JP2681115B2 - Single crystal manufacturing method - Google Patents

Single crystal manufacturing method

Info

Publication number
JP2681115B2
JP2681115B2 JP3473689A JP3473689A JP2681115B2 JP 2681115 B2 JP2681115 B2 JP 2681115B2 JP 3473689 A JP3473689 A JP 3473689A JP 3473689 A JP3473689 A JP 3473689A JP 2681115 B2 JP2681115 B2 JP 2681115B2
Authority
JP
Japan
Prior art keywords
crucible
single crystal
melt
crystal
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3473689A
Other languages
Japanese (ja)
Other versions
JPH02217388A (en
Inventor
薫 倉持
喜一郎 北浦
誠人 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Sitix Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Sitix Corp filed Critical Sumitomo Sitix Corp
Priority to JP3473689A priority Critical patent/JP2681115B2/en
Publication of JPH02217388A publication Critical patent/JPH02217388A/en
Application granted granted Critical
Publication of JP2681115B2 publication Critical patent/JP2681115B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はチョクラルスキー法(CZ法)により製造され
る単結晶の結晶成長方向及び径方向における酸素濃度の
均一化を可能とした単結晶の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention is a single crystal capable of homogenizing the oxygen concentration in the crystal growth direction and radial direction of a single crystal produced by the Czochralski method (CZ method). Manufacturing method.

〔従来の技術〕[Conventional technology]

一般にチョクラルスキー法(CZ法)による単結晶の製
造は、例えばチャンバ内に配した坩堝内に結晶用原料を
投入し、これをヒータにて加熱溶融せしめた後、この溶
融液中に種結晶を浸し、これを回転させつつ上方に引上
げて種結晶下端に単結晶を成長せしめることによって行
われている。
In general, a single crystal is manufactured by the Czochralski method (CZ method). For example, a raw material for crystal is put into a crucible arranged in a chamber, heated and melted by a heater, and then a seed crystal is added to the melt. And growing the single crystal at the lower end of the seed crystal by rotating it and pulling it upward.

ところで、例えばシリコン単結晶基板を用いて半導体
集積回路を製造する場合、製造過程で極微量の重金属の
汚れを浄化する、所謂IG(Intrinsic Gettering)効果
を得るためにシリコン単結晶基板には適正な酸素含有量
が必要とされる。
By the way, for example, when a semiconductor integrated circuit is manufactured using a silicon single crystal substrate, it is suitable for a silicon single crystal substrate in order to obtain a so-called IG (Intrinsic Gettering) effect for purifying a trace amount of heavy metal contamination in the manufacturing process. Oxygen content is required.

従ってシリコン単結晶を製造する過程ではその結晶成
長方向及び単結晶の径方向に適正な濃度で均一に酸素を
含有させる必要があり、このためには坩堝内における結
晶原料の溶融液中、特に単結晶成長領域中の酸素濃度を
一定に維持することが必要とされる。
Therefore, in the process of manufacturing a silicon single crystal, it is necessary to uniformly contain oxygen in an appropriate concentration in the crystal growth direction and the radial direction of the single crystal. For this purpose, particularly in the melt of the crystal raw material in the crucible, especially in the single crystal. It is necessary to maintain a constant oxygen concentration in the crystal growth region.

ところで坩堝内における酸素の殆んどは結晶原料であ
る多結晶シリコンを石英坩堝内で溶融する過程で石英坩
堝表面からシリコン溶融液中へ供給され、坩堝の回転に
よる溶融液の強制対流,坩堝内の溶融機の内部温度差に
よる熱対流により溶融液中に攪拌され、溶融液表面から
蒸発される外、一部は単結晶の成長界面に運ばれて単結
晶中に取り込まれることとなる。
By the way, most of the oxygen in the crucible is supplied into the silicon melt from the surface of the quartz crucible during the process of melting polycrystalline silicon, which is a crystal raw material, in the quartz crucible, and the forced convection of the melt by the rotation of the crucible and the inside of the crucible. In addition to being agitated in the melt by heat convection due to the internal temperature difference of the melter and being evaporated from the surface of the melt, a part of it is carried to the growth interface of the single crystal and taken into the single crystal.

