JPH02311390A - Device for producing single crystal - Google Patents

Device for producing single crystal

Info

Publication number
JPH02311390A
JPH02311390A JP13005189A JP13005189A JPH02311390A JP H02311390 A JPH02311390 A JP H02311390A JP 13005189 A JP13005189 A JP 13005189A JP 13005189 A JP13005189 A JP 13005189A JP H02311390 A JPH02311390 A JP H02311390A
Authority
JP
Japan
Prior art keywords
coracle
raw material
material melt
crystal
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13005189A
Other languages
Japanese (ja)
Inventor
Yasuo Namikawa
靖生 並川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP13005189A priority Critical patent/JPH02311390A/en
Publication of JPH02311390A publication Critical patent/JPH02311390A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve symmetric property of raw material melt in a coracle to axis and prevent a growing crystal from changing to polycrystal or double crystal by forming communicating hole of coracle into circular slit form in a device for pulling up a single crystal while floating coracle on a raw material melt. CONSTITUTION:For example, a coracle 12 having 3mm thickness, made of carbon, being 145mm in outside diameter of upper flange-shaped part, 100mm in inside diameter, 10mm in height of cylindrical part and 30 deg. in inclination of inner wall of reverse cone-shaped part is floated on a raw material melt 7. A perfectly circular slit like communicating hole 13 having 70mm outside diameter and 62mm inside diameter is provided in the coracle and inside part thereof is supported with four arm members 14 having 5mm width. The a crystal is pulled up from the raw material melt in the coracle introduced from the communicating hole 13 using a seed crystal 2 to grow the objective single crystal 3.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、種結晶を用いて原料融液から単結晶を引き−
1−げるチョクラルスキー法を実施するための装置に関
し、特に、コラクルを原料融液に浸漬して単結晶を引き
上げる単結晶の製造装置に関する。この装置は、Si、
 Ge等の半導体、GaAs、 lnP等のI’1l−
V族化合物半導体、Zn5e、 CdTe等のII−V
l族化合物半導体、B+ Its+02゜、l、1Nb
(1+等の酸化物などの単結晶を引き」二げるのに適し
たものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention provides a method for pulling a single crystal from a raw material melt using a seed crystal.
The present invention relates to an apparatus for carrying out the Czochralski method, and particularly relates to a single crystal manufacturing apparatus for pulling a single crystal by immersing a coracle in a raw material melt. This device consists of Si,
Semiconductors such as Ge, I'1l- such as GaAs, lnP, etc.
II-V such as V group compound semiconductor, Zn5e, CdTe, etc.
I group compound semiconductor, B+ Its+02°, l, 1Nb
(It is suitable for pulling single crystals such as oxides such as 1+.

(従来の技術) 従来、コラクルを原料融液に浸漬して単結晶を引き−」
二げろ方法は、例えば、特開昭62−288193号公
報に記載されている。第4図は、同公報に記載の単結晶
製造装置の断面図である。ルツボ4内の原料融液7及び
液体対+h剤8に、逆円錐部16と円筒部j7とからな
るコラクルI5を浸漬し、コラクルの中心に設けた連通
孔18を介して原料融液をコラクル15内に導入し、」
−軸1の先端に取り付けた種結晶2を原料融液に十分に
なじませてから単結晶3を引き上げ成長させる。この装
置のコラクル15は、強制的に上下に移動させる機構を
備えているが、コラクルの移動制御は厄介であるため、
普通はコラクル15を原料融液7に浮かせて結晶成長を
行っている。その際、コラクル内原料融液7の表面がル
ツボ4内の原料融液表面より少なくとも8mm以」二低
い位置にあるように、結晶の引」二速度を考慮してコラ
クル15の重量、浮力及び連通孔18の直径を選定する
。このように、コラクル内の原料融液の表面を低く保持
することにより、比較的高温のルツボ内原料融液表面の
熱がコラクル内原料融液に伝達され、コラクル内原料融
液の周囲温度を」1昇させるので、コラクルと引上結晶
下部周囲との固着を防止することができ、また、コラク
ルからの成長核発生を防止するとともに、コラクルの上
方部において引]−結晶を保温する機能を有する。
(Conventional technology) Conventionally, a coracle was immersed in a raw material melt to draw a single crystal.
The Nigero method is described, for example, in JP-A-62-288193. FIG. 4 is a sectional view of the single crystal manufacturing apparatus described in the publication. A coracle I5 consisting of an inverted conical part 16 and a cylindrical part j7 is immersed in the raw material melt 7 and the liquid pair +h agent 8 in the crucible 4, and the raw material melt is poured into the coracle through the communication hole 18 provided in the center of the coracle. Introduced within 15 days,
- After the seed crystal 2 attached to the tip of the shaft 1 is thoroughly blended with the raw material melt, the single crystal 3 is pulled up and grown. The coracle 15 of this device is equipped with a mechanism to forcibly move it up and down, but controlling the movement of the coracle is difficult, so
Normally, the coracle 15 is suspended on the raw material melt 7 for crystal growth. At this time, the weight of the coracle 15, buoyancy and Select the diameter of the communication hole 18. In this way, by keeping the surface of the raw material melt in the coracle low, the heat on the relatively high temperature surface of the raw material melt in the crucible is transferred to the raw material melt in the coracle, and the ambient temperature of the raw material melt in the coracle is reduced. 1), it is possible to prevent the coracle from sticking to the area around the lower part of the pulled crystal, and also to prevent the generation of growth nuclei from the coracle. have

