JPH05105579A - Method for growing crystal - Google Patents

Method for growing crystal

Info

Publication number
JPH05105579A
JPH05105579A JP3131870A JP13187091A JPH05105579A JP H05105579 A JPH05105579 A JP H05105579A JP 3131870 A JP3131870 A JP 3131870A JP 13187091 A JP13187091 A JP 13187091A JP H05105579 A JPH05105579 A JP H05105579A
Authority
JP
Japan
Prior art keywords
melt
crystal
single crystal
crucible
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3131870A
Other languages
Japanese (ja)
Inventor
Hiroshi Machida
博 町田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chichibu Cement Co Ltd
Original Assignee
Chichibu Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chichibu Cement Co Ltd filed Critical Chichibu Cement Co Ltd
Priority to JP3131870A priority Critical patent/JPH05105579A/en
Priority to DE4214795A priority patent/DE4214795A1/en
Priority to SU925011853A priority patent/RU2079581C1/en
Priority to FR9205646A priority patent/FR2676236A1/en
Priority to KR1019920007708A priority patent/KR920021744A/en
Publication of JPH05105579A publication Critical patent/JPH05105579A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/30Mechanisms for rotating or moving either the melt or the crystal
    • C30B15/305Stirring of the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • C30B15/22Stabilisation or shape controlling of the molten zone near the pulled crystal; Controlling the section of the crystal
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/10Crucibles or containers for supporting the melt
    • C30B15/12Double crucible methods
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/14Heating of the melt or the crystallised materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides

Abstract

PURPOSE:To suppress current of melt surface, enable stirring of whole melt and obtain a high-quality single crystal by providing an equipment for controlling the current on the melt surface when a single crystal is grown by Czochralski process. CONSTITUTION:In a crystal growing method for producing a single crystal from a raw material melt by Czochralski process, an equipment for controlling surface current of the melt is provided on the melt surface. For example, a cylindrical equipment 1 is integrally constituted of a flange 2 provided at the upper end peripheral edge and cylindrical part 4 in which slits 3 are uniformly provided. A crucible 6 is supported by a heat insulating material 5 and the melt 7 is packed in the crucible and the melt 7 is heated by a high-frequency oscillating coil 8 provided at the outer peripheral edge. On the one hand, a seed crystal is dipped in the melt 7 and the seed crystal is pulled up at a prescribed rate to produce the objective single crystal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、チョクラルスキー法
(以下CZ法と称す)によって、高品質酸化物単結晶を
製造するための結晶育成方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a crystal growth method for producing a high quality oxide single crystal by the Czochralski method (hereinafter referred to as CZ method).

【0002】[0002]

【従来の技術】酸化物単結晶を製造するためにCZ法は
公知であり、この方法によれば大口径で低熱歪の結晶を
容易に得られ、デバイス製造にとって有利である。ここ
で高品質の単結晶の育成には融液流れの制御が必要であ
り、半導体結晶の育成に際しては融液に磁場を印加して
融液流れを押える方法、あるいは育成結晶の回転に対応
してるつぼを回転し、結晶育成に適した融液流れを実現
する方法等がある。
2. Description of the Related Art The CZ method is known for producing an oxide single crystal. According to this method, a crystal having a large diameter and low thermal strain can be easily obtained, which is advantageous for device production. Here, it is necessary to control the melt flow in order to grow a high quality single crystal, and when growing a semiconductor crystal, a method of applying a magnetic field to the melt to suppress the melt flow, or to support the rotation of the grown crystal There is a method of rotating the crucible to realize a melt flow suitable for crystal growth.

【0003】又、酸化物単結晶の育成の場合、融液の電
気伝導度が小さく、磁場の印加による融液流れの制御効
果が小さいと考えられ、更に融液のプラントル数が半導
体のそれに比して大きいこと等により、融液の流れに伴
なう融液温度の変動が大きくなる。その結果、るつぼ回
転による融液温度変動が増大されると考え、これらの方
法は殆ど用いられていない。
Further, in the case of growing an oxide single crystal, it is considered that the electric conductivity of the melt is small and the effect of controlling the melt flow by applying a magnetic field is small, and the Prandtl number of the melt is higher than that of a semiconductor. Therefore, the fluctuation of the melt temperature accompanying the flow of the melt becomes large due to the large size. As a result, it is considered that the melt temperature fluctuation due to the crucible rotation is increased, and these methods are rarely used.