従って坩堝内における溶融液量が多く、石英坩堝との
接触面積が大きい結晶成長開始の初期においては溶融液
中の酸素濃度が高く、単結晶の成長が進み坩堝内の溶融
液量が減少するに伴って溶融液と石英坩堝との接触面積
が減少し、溶融液中の酸素濃度が低下してゆく傾向があ
り、単結晶中の酸素濃度も結晶成長開始の初期には概ね
高く、単結晶の成長が進むに従って低下しする。
Therefore, the amount of melt in the crucible is large, and the contact area with the quartz crucible is large.At the beginning of crystal growth, the oxygen concentration in the melt is high, and the growth of single crystals progresses, and the amount of melt in the crucible decreases. Along with this, the contact area between the melt and the quartz crucible decreases, and the oxygen concentration in the melt tends to decrease, and the oxygen concentration in the single crystal is generally high at the beginning of crystal growth. It decreases as the growth progresses.

しかし、このような関係は必ずしも一元的ではなく、
坩堝内の溶融液量の外に石英溶解量、溶出酸素を運ぶ溶
融液の流れ、一酸化ケイ素の形で蒸発する酸素の蒸発量
等と関連し、しかも石英溶解量は反応温度、換言すれば
ヒータから坩堝に対する加熱分布によって、また溶融液
の対流は単結晶の直径,溶融液温度分布、或いは坩堝,
単結晶の回転速度によって、更に酸素の蒸発量はチャン
バ内の圧力、Ar流速等の影響を受けることが知られてお
り、これらの要因が複雑に交錯して単結晶の酸素濃度が
決まるため結晶開始時から終了時までこれを一定に維持
することは極めて難しい。
However, such relationships are not always centralized,
In addition to the amount of melt in the crucible, the amount of quartz dissolved, the flow of the melt carrying the eluted oxygen, the amount of oxygen evaporated in the form of silicon monoxide, etc. are related, and the amount of quartz dissolved is the reaction temperature, in other words Depending on the heating distribution from the heater to the crucible, and the convection of the melt, the diameter of the single crystal, the melt temperature distribution, or the crucible,
It is known that the evaporation rate of oxygen is further affected by the pressure in the chamber, Ar flow rate, etc. depending on the rotation speed of the single crystal, and the oxygen concentration of the single crystal is determined by the complex combination of these factors. It is extremely difficult to keep this constant from the beginning to the end.

この対策として坩堝の回転速度と単結晶中の酸素濃度
との関係に着目し、坩堝の回転数を原料溶融液量に関連
させて変化させ、石英坩堝と溶融液との相対速度を変え
て、溶融液に対する強制対流により石英坩堝表面の酸素
の拡散境界層の厚みを調節して溶融液中の酸素濃度、換
言すれば単結晶中の酸素濃度を制御する方法(特開昭57
−27996号,特開昭57−135796号)、或いは坩堝の周囲
に複数個のヒータを配設し、このヒータに対する電力の
供給比率を調節し、坩堝内に結晶原料の一部を固体の状
態で存在させつつ単結晶を成長させ、石英と溶融液との
接触面積、溶融液温度を変化させる方法が提案されてい
る(特開昭62−153191号)。
As a countermeasure against this, focusing on the relationship between the rotation speed of the crucible and the oxygen concentration in the single crystal, the rotation speed of the crucible was changed in relation to the amount of the raw material melt, and the relative speed between the quartz crucible and the melt was changed, A method of controlling the oxygen concentration in the melt, in other words, the oxygen concentration in a single crystal, by adjusting the thickness of the oxygen diffusion boundary layer on the surface of the quartz crucible by forced convection to the melt (JP-A-57)
-27996, Japanese Patent Laid-Open No. 57-135796), or a plurality of heaters are arranged around the crucible and the power supply ratio to the heaters is adjusted so that a part of the crystal raw material is in a solid state in the crucible. A method for growing a single crystal while changing the contact area between quartz and the melt and the temperature of the melt has been proposed (JP-A-62-153191).

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかし前者の方法は、単結晶中の酸素濃度の均一性が
若干向上することは認められるものの本発明者の実験に
よっても結晶中酸素濃度変動幅を所定以下に維持するこ
とが出来ない。
However, although it is recognized that the former method slightly improves the uniformity of the oxygen concentration in the single crystal, the inventor's experiment cannot maintain the fluctuation range of the oxygen concentration in the crystal below a predetermined level.