このようにコラクル内外の原料融液の表°扁高さに差を
つけるためには、コラクルを原料融液中にある程度押し
下げる必要があり、ルツボ内の原料融液表面より」1方
に円筒部がかなり突き出す構造を採り、浮力と釣り合わ
せている。一方、ルツボ内原料融液は結晶成長の制御の
ために、」一方に向かって低い温度となるような温度勾
配を採用する。
In order to create a difference in the surface height of the raw material melt inside and outside the coracle in this way, it is necessary to push the coracle down to some extent into the raw material melt, and the cylindrical part is placed on one side from the surface of the raw material melt in the crucible. It has a structure that protrudes considerably to balance the buoyancy. On the other hand, in order to control crystal growth, the raw material melt in the crucible adopts a temperature gradient such that the temperature decreases toward one side.

第5図は、第4図の装置で結晶成長を行うときの熱の流
れを示した図である。コラクル内原料融液には、連通孔
を通って導入されるルツボ内原料融液の保有する熱Aと
、コラクルの壁面を通って熱伝導により供給される熱B
とが入熱となり、一方、引」二結晶の表面から放散され
る熱D、種結晶及び」−軸を通って放散される熱Cと、
上方空間に大きく露出したコラクル」二方部から放散さ
れる熱Eとが出熱となり、さらに、結晶成長に伴う凝固
熱Hが凝固界面に発生する。
FIG. 5 is a diagram showing the flow of heat when crystal growth is performed using the apparatus shown in FIG. 4. The raw material melt in the coracle has heat A possessed by the raw material melt in the crucible introduced through the communication hole, and heat B supplied by thermal conduction through the wall surface of the coracle.
is the heat input, while the heat D dissipated from the surface of the di-crystal, the heat C dissipated through the seed crystal and the -axis,
The heat E dissipated from the two sides of the coracle, which is largely exposed in the upper space, becomes heat output, and furthermore, solidification heat H accompanying crystal growth is generated at the solidification interface.

ところで、第4図のようなコラクルでは、コラクル」二
方部が比較的低温の」二方空間F博の大半を露出してい
るので、放散される熱Eがコラクル壁面を通る供給熱B
より大きくなり、コラクル内原料融液の周辺部の熱が葬
われで、第8図に示すような温度分布、即ち、半径方向
に向かって中心部より周辺部の温度が低下する温度分布
となる。このような温度分布で結晶成長を行うと、結晶
の固液界面の形状が第4図、第5図に示すように中心部
が」1方に盛り」−がった凹状となり、多結晶化、双晶
化を引き起こす原因となる。また、単結晶が得られても
、転位等の結晶欠陥の発生を抑えることが難しく、結晶
性の優れた単結晶を得ることができない。
By the way, in a coracle like the one shown in Figure 4, the two sides of the coracle expose most of the relatively low-temperature two-way space F, so the heat E dissipated is absorbed by the heat B passing through the walls of the coracle.
The temperature becomes larger, and the heat at the periphery of the raw material melt inside the coracle is buried, resulting in a temperature distribution as shown in Figure 8, that is, a temperature distribution in which the temperature at the periphery is lower than at the center in the radial direction. . When crystals are grown under such a temperature distribution, the shape of the solid-liquid interface of the crystal becomes concave with the center bulging in one direction, as shown in Figures 4 and 5, resulting in polycrystalline formation. , which causes twinning. Further, even if a single crystal is obtained, it is difficult to suppress the occurrence of crystal defects such as dislocations, and a single crystal with excellent crystallinity cannot be obtained.