【0004】そこで酸化物単結晶のCZ法での融液制御
には、るつぼ及び融液の高さ/直径の比、及びるつぼ周
辺のホットゾーン構成による融液の水平方向温度勾配,
鉛直方向温度勾配の最適化により、所望の融液流れを得
る方法が主に用いられている。そして、高品質単結晶を
得るには、一般に融液内の温度及び組成変動を小さく
し、成長界面での融液温度変動を小さくする必要がると
考えられている。即ち、融液表面を含め、融液表面近傍
の温度変化を抑えた状態で融液全体を充分攪拌すること
が必要であり、育成結晶融液のプラントル数及び熱伝導
率の違いにより、その条件の得易さは異なる。
Therefore, in the melt control of the oxide single crystal by the CZ method, the height / diameter ratio of the crucible and the melt, and the horizontal temperature gradient of the melt due to the hot zone configuration around the crucible,
A method for obtaining a desired melt flow by optimizing the vertical temperature gradient is mainly used. In order to obtain a high-quality single crystal, it is generally considered necessary to reduce the temperature and composition fluctuations in the melt and the melt temperature fluctuations at the growth interface. That is, including the melt surface, it is necessary to sufficiently stir the entire melt while suppressing temperature changes in the vicinity of the melt surface, due to the difference in Prandtl number and thermal conductivity of the grown crystal melt, the conditions The ease of obtaining is different.

【0005】[0005]

【発明が解決しようとする課題】上記したように融液の
プラントル数又は熱伝導率の小さい物質の結晶育成にお
いては、融液の攪拌に伴う融液表面の温度変動が大きく
なるため、融液表面の流れを抑えることと、融液全体を
攪拌することの両者を同時に満たすことが困難で、高品
質単結晶の育成条件が得難くなる。本発明は上記事情に
鑑みてなされたものであり、融液表面の流れを抑え、か
つ融液全体の攪拌を可能とした単結晶育成方法を提供す
ることを目的としている。
As described above, in crystal growth of a substance having a low Prandtl number or a low thermal conductivity in the melt, the temperature fluctuation of the melt surface accompanying the stirring of the melt becomes large. It is difficult to satisfy both of suppressing the flow on the surface and stirring the entire melt at the same time, and it becomes difficult to obtain a growth condition for a high quality single crystal. The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a single crystal growth method capable of suppressing the flow on the melt surface and stirring the entire melt.

【0006】[0006]

【課題を解決するための手段及び作用】本発明は図1に
示すようなスリットを周縁に設けた円筒器具をつくっ
て、これをるつぼ内にある融液中に挿入し、円筒内にて
結晶育成を行なうものである。この場合、円筒の上部に
は周縁に鍔を設けて、この分部で支持するようにし、円
筒側面にはスリットを設けている。そして、円筒の直
径,スリットの開口率(スリット幅×スリット本数/円
筒の円周長さ)及び溶融液中への円筒の挿入深さを変え
ることにより、育成結晶及び融液の物性に合せた融液表
面の温度分布及び融液表面近傍での融液内鉛直方向温度
勾配の設定を可能にする。
According to the present invention, a cylindrical instrument having slits as shown in FIG. 1 is provided at the periphery thereof, and the instrument is inserted into a melt in a crucible to crystallize in the cylinder. It is to bring up. In this case, a flange is provided on the periphery of the cylinder so that the flange supports the flange, and a slit is provided on the side surface of the cylinder. Then, the diameter of the cylinder, the aperture ratio of the slit (slit width x number of slits / circumferential length of the cylinder) and the insertion depth of the cylinder into the melt were changed to match the physical properties of the grown crystal and the melt. The temperature distribution on the melt surface and the vertical temperature gradient in the melt near the melt surface can be set.