また後者の方法は、結晶原料の融解、凝固の繰り返し
が坩堝に大きな剪断応力を与えることとなり、坩堝が破
損することがある等の問題があった。更にこれらの方法
を、坩堝内へのシリコン酸化物の落下防止、坩堝溶融液
からの輻射熱が単結晶に与える影響の防止機能、並びに
チャンバ内のガスの整流機能を備えた遮蔽部材を用いた
単結晶製造装置に適用すると坩堝内における溶融液の高
温域が坩堝内の上方へ移行し、相対的に石英坩堝下方の
温度が低下するため石英坩堝底部から溶け込む酸素量が
減少し、単結晶中に取り込まれる酸素濃度が低下し、溶
融液の強制対流等の手段は高い酸素濃度を制御すること
が出来なくなるという問題があった。
Further, the latter method has a problem that repeated melting and solidification of the crystal raw material gives a large shear stress to the crucible, which may damage the crucible. In addition, these methods are applied to prevent the silicon oxide from falling into the crucible, to prevent the effect of radiant heat from the crucible melt on the single crystal, and to use a shielding member having a function of rectifying the gas in the chamber. When applied to a crystal manufacturing apparatus, the high temperature region of the molten liquid in the crucible moves upward in the crucible, and the temperature below the quartz crucible relatively decreases, so the amount of oxygen dissolved from the bottom of the quartz crucible decreases and the single crystal There has been a problem that the concentration of oxygen taken in is lowered, and means such as forced convection of the melt cannot control the high oxygen concentration.

第5図は坩堝(石英坩堝)と溶融液との接触点におけ
る温度分布を示しており、横軸に温度(℃)を、また縦
軸に石英坩堝の高さ方向位置をとって示してあり、グラ
フ中○印でプロットしてあるのは遮蔽部材が有る場合、
△印でプロットしてあるのは遮蔽部材がない場合を示し
ている。
Fig. 5 shows the temperature distribution at the contact point between the crucible (quartz crucible) and the melt, with the horizontal axis representing temperature (° C) and the vertical axis representing the position of the quartz crucible in the height direction. , ○ is plotted in the graph when there is a shielding member,
The plot with Δ indicates that there is no shielding member.

このグラフから明らかなように、遮蔽部材を用いたと
きは坩堝内の溶融液中の高温域が上方にシフトし、坩堝
底の温度が低下していることが解る。
As is clear from this graph, when the shielding member is used, the high temperature region in the melt inside the crucible shifts upward, and the temperature at the bottom of the crucible decreases.

本発明はかかる事情に鑑みなされたものであって、そ
の目的とするところは遮蔽部材を用いた設備においても
結晶成長の開始から終了に至る過程で単結晶の成長方向
における酸素濃度を精細に制御し得るようにした単結晶
製造方法を提供するにある。
The present invention has been made in view of such circumstances, and an object thereof is to precisely control the oxygen concentration in the growth direction of a single crystal in the process from the start to the end of crystal growth even in equipment using a shielding member. It is to provide a method for producing a single crystal that can be manufactured.

〔課題を解決するための手段〕[Means for solving the problem]

本発明に係る単結晶の成長方法は、単結晶の引上領域
を除く他の部分を覆う態様で熱遮蔽部材を配設した坩堝
からCZ法により単結晶を引上げる過程で、単結晶中の酸
素濃度を調節すべく、坩堝の周囲,底部に臨ませた各加
熱手段の出力を制御する。
The method for growing a single crystal according to the present invention, in the process of pulling the single crystal by the CZ method from the crucible in which the heat shielding member is arranged in a manner to cover the other portion except the pulling region of the single crystal, In order to adjust the oxygen concentration, the output of each heating means facing the bottom and the periphery of the crucible is controlled.

〔作用〕[Action]

本発明にあってはこれによって単結晶の成長領域に対
して供給される酸素量をその領域内で単結晶の引上率の
如何にかかわらず精細に制御することが可能となる。
In the present invention, this makes it possible to finely control the amount of oxygen supplied to the growth region of the single crystal regardless of the pulling rate of the single crystal within that region.