この問題を解決するために、第6図に示すコラクルが考
えられた。即ち、コラクル19の傾斜部であって、原料
融液7の外周部近傍の円周−にに複数の連通孔20を設
けたものである。
In order to solve this problem, a coracle shown in FIG. 6 was devised. That is, a plurality of communication holes 20 are provided in the inclined part of the coracle 19 on the circumference near the outer periphery of the raw material melt 7.

この方式では、コラクル内原料融液の外周部に、ルツボ
内の高温の原料融液が導入されるため、コラクル内原料
融液の外周部が中心部と比較して相対的に高温化する。
In this method, the high-temperature raw material melt in the crucible is introduced into the outer periphery of the raw material melt in the coracle, so the outer periphery of the raw material melt in the coracle becomes relatively hot compared to the center.

このときのコラクル内原料融液の半径方向の温度分布は
、第9図(a)に示すようになり、育成される結晶の固
液界面の形状も第6図に示すように下方に凸状となる。
At this time, the temperature distribution of the raw material melt in the coracle in the radial direction is as shown in Figure 9(a), and the shape of the solid-liquid interface of the grown crystal is also convex downward as shown in Figure 6. becomes.

その結果、製造される結晶の直胴部の外周部から発生す
る多結晶化、双晶化を防止することができる。
As a result, it is possible to prevent polycrystalization and twinning occurring from the outer periphery of the straight body of the manufactured crystal.

(発明が解決しようとする課題) しかし、第6図に示した構造のコラクルでは、第7図の
平面図に示したように同一円周上に複数の連通孔が設け
られているため、コラクル内原料融液の軸対称性が低下
する。即ち、連通孔の直上の原料融液の温度を上昇させ
、連通孔から離れた位置の原料融液の温度を低くし、そ
の対流速度も小さくする。
(Problem to be Solved by the Invention) However, in the coracle having the structure shown in FIG. 6, since a plurality of communication holes are provided on the same circumference as shown in the plan view of FIG. The axial symmetry of the internal raw material melt decreases. That is, the temperature of the raw material melt directly above the communicating hole is increased, the temperature of the raw material melt at a position away from the communicating hole is lowered, and the convection velocity thereof is also decreased.

そのためコラクル内原料融液表面」二で育成される結晶
は、軸対称性が低下し、−L軸、下軸の回転に伴い、温
度や対流状態の異なる原料融液上を周期的に通過するこ
とになる。このような対称性の低下や温度環境の変動は
、結晶成長に悪影響を与え、多結晶化、双晶化の原因と
なる。
Therefore, the crystals grown on the raw material melt surface in the coracle have reduced axial symmetry, and as the -L axis and lower axis rotate, they periodically pass over the raw material melt with different temperatures and convective conditions. It turns out. Such a decrease in symmetry and fluctuations in temperature environment adversely affect crystal growth and cause polycrystalization and twinning.

本発明は、」−記の問題点を解消して、コラクル内原料
融液の軸対称性を向」−させ、育成される結晶の多結晶
化、双晶化を防止して良質の単結晶を成長させることの
できる単結晶の製造装置を提供しようとするものである
The present invention solves the problems mentioned above, improves the axial symmetry of the raw material melt in the coracle, prevents polycrystalization and twinning of the grown crystal, and produces a high-quality single crystal. The purpose of the present invention is to provide a single crystal manufacturing apparatus that can grow single crystals.