【0007】なお、最適な育成条件としての直径,スリ
ット開口率,そして挿入深さは育成結晶の物性により異
なり、一般に、融液の熱伝導率が小さい程、円筒の直径
は小さく、かつスリット開口率は小さく、そして挿入深
さは大きくなる傾向にある。又、直径及びスリット開口
率を小さくしていくと、融液表面の水平方向温度勾配が
小さくなって、一般に育成結晶の直径制御が難しくな
る。ここで挿入深さを大きくすると融液の攪拌が強くな
り、融液表面の流速が大きくなって融液表面での大きな
温度変動の原因となり、更に挿入深さを大きくすると融
液の攪拌効果が小さくなることなどから、各々の値には
最適範囲が存在すると考えられる。又、この円筒形の器
具を結晶の育成長さに応じて、結晶の引き上げ方向と平
行に移動させることにより、育成段階に応じた適切な融
液流れの設定が可能であり、より安定な育成を可能とす
る。
The diameter, slit aperture ratio, and insertion depth as optimum growth conditions differ depending on the physical properties of the grown crystal. Generally, the smaller the thermal conductivity of the melt, the smaller the diameter of the cylinder and the slit opening. The rate tends to be small and the insertion depth tends to be large. Further, as the diameter and the slit aperture ratio are reduced, the horizontal temperature gradient on the surface of the melt is reduced, and it is generally difficult to control the diameter of the grown crystal. Here, if the insertion depth is increased, the agitation of the melt is strengthened, the flow velocity on the melt surface is increased, which causes a large temperature fluctuation on the melt surface, and if the insertion depth is further increased, the stirring effect of the melt is increased. It is considered that each value has an optimum range because it becomes smaller. In addition, by moving this cylindrical instrument in parallel with the crystal pulling direction according to the growing length of the crystal, it is possible to set the appropriate melt flow according to the growing stage, resulting in more stable growth. Is possible.

【0008】[作用]スリットはその開口率によって融
液表面流れの抑制効率を変化させ、併せて円筒外側のよ
り高温な流れの円筒内側への導入量を調整するものであ
る。一般に開口率を大きくするに従って円筒外側の流れ
の導入量が増加し、円筒内での融液表面の半径方向温度
勾配は大きくなる。円筒直径の調整は円筒温度を最適に
するのが主な目的であり、その大きさがるつぼ直径に近
づくに従って、円筒表面での高周波誘導電流が大きくな
り、その温度が上昇することから、融液表面の半径方向
温度勾配は大きくなる傾向にある。又、前記した通り円
筒の融液内への挿入深さは、融液の攪拌効率を調整する
ものであり、挿入深さが大きくなるに従って、攪拌効率
は小→大→小と変化し、結果として融液内鉛直方向温度
勾配は大→小→大となる傾向があると考えられる。これ
らの諸条件を調整することにより、育成に適した融液表
面の半径方向温度勾配及び融液内の鉛直方向温度勾配が
得られる。
[Action] The slit changes the efficiency of suppressing the melt surface flow depending on the opening ratio, and at the same time adjusts the introduction amount of the higher temperature flow outside the cylinder into the inside of the cylinder. Generally, as the aperture ratio is increased, the amount of flow introduced outside the cylinder increases, and the temperature gradient in the radial direction of the melt surface inside the cylinder increases. The main purpose of adjusting the diameter of the cylinder is to optimize the temperature of the cylinder.As the size approaches the diameter of the crucible, the high-frequency induction current on the surface of the cylinder increases and the temperature rises. The radial temperature gradient on the surface tends to increase. Further, as described above, the insertion depth of the cylinder into the melt is for adjusting the stirring efficiency of the melt, and as the insertion depth increases, the stirring efficiency changes from small to large to small. Therefore, it is considered that the vertical temperature gradient in the melt tends to be large → small → large. By adjusting these various conditions, a radial temperature gradient on the melt surface and a vertical temperature gradient in the melt that are suitable for growth can be obtained.

【0009】[0009]

【実施例】以下図面を参照して実施例を説明する。図1
はるつぼ内に挿入する円筒器具の斜視図であり、上端
周縁に設けた鍔2と、均等にスリット3を設けた円筒部
4が一体に構成されている。又、図2はホットゾーンを
用いた結晶育成システムを示し、円筒器具を除いたも
のは従来公知のものである。簡単に説明すると次のよう
になる。即ち、保温材5にてるつぼ6が支持され、この
るつぼの内部には融液7が充填されており、外周縁に設
けた高周波発振コイル8によって融液を加熱する方式で
ある。一方、融液内には種結晶を浸し、この種結晶を所
定の速度にて引き上げることにより、単結晶を製造する
ものである。
Embodiments will be described below with reference to the drawings. Figure 1
FIG. 3 is a perspective view of a cylindrical instrument 1 to be inserted into a crucible, in which a collar 2 provided on a peripheral edge of an upper end and a cylindrical portion 4 provided with slits 3 uniformly are integrally formed. Further, FIG. 2 shows a crystal growing system using a hot zone, and the one except for the cylindrical instrument 1 is conventionally known. A simple explanation is as follows. That is, the crucible 6 is supported by the heat insulating material 5, the melt 7 is filled inside the crucible, and the melt is heated by the high-frequency oscillation coil 8 provided on the outer peripheral edge. On the other hand, a single crystal is manufactured by immersing a seed crystal in the melt and pulling the seed crystal at a predetermined speed.