〔実施例〕〔Example〕

以下本発明をその実施例を示す図面に基づき具体的に
説明する。
Hereinafter, the present invention will be described in detail with reference to the drawings showing the embodiments.

第1図はシリコン単結晶の製造に本発明方法を適用し
た場合を示す模式的縦断面図であり、図中1はチャン
バ、2は坩堝、3はサイドヒータ、4はボトムヒータ、
5は保温材、6は遮蔽部材を示している。
FIG. 1 is a schematic vertical sectional view showing a case where the method of the present invention is applied to the production of a silicon single crystal, in which 1 is a chamber, 2 is a crucible, 3 is a side heater, 4 is a bottom heater,
Reference numeral 5 indicates a heat insulating material, and 6 indicates a shielding member.

チャンバ1の内部中央に坩堝2が配設され、この坩堝
2と保温材5との間にサイドヒータ3が、また坩堝2の
下部にボトムヒータ4が夫々配設され、更に坩堝2及び
サイドヒータ3の上方にわたって遮蔽部材6が配設され
ている。坩堝2は石英製の内坩堝2aの外周にグラファイ
ト製の外坩堝2bを配した二重構造に構成されており、そ
の底部中央にはチャンバ1の底壁を貫通させた軸2cの上
端が連結され、該軸2cにて回転させつつ昇降せしめられ
るようになっている。サイドヒータ3は円筒形に形成さ
れて坩堝2の側周壁を囲む態様で、またボトムヒータ4
は円環形に形成され、坩堝2の底部下方に10〜100mmの
間隔を隔てて軸2cの回りに夫々上,下方向の位置変更可
能に配設されており、夫々独立して出力制御が可能とな
っている。
A crucible 2 is arranged in the center of the inside of the chamber 1, a side heater 3 is arranged between the crucible 2 and the heat insulating material 5, and a bottom heater 4 is arranged below the crucible 2, respectively, and the crucible 2 and the side heater 3 are further arranged. The shielding member 6 is arranged over the above. The crucible 2 has a double structure in which an outer crucible 2b made of graphite is arranged on the outer periphery of an inner crucible 2a made of quartz, and the upper end of a shaft 2c penetrating the bottom wall of the chamber 1 is connected to the center of the bottom of the crucible 2. The shaft 2c can be rotated and raised and lowered. The side heater 3 is formed in a cylindrical shape and surrounds the side peripheral wall of the crucible 2, and the bottom heater 4
Are formed in an annular shape, and are arranged below the bottom of the crucible 2 at intervals of 10 to 100 mm around the shaft 2c so that the position can be changed in the upward and downward directions, respectively, and the output can be controlled independently. Has become.

第2図はボトムヒータ4の模式的平面図であり、円環
形をなしており、ヒータ線4aが内,外周縁間で蛇行させ
て配設されている。
FIG. 2 is a schematic plan view of the bottom heater 4, which has an annular shape, and the heater wire 4a is arranged in a meandering manner between the inner and outer peripheral edges.

遮蔽部材6は、逆円錐台形に構成(支持枠は図示せ
ず)してなり、この状態では単結晶9の引上領域を除く
坩堝上の他の部分及びサイドヒータ3の上方を覆い、ま
た逆円錐台形部6bの下端は坩堝2内の溶融液7上に臨
み、凝固したシリコン酸化物が坩堝内に落下するのを防
止し、坩堝2,溶融液,サイドヒータ3,ボトムヒータ4の
輻射熱を遮断し、更にチャンバ1内にその上方から通さ
れるAr等のキャリアガスを坩堝2内の中央に導き、溶融
液表面に沿って中央から周縁部側に向けて通流させ、溶
融液からの蒸発ガスを坩堝2の周縁から外方に排出し、
チャンバ1の下部に設けた図示しない排気口側に導くよ
うになっている。
The shielding member 6 is formed in an inverted truncated cone shape (a supporting frame is not shown), and in this state, covers other portions on the crucible except the pulling region of the single crystal 9 and the side heater 3, and The lower end of the inverted truncated cone portion 6b faces the melt 7 in the crucible 2 to prevent the solidified silicon oxide from falling into the crucible, and to prevent the radiant heat of the crucible 2, the melt, the side heater 3, and the bottom heater 4 from radiating heat. The carrier gas such as Ar, which is cut off and passed through the chamber 1 from above, is guided to the center of the crucible 2 and is caused to flow along the surface of the melt from the center toward the peripheral edge side. The evaporative gas is discharged outward from the peripheral edge of the crucible 2,
The chamber 1 is guided to the exhaust port side (not shown) provided in the lower portion.