(課題を解決するための手段) 本発明は、連通孔を有するコラクルを原料融液に浮かべ
、連通孔から導入されるコラクル内原料融液から、種結
晶を用いて結晶を引き上げる、単結晶の製造装置におい
て、コラクルの連通孔が円形スリット状であることを特
徴とする単結晶の製造装置である。
(Means for Solving the Problems) The present invention involves floating a coracle having a communicating hole in a raw material melt, and pulling the crystal from the raw material melt in the coracle introduced through the communicating hole using a seed crystal. The single crystal manufacturing apparatus is characterized in that the communication hole of the coracle is in the shape of a circular slit.

第1図は、本発明の1具体例である単結晶の製造装置の
断面図であり、第2図は、第1図の製造装置で用いるコ
ラクルの平面図である。
FIG. 1 is a sectional view of a single crystal manufacturing apparatus which is a specific example of the present invention, and FIG. 2 is a plan view of a coracle used in the manufacturing apparatus of FIG.

図面に示すように、装置は密閉された高圧容器11の中
に収容され、下軸6に支持され−たサセプタ5に収容さ
れたルツボ4に原料及び液体封止剤を入れて断熱壁】0
の内側に設けたヒータ9により加熱して原料を溶融し、
原料融液7の表面を液体封止剤8で封止する。コラクル
12は、原料融液7に浮かせてあり、コラクル12の底
部に設けた円形スリット状連通孔13を通して原料融液
7が導入される。第2図に示したように、コラクル12
に対して完全な円形のスリット状連通孔13を設けるた
めに、コラクルの外周部と中央部をコラクルとは別の腕
部材I4で接続する。
As shown in the drawing, the apparatus is housed in a sealed high-pressure container 11, and a crucible 4 housed in a susceptor 5 supported by a lower shaft 6 is filled with raw materials and a liquid sealant, and then a heat insulating wall is placed.
The raw material is melted by heating with a heater 9 installed inside the
The surface of the raw material melt 7 is sealed with a liquid sealant 8. The coracle 12 is suspended on the raw material melt 7, and the raw material melt 7 is introduced through a circular slit-shaped communication hole 13 provided at the bottom of the coracle 12. As shown in FIG.
In order to provide a completely circular slit-like communication hole 13 in the coracle, the outer peripheral part and the central part of the coracle are connected by an arm member I4 separate from the coracle.

次いで、コラクル内原料融液7の温度を調節したのち、
」−軸1に取り付けた種結晶2をコラクル内原料融液7
に浸して−1−軸Iを回転させながら徐々に引き上げて
単結晶3を成長する。
Next, after adjusting the temperature of the raw material melt 7 in the coracle,
”-The seed crystal 2 attached to the shaft 1 is transferred to the raw material melt 7 in the coracle.
The single crystal 3 is grown by immersing it in water and gradually pulling it up while rotating the -1-axis I.

第3図は、第2図のコラクルの変形であり、連通孔の形
状を円弧スリット状となし、コラクル12の一部である
腕部材I4でコラクルの外周部と中央部を接続したもの
である。コラクルの形状は、これらに限定されるもので
はない。
FIG. 3 shows a modification of the coracle shown in FIG. 2, in which the communication hole is shaped like an arcuate slit, and an arm member I4, which is a part of the coracle 12, connects the outer periphery and the center of the coracle. . The shape of the coracle is not limited to these shapes.

これらの円形スリット状連通孔の形状は、円形スリット
状連通孔の外径dと、コラクル内原料融液の直径をDと
の関係を0.8≦d/D≦1,0とするように調節し、
円形スリット状連通孔の長さの合計をρとし、該円形の
全周の長さをLとするときに、σ/L≧OAの関係を満
たすように該スリットを開口することが好ましい。
The shape of these circular slit-like communication holes is such that the relationship between the outer diameter d of the circular slit-like communication hole and the diameter D of the raw material melt in the coracle is 0.8≦d/D≦1,0. adjust,
The slits are preferably opened so as to satisfy the relationship σ/L≧OA, where ρ is the total length of the circular slit-like communicating holes and L is the length of the entire circumference of the circle.