【0010】以上の構成において、CZ法によるTi
2 単結晶の育成を行なった結果を説明する。Ti 2
液は一般の酸化物融液に比してプラントル数が大きく、
熱伝導率が小さいと言われており、通常行なわれている
CZ法の育成では、直径変動の非常に大きいのが特徴
で、安定な育成は困難とされている。特に、育成長さ約
10mmのところでは、結晶の曲がりまたは固液界面形状の
変動などが生じ易く、結晶長さ約10mm以上の単結晶育成
例はない。そこで本発明による手段を用いて育成に適し
た融液流れの実現を試みた。円筒器具を用いない場合、
及び異なるスリットを設けた円筒器具を用いた場合につ
いてその実施例を示す。 (実施例1)直径50mm,高さ50mmのイリジウムるつぼに
原料270 gをチャージし、ホットゾーンは図2に示した
もので円筒器具を除いて使用した。育成雰囲気はA
r (アルゴン)、結晶引き上げ方位はC軸、引き上げ速
度及び回転数は各々2mm/h,20rpm とした。結果は、
直径を約25mmに保持するための高周波発振出力の制御を
行なったが、結晶長さ7mm育成したところでるつぼ壁
に向かった急激な成長が生じ、それ以降の直径制御は困
難であった。 (実施例2)実施例1と同様のるつぼに原料270 gをチ
ャージし、そのるつぼ内に前記図1に示した円筒器具を
挿入した。この場合の円筒器具は、直径40mm,高さ50m
m,スリット幅3mm、そしてスリット本数20本のもので
あり、融液内への挿入深さは10mmに設定した。なお、育
成雰囲気はAr とし結晶の引き上げ方向はC軸方向と
し、引き上げ速度及び回転数は各々2mm/h,20rpm と
した。結果は、直径30mm,長さ50mmの単結晶を安定に育
成することができ、上記円筒器具を用いることにより、
i 2 単結晶育成に適した融液表面の半径方向温度勾
配及び融液内の鉛直方向温度勾配を得ることができたも
のと考えられる。 (実施例3)実施例1と同様のるつぼに原料270 gをチ
ャージし、そのるつぼ内に図3に示した円筒器具を挿入
した。この場合の円筒器具は、直径40mm,高さ50mm,ス
リット幅3mm、そしてスリット本数10本のものであり、
融液内への挿入深さは15mmに設定した。なお、育成雰囲
気はAr とし結晶の引き上げ方向はC軸方向とし、引き
上げ速度及び回転数は各々2mm/h,15rpm とした。結
果は、直径25mm,長さ40mmの単結晶を安定に育成するこ
とができ、実施例2と同様Ti 2 単結晶育成に適した
融液流れ及び温度勾配が得られたと考えられる。
In the above structure, T i O by the CZ method
2 The results of growing a single crystal will be described. The T i O 2 melt has a large Prandtl number as compared with a general oxide melt,
It is said that the thermal conductivity is small, and the CZ method that is usually performed is characterized by a very large diameter variation, and stable growth is considered to be difficult. Especially about the growing length
At 10 mm, the bending of the crystal or the change of the solid-liquid interface shape is likely to occur, and there is no example of single crystal growth with a crystal length of about 10 mm or more. Therefore, an attempt was made to realize a melt flow suitable for growth using the means according to the present invention. When not using a cylindrical instrument,
Also, an example of the case where a cylindrical instrument provided with different slits is used will be shown. Example 1 An iridium crucible having a diameter of 50 mm and a height of 50 mm was charged with 270 g of the raw material, and the hot zone was the one shown in FIG. The raising atmosphere is A
r (argon), the crystal pulling direction was the C axis, and the pulling speed and rotation speed were 2 mm / h and 20 rpm, respectively. Result is,
The high frequency oscillation output was controlled to maintain the diameter at about 25 mm, but when the crystal length was grown to 7 mm, rapid growth toward the crucible wall occurred, and it was difficult to control the diameter thereafter. (Example 2) The same crucible as in Example 1 was charged with 270 g of the raw material, and the cylindrical instrument shown in FIG. 1 was inserted into the crucible. The cylindrical instrument in this case has a diameter of 40 mm and a height of 50 m.
m, the slit width was 3 mm, and the number of slits was 20, and the insertion depth into the melt was set to 10 mm. The growth atmosphere was Ar , the crystal pulling direction was the C-axis direction, and the pulling speed and rotation speed were 2 mm / h and 20 rpm, respectively. The result is that a single crystal having a diameter of 30 mm and a length of 50 mm can be stably grown.
It is believed that it was possible to obtain a vertical temperature gradient in the radial temperature gradient and the melt of T i O 2 single crystal growth in a suitable melt surface. (Example 3) A crucible similar to that of Example 1 was charged with 270 g of a raw material, and the cylindrical instrument shown in Fig. 3 was inserted into the crucible. The cylindrical instrument in this case has a diameter of 40 mm, a height of 50 mm, a slit width of 3 mm, and 10 slits,
The insertion depth into the melt was set to 15 mm. The growth atmosphere was Ar , the crystal pulling direction was the C-axis direction, and the pulling speed and rotation speed were 2 mm / h and 15 rpm, respectively. Results, diameter 25 mm, it is possible to stably grow a single crystal of length 40 mm, melt flow and temperature gradients that are suitable for similar T i O 2 single crystal growth of Example 2 is believed to have been obtained.

