ
とを防ぐことができ、低転位密度で重量の大きな単結晶
を得ることができるという仕れた効果がある。As explained above, according to the present invention, the shape of the crucible bottom is made partially spherical, and the temperature gradient in the melt near the solid-liquid interface is reduced by 5.
Since the temperature is controlled between °C/cta and 40"C7cm, it is possible to prevent the crystal interface from growing convexly and contacting the bottom of the crucible, thereby obtaining a heavy single crystal with a low dislocation density. It has the beneficial effect of being able to.
第1図はLEC法による単結晶引上装置の要部断面図、
第2図(a)、0))は熱流入の大きさと結晶成長の関
係を説明する図である。
1・・・耐熱容器、 2・・・不活性ガス雰囲気、 3
・・・上軸、 4・・・下軸、 5・・・ヒーター、
6・・・サセプタ、 7・・・るつぼ、 8・・・原料
融液、 9・・・B20.融液、 10・・・単結晶、
11・・・種結晶、 12・・・高圧シール。Figure 1 is a sectional view of the main parts of a single crystal pulling device using the LEC method.
FIG. 2(a), 0)) is a diagram illustrating the relationship between the magnitude of heat inflow and crystal growth. 1...Heat-resistant container, 2...Inert gas atmosphere, 3
...Upper axis, 4...Lower axis, 5...Heater,
6... Susceptor, 7... Crucible, 8... Raw material melt, 9... B20. Melt, 10... Single crystal,
11...Seed crystal, 12...High pressure seal.
Claims (1)
げる方法において、るつぼ底の形状を外側に凸となる部
分球面状とし、該部分球面状の曲率半径Rとるつぼ胴径
2rとの比を0.75≦2r/R≦2とし、かつ、単結
晶と融液の固液界面付近における融液中の温度勾配を5
℃/cm以上、40℃/cm以下とすることを特徴とす
る単結晶の引上方法。In the method of pulling a single crystal by the liquid capsule Czochralski method, the shape of the crucible bottom is made into a partially spherical shape convex to the outside, and the ratio of the radius of curvature R of the partially spherical shape to the crucible body diameter 2r is 0.75. ≦2r/R≦2, and the temperature gradient in the melt near the solid-liquid interface between the single crystal and the melt is 5
A method for pulling a single crystal, characterized in that the pulling temperature is ℃/cm or more and 40℃/cm or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25410887A JPH0196093A (en) | 1987-10-08 | 1987-10-08 | Method for pulling single crystal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25410887A JPH0196093A (en) | 1987-10-08 | 1987-10-08 | Method for pulling single crystal |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0196093A true JPH0196093A (en) | 1989-04-14 |
Family
ID=17260334
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25410887A Pending JPH0196093A (en) | 1987-10-08 | 1987-10-08 | Method for pulling single crystal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0196093A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8815010B2 (en) * | 2004-04-28 | 2014-08-26 | Nippon Mining & Metals Co., Ltd. | InP single crystal wafer and method for producing InP single crystal |
JP2015067489A (en) * | 2013-09-30 | 2015-04-13 | 京セラ株式会社 | Production method for crystal |
-
1987
- 1987-10-08 JP JP25410887A patent/JPH0196093A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8815010B2 (en) * | 2004-04-28 | 2014-08-26 | Nippon Mining & Metals Co., Ltd. | InP single crystal wafer and method for producing InP single crystal |
JP2015067489A (en) * | 2013-09-30 | 2015-04-13 | 京セラ株式会社 | Production method for crystal |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6046998A (en) | Pulling up of single crystal and its device | |
JPH0559874B2 (en) | ||
JPH0196093A (en) | Method for pulling single crystal | |
JP4344021B2 (en) | Method for producing InP single crystal | |
JP2690419B2 (en) | Single crystal growing method and apparatus | |
JP2531875B2 (en) | Method for producing compound semiconductor single crystal | |
CN114808106B (en) | GaAs single crystal growth process | |
JP2733898B2 (en) | Method for manufacturing compound semiconductor single crystal | |
JP2002234792A (en) | Method of producing single crystal | |
JPS63295498A (en) | Production of single-crystal of group iii-v compound semiconductor | |
JPS63319288A (en) | Flanged quartz crucible | |
JP2757865B2 (en) | Method for producing group III-V compound semiconductor single crystal | |
JPS60180993A (en) | Pulling method of gaas single crystal | |
JPH03193689A (en) | Production of compound semiconductor crystal | |
JPH11130579A (en) | Production of compound semiconductor single crystal and apparatus for producing the same | |
JPH02229791A (en) | Apparatus for producing compound semiconductor single crystal | |
JPH08333189A (en) | Apparatus for pulling up crystal | |
JPS62197398A (en) | Method for pulling up single crystal | |
JPS60122791A (en) | Pulling up method of crystal under liquid sealing | |
JPH09142982A (en) | Apparatus for growing single crystal and method for growing single crystal | |
JPH07206589A (en) | Method for producing compound semiconductor single crystal | |
JPH02311390A (en) | Device for producing single crystal | |
JPS63319286A (en) | Method for growing single crystal | |
JPS62119189A (en) | Device for producing single crystal | |
JPH07291781A (en) | Method for growing single crystal |