コラクルの材質としては、原料融液より比重が小さく、
高温で原料融液と反応せず安定な材料であればよく、例
えば、カーボン、BN。
The material of the coracle has a lower specific gravity than the raw material melt.
Any material may be used as long as it does not react with the raw material melt at high temperatures and is stable, such as carbon or BN.

pBN、 AIN、 pBNコートカーボンなどを用い
ることができる。
pBN, AIN, pBN coated carbon, etc. can be used.

(作用) 本発明に係るコラクルは、コラクル内原料融液の外周部
より僅かに内側に位置するように、円形スリット状の連
通孔が設けられているので、コラクル内原料融液に比べ
て高温てあるコラクル外原料融液が、該連通孔を通って
コラクル内外周部に一様に流入する。従って、コラクル
内原料融液の外周部が均一1こ加熱され、中央部より高
温となり、軸対称性の優れた温度分布を形成することが
できる。その結果、温度変動の少ない安定した環境で結
晶成長を行うことができ、第1図に示すように、多結晶
化や双晶化を防ぎながら、下方に凸状の固液界面を有す
る単結晶を育成することができる。
(Function) The coracle according to the present invention has a circular slit-shaped communicating hole located slightly inside the outer circumference of the raw material melt in the coracle, so the temperature is higher than that of the raw material melt in the coracle. The raw material melt outside the coracle uniformly flows into the inner and outer peripheral portions of the coracle through the communication hole. Therefore, the outer periphery of the raw material melt in the coracle is uniformly heated, and the temperature is higher than that in the center, so that a temperature distribution with excellent axial symmetry can be formed. As a result, crystal growth can be performed in a stable environment with little temperature fluctuation, and as shown in Figure 1, a single crystal with a downwardly convex solid-liquid interface can be grown while preventing polycrystalization and twinning. can be cultivated.

(実施例) 第1図の装置を用いてGaAs単結晶を製造した。(Example) A GaAs single crystal was manufactured using the apparatus shown in FIG.

コラクルは、厚さ3mmのカーボン製であり、上方の鍔
状部分は、外径が145mm、内径が100mmであり
、円筒部分の高さは10mmで、逆円錐形部分の内壁は
傾斜が300である。コラクルに設けた円形スリット状
連通孔は、外径が70mmで、内径が62mmの完全な
円形であり、連通孔の内側の部分は、幅5mmの4本の
腕部材で支持されている。そして、コラクルの全車ri
は470gであった。
The coracle is made of carbon with a thickness of 3 mm, the upper brim has an outer diameter of 145 mm and an inner diameter of 100 mm, the height of the cylindrical part is 10 mm, and the inner wall of the inverted conical part has an inclination of 300 mm. be. The circular slit-like communicating hole provided in the coracle is perfectly circular with an outer diameter of 70 mm and an inner diameter of 62 mm, and the inner part of the communicating hole is supported by four arm members each having a width of 5 mm. And all Coracle cars ri
was 470g.

一方、内径J50mmの石英製ルツボにはGaAs原料
3kgと液体封止剤300gをチャージし、−1−,1
記コラクルを載せてサセプタに収納した。そして、高圧
容器内をアルゴンガスで約20aLmに加圧し、ヒータ
で原料を加熱溶解し、温度分布を調整した。次に、−1
−軸に装着したl ] ] I ]方向のGaAs種結
晶を原料融液に浸した後、引」二速度6mm/hrで直
径75mmの単結晶を引き上げた。
On the other hand, a quartz crucible with an inner diameter of J50 mm was charged with 3 kg of GaAs raw material and 300 g of liquid sealant.
I placed the coracle and stored it in the susceptor. Then, the inside of the high-pressure container was pressurized to about 20 aLm with argon gas, and the raw materials were heated and melted with a heater to adjust the temperature distribution. Then -1
A GaAs seed crystal in the l ] ] I ] direction attached to the - shaft was immersed in the raw material melt, and then a single crystal with a diameter of 75 mm was pulled at a pulling speed of 6 mm/hr.