【0011】[0011]

【発明の効果】以上説明したように、本発明によればC
Z法による酸化物単結晶育成において、融液表面を含め
融液表面近傍の流れを調整する器具を設けて結晶を引き
上げるようにしたので、以下に列挙する効果が得られ
る。 従来困難とされていた融液流れを調整できる。 融液表面から結晶成長界面への不純物の混入を抑え
ることができ、より高品質な単結晶の育成が可能とな
る。 融液上方の円筒でのスリット開口率を変えることに
より、融液表面及びるつぼ壁から育成結晶への放射の影
響を調整でき、融液上方の鉛直方向温度勾配の設定範囲
が広がり、より早い育成速度での高品質単結晶を可能と
する。
As described above, according to the present invention, C
In the oxide single crystal growth by the Z method, since the device for adjusting the flow in the vicinity of the melt surface including the melt surface is provided to pull up the crystal, the effects listed below can be obtained. It is possible to adjust the melt flow, which was conventionally difficult. It is possible to suppress the mixing of impurities from the melt surface to the crystal growth interface, and it becomes possible to grow a higher quality single crystal. By changing the slit aperture ratio in the cylinder above the melt, the effect of radiation from the melt surface and the crucible wall on the growing crystal can be adjusted, and the setting range of the vertical temperature gradient above the melt expands, resulting in faster growth. Enables high quality single crystals at speed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の結晶育成方法で使用する融液表面流れ
を調整する器具の全体斜視図。
FIG. 1 is an overall perspective view of an apparatus for adjusting a melt surface flow used in a crystal growing method of the present invention.

【図2】結晶育成方法を説明する図。FIG. 2 is a diagram illustrating a crystal growing method.

【図3】融液表面流れを調整する器具の他の実施例の全
体斜視図。
FIG. 3 is an overall perspective view of another embodiment of the device for adjusting the melt surface flow.

【符号の説明】[Explanation of symbols]

1,1′ 円筒器具 2,2′ 鍔 3,3′ スリット 4,4′ 円筒部 5 保温材 6 るつぼ 7 融液 8 高周波発振コイル 1,1 'Cylindrical device 2,2' Tsuba 3,3 'Slit 4,4' Cylindrical part 5 Heat insulating material 6 Crucible 7 Melt 8 High frequency oscillation coil

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 チョクラルスキー法によって原料融液か
ら単結晶を生成する結晶育成方法において、融液表面に
融液表面流れを調整する器具を設けたことを特徴とする
結晶育成方法。
1. A crystal growing method for producing a single crystal from a raw material melt by the Czochralski method, wherein a tool for adjusting a melt surface flow is provided on the surface of the melt.
【請求項2】 筒状を有する壁面を有し、前記壁面には
開口部を設けたことを特徴とする融液表面流れを調整す
る器具。
2. An apparatus for adjusting a melt surface flow, which has a cylindrical wall surface, and an opening is provided in the wall surface.
【請求項3】 開口部の形状はスリットであることを特
徴とする請求項2記載の融液表面流れを調整する器具。
3. The device for adjusting the melt surface flow according to claim 2, wherein the shape of the opening is a slit.
JP3131870A 1991-05-07 1991-05-07 Method for growing crystal Pending JPH05105579A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP3131870A JPH05105579A (en) 1991-05-07 1991-05-07 Method for growing crystal
DE4214795A DE4214795A1 (en) 1991-05-07 1992-05-04 Czochralski growth or oxide monocrystal(s) - uses as standard reactor with the addn. of a permeable soreen surrounding the crystal growth region inside the crucible to control temp.
SU925011853A RU2079581C1 (en) 1991-05-07 1992-05-06 Method of titanium dioxide monocrystal growing from melt in crucible
FR9205646A FR2676236A1 (en) 1991-05-07 1992-05-07 METHOD AND DEVICE FOR CRYSTALLING CRYSTALS FROM A FOOD MILL
KR1019920007708A KR920021744A (en) 1991-05-07 1992-05-07 Crystal Growth Method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3131870A JPH05105579A (en) 1991-05-07 1991-05-07 Method for growing crystal