得られた単結晶は、重量が1850 gであり、軸対称
性の良好な形状を有していた。この「11結晶からウェ
ハを切り出し、表面をエツチングしてから転位密度を測
定したところ、平均転位密度が2〜4X103cm−”
と極めて低く、良好な単結晶であることが明らかとなっ
た。
The obtained single crystal weighed 1850 g and had a shape with good axial symmetry. When a wafer was cut out from this "11 crystal", the surface was etched, and the dislocation density was measured, the average dislocation density was 2 to 4 x 10 cm.
It was found that the crystallinity was extremely low, indicating that it was a good single crystal.

(発明の効果) 本発明は、上記の構成を採用することにより、コラクル
内原料融液の外周部を均一な高乙)に維持することかで
き、温度分布並びに対流状態について高い軸対称性を実
現することかできた。その結果、育成結晶の固液界面形
状を平坦若しくは僅かに下方に凸状とし、かつ、変動の
少ない安定した環境のもとて結晶成長を行うことができ
るので、多結晶化や双晶化を抑制することができ、転位
密度が低く、かつ、均一な直径で高い軸対称性を有し、
結晶性の侃れた1)1結晶を得ることができるようにな
った。
(Effects of the Invention) By adopting the above configuration, the present invention can maintain the outer circumference of the raw material melt in the coracle at a uniform height, and achieve high axial symmetry in temperature distribution and convection state. I was able to make it happen. As a result, it is possible to make the solid-liquid interface shape of the grown crystal flat or slightly convex downward, and to grow the crystal in a stable environment with little fluctuation, thereby preventing polycrystalization and twinning. It has a low dislocation density, a uniform diameter, and high axial symmetry.
1) 1 crystal with poor crystallinity can now be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の1具体例である単結晶製造装置の断
面図、第2図は、第1図の装置に用いるコラクルの平面
図、第3図は、本発明に係る別のコラクルの平面図、第
4図は、従来の11′!結晶製造装置の断面図、第5図
は、第4図の装置の熱の流れを示した説明図、第6図は
、別の従来装置の断面図、第7図は、第6図の装[6′
に用いるコラクルのゞ1を面図、第8図は、第4図の装
置におけるコラクル内厚−1]− 料融液の214径方向の温度分布を示したグラ゛ヅ、第
9図は、第5図の装置におけるコラクル内原料融液の半
径方向の温度分布を示したグラフである。1ニー1−軸
、2:種結晶、3 : ql結晶、4ニルツボ、5°サ
セプタ、6:下軸、7:原料融液、8:液体封11−剤
、9・ヒータ、IO:断熱材、11:高圧容器、+2.
15. I’9:コラクル、13:円形スリット状連通
孔、14:腕部材、16:円錐部、L:円筒部、18:
中心述通孔、20:外周部連通孔、へ〜B、+1熱流。 第6図 第7図
FIG. 1 is a cross-sectional view of a single-crystal manufacturing apparatus that is a specific example of the present invention, FIG. 2 is a plan view of a coracle used in the apparatus of FIG. 1, and FIG. 3 is another coracle according to the present invention. The plan view, Figure 4, shows the conventional 11'! 5 is an explanatory diagram showing the heat flow of the apparatus shown in FIG. 4, FIG. 6 is a sectional view of another conventional apparatus, and FIG. 7 is a cross-sectional view of the apparatus shown in FIG. 6. [6'
1 is a plan view of the coracle used in the process, and FIG. 8 is a diagram showing the internal thickness of the coracle in the apparatus shown in FIG. 6 is a graph showing the temperature distribution of the raw material melt in the coracle in the radial direction in the apparatus of FIG. 5. 1 knee 1-axis, 2: seed crystal, 3: ql crystal, 4 nil acupoint, 5° susceptor, 6: lower axis, 7: raw material melt, 8: liquid sealant 11-agent, 9 heater, IO: heat insulator , 11: High pressure container, +2.
15. I'9: Coracle, 13: Circular slit-like communication hole, 14: Arm member, 16: Conical part, L: Cylindrical part, 18:
Center communication hole, 20: outer peripheral communication hole, to B, +1 heat flow. Figure 6 Figure 7

Claims (3)

【特許請求の範囲】[Claims] (1)連通孔を有するコラクルを原料融液に浮かべ、連
通孔から導入されるコラクル内原料融液から、種結晶を
用いて結晶を引き上げる、単結晶の製造装置において、
コラクルの連通孔が円形スリット状であることを特徴と
する単結晶の製造装置。
(1) In a single-crystal manufacturing apparatus in which a coracle having a communicating hole is floated in a raw material melt and a seed crystal is used to pull the crystal from the raw material melt in the coracle introduced through the communicating hole,
A single crystal production device characterized in that the communicating holes of the coracle are circular slit-shaped.
(2)円形スリット状連通孔の外径をdとし、コラクル
内原料融液の直径をDとするときに、次の関係0.8≦
d/D≦1.0を有するようにしたことを特徴とする請
求項(1)記載の単結晶の製造装置。
(2) When the outer diameter of the circular slit-like communication hole is d and the diameter of the raw material melt in the coracle is D, the following relationship 0.8≦
2. The single crystal manufacturing apparatus according to claim 1, wherein d/D≦1.0.
(3)円形スリット状連通孔の長さの合計をQとし、該
円形の全周の長さをLとするときに、次の関係 Q/L
≧0.7を満たすように該スリットを開口することを特
徴とする請求項(1)又は(2)記載の単結晶の製造装
置。
(3) When the total length of the circular slit-like communication hole is Q and the length of the entire circumference of the circle is L, the following relationship Q/L
2. The single crystal manufacturing apparatus according to claim 1, wherein the slit is opened so as to satisfy ≧0.7.
JP13005189A 1989-05-25 1989-05-25 Device for producing single crystal Pending JPH02311390A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13005189A JPH02311390A (en) 1989-05-25 1989-05-25 Device for producing single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13005189A JPH02311390A (en) 1989-05-25 1989-05-25 Device for producing single crystal

Publications (1)

Publication Number Publication Date
JPH02311390A true JPH02311390A (en) 1990-12-26

Family

ID=15024886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13005189A Pending JPH02311390A (en) 1989-05-25 1989-05-25 Device for producing single crystal

Country Status (1)

Country Link
JP (1) JPH02311390A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05105579A (en) * 1991-05-07 1993-04-27 Chichibu Cement Co Ltd Method for growing crystal
JPH0616492A (en) * 1992-06-30 1994-01-25 Mitsubishi Materials Corp Compound semiconductor single crystal pulling up device and pulling up method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05105579A (en) * 1991-05-07 1993-04-27 Chichibu Cement Co Ltd Method for growing crystal
JPH0616492A (en) * 1992-06-30 1994-01-25 Mitsubishi Materials Corp Compound semiconductor single crystal pulling up device and pulling up method

Similar Documents

Publication Publication Date Title
JPH01215788A (en) Method for pulling up crystal
EP0732427A2 (en) A method and apparatus for the growth of a single crystal
CN116516463A (en) Thermal field structure and method for growing silicon carbide single crystal by solution method
JPH02311390A (en) Device for producing single crystal
CN112921399A (en) Liquid phase growth device and liquid phase growth method for silicon carbide single crystal
JP2704032B2 (en) Method for manufacturing compound semiconductor single crystal
JPS598695A (en) Crystal growth apparatus
JPH02302390A (en) Apparatus for producing single crystal
JPH01317188A (en) Production of single crystal of semiconductor and device therefor
JP4117813B2 (en) Method for producing compound semiconductor single crystal
JPH04305091A (en) Method and device for pulling up single crystal
JPH0297483A (en) Apparatus for producing single crystal
JP3870437B2 (en) Single crystal growth method and apparatus
JPH02212390A (en) Single crystal producing device
JP2599306B2 (en) Crystal manufacturing method and manufacturing equipment
Kuroda et al. Czochralski growth of square silicon single crystals
JP2726887B2 (en) Method for manufacturing compound semiconductor single crystal
JPH03271186A (en) Method and apparatus for pulling up single crystal
JPH08333189A (en) Apparatus for pulling up crystal
JPH07206584A (en) Production of compound semiconductor single crystal
JPH02208284A (en) Producing device of single crystal
CN116163021A (en) Growth device and growth method of tellurium-zinc-cadmium crystal
JPH02160690A (en) Single crystal production unit
JPH0196093A (en) Method for pulling single crystal
JPS63285183A (en) Production of compound semiconductor single crystal