Publications (1)

Publication Number Publication Date
JPH05105579A true JPH05105579A (en) 1993-04-27

Family

ID=15068064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3131870A Pending JPH05105579A (en) 1991-05-07 1991-05-07 Method for growing crystal

Country Status (5)

Country Link
JP (1) JPH05105579A (en)
KR (1) KR920021744A (en)
DE (1) DE4214795A1 (en)
FR (1) FR2676236A1 (en)
RU (1) RU2079581C1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05163095A (en) * 1991-12-12 1993-06-29 Shin Etsu Handotai Co Ltd Apparatus for pulling up single crystal

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63215587A (en) * 1987-03-02 1988-09-08 Sumitomo Electric Ind Ltd Production of single crystal
JPH0269386A (en) * 1988-09-01 1990-03-08 Sumitomo Electric Ind Ltd Device for growing single crystal
JPH02311390A (en) * 1989-05-25 1990-12-26 Sumitomo Electric Ind Ltd Device for producing single crystal

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5669298A (en) * 1979-11-13 1981-06-10 Nec Corp Method of growing single crystal of semiconductor
DE3316547C2 (en) * 1983-05-06 1985-05-30 Philips Patentverwaltung Gmbh, 2000 Hamburg Cold crucible for melting non-metallic inorganic compounds
JPS61132583A (en) * 1984-11-30 1986-06-20 Fujitsu Ltd Production of semiconductor single crystal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63215587A (en) * 1987-03-02 1988-09-08 Sumitomo Electric Ind Ltd Production of single crystal
JPH0269386A (en) * 1988-09-01 1990-03-08 Sumitomo Electric Ind Ltd Device for growing single crystal
JPH02311390A (en) * 1989-05-25 1990-12-26 Sumitomo Electric Ind Ltd Device for producing single crystal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05163095A (en) * 1991-12-12 1993-06-29 Shin Etsu Handotai Co Ltd Apparatus for pulling up single crystal

Also Published As

Publication number Publication date
DE4214795A1 (en) 1992-11-12
RU2079581C1 (en) 1997-05-20
FR2676236A1 (en) 1992-11-13
KR920021744A (en) 1992-12-18

Similar Documents

Publication Publication Date Title
KR960006260B1 (en) Method for controlling oxygen content of silicon crystals using a combination of cusp magnetic field and crystal and crucible rotation rates
JP5344822B2 (en) Control of melt-solid interface shape of growing silicon crystal using variable magnetic field
JPH09286692A (en) Apparatus for producing semiconductor single crystal and production of semiconductor single crystal
JP3086850B2 (en) Method and apparatus for growing single crystal
JPH076972A (en) Growth method and device of silicon single crystal
JP2004315289A (en) Method for manufacturing single crystal
JP2002137988A (en) Method of pull up single crystal
JP3132412B2 (en) Single crystal pulling method
JPH05105579A (en) Method for growing crystal
US3360405A (en) Apparatus and method of producing semiconductor rods by pulling the same from a melt
JP2000247787A (en) Method and apparatus for producing single crystal
JPS5930795A (en) Apparatus for pulling up single crystal
JP2003095788A (en) Silicon single crystal pulling method
JP2005145724A (en) Method for manufacturing silicon single crystal and silicon single crystal
JP2531875B2 (en) Method for producing compound semiconductor single crystal
JPH04305091A (en) Method and device for pulling up single crystal
WO2022102251A1 (en) Single crystal production method, magnetic field generator, and single crystal production device
JP4513407B2 (en) Method for producing single crystal
JPH10279399A (en) Production of single crystal
JPS62197398A (en) Method for pulling up single crystal
JPS62182190A (en) Production of compound semiconductor single crystal
JPH08151292A (en) Method for growing single crystal
JPS5964592A (en) Method for growing crystal
JPH05319973A (en) Single crystal production unit
RU786110C (en) Method and apparatus for growing monocrystals of oxides