チャンバ1の上部壁中央にはチャンバ1内への雰囲気
ガスの供給筒を兼ねる単結晶の保護筒1aが立設され、保
護筒1aの上方には回転、昇降機構(図示せず)に連繋さ
れた引上げ軸8の上端が連結されている。引上軸8の下
端にはチャックに掴持させた種結晶9が吊設され、この
種結晶9を坩堝2内の溶融液7になじませた後、回転さ
せつつ上昇させることによって、種結晶9の下端にシリ
コンの単結晶10を成長せしめるようになっている。
At the center of the upper wall of the chamber 1, a single-crystal protective cylinder 1a that doubles as a cylinder for supplying atmospheric gas is erected, and above the protective cylinder 1a is connected to a rotation / elevation mechanism (not shown). The upper end of the pulling shaft 8 is connected. A seed crystal 9 held by a chuck is hung at the lower end of the pulling shaft 8, and the seed crystal 9 is made to adapt to the melt 7 in the crucible 2 and then raised while rotating to make it a seed crystal. A single crystal 10 of silicon is allowed to grow on the lower end of 9.

而してこのような本発明方法にあっては、先ず坩堝2
内に結晶用原料を装入し、サイドヒータ3,ボトムヒータ
4を用いて溶融した後、溶融液7に種結晶9を浸漬し、
種結晶9を回転させつつ上昇させ、単結晶10の成長を開
始するが、この単結晶10の成長開始と同時的にサイドヒ
ータ3,ボトムヒータ4の出力制御を開始し、単結晶10の
引き上げ終了まで継続する。
Thus, in the method of the present invention, first, the crucible 2
After charging the raw material for crystal into the inside and melting it by using the side heater 3 and the bottom heater 4, the seed crystal 9 is immersed in the melt 7.
The seed crystal 9 is raised while rotating, and the growth of the single crystal 10 is started. At the same time when the growth of the single crystal 10 is started, the output control of the side heater 3 and the bottom heater 4 is started and the pulling of the single crystal 10 is completed. To continue.

第3図はサイドヒータ3,ボトムヒータ4の出力比率
(%)を示すグラフであり、横軸に単結晶の引上率を、
また縦軸にボトムヒータ出力比率(%)をとって示して
ある。グラフ中実線はサイドヒータ3の、また破線はボ
トムヒータ4の出力比率を示している。このグラフから
明らかなように、単結晶の成長開始直後にはサイドヒー
タの出力比率(%)を100%とし、その後漸次低下させ
て引上率0.2で80%とし、引上率0.6までの間に70%に迄
低減し、その後引上率0.7迄はその状態を維持した後引
上率0.7以上で僅かに増大させる。逆にサイドヒータの
出力比率は成長開始後、引上率0.2迄の間に0から漸次
増大させて20%に高め、更に引上率0.6迄の間に30%に
漸増し、そのままの状態で引上率が0.7に達するとここ
から引上率0.8迄の間は僅かに漸減させる。
FIG. 3 is a graph showing the output ratio (%) of the side heater 3 and the bottom heater 4, with the pulling rate of the single crystal on the horizontal axis.
The vertical heater output ratio (%) is plotted on the vertical axis. In the graph, the solid line shows the output ratio of the side heater 3, and the broken line shows the output ratio of the bottom heater 4. As is clear from this graph, the output ratio (%) of the side heater is set to 100% immediately after the start of the growth of the single crystal, and then gradually decreased to a pulling rate of 0.2 to 80%, and a pulling rate of up to 0.6. The rate is reduced to 70%, and after that, the state is maintained until the pulling rate is 0.7, and then the pulling rate is slightly increased at 0.7 or more. On the contrary, the output ratio of the side heater is gradually increased from 0 after the start of growth until the pulling rate is 0.2 and is increased to 20%. Further, the output ratio is gradually increased to 30% until the pulling rate is 0.6. When the pull rate reaches 0.7, the pull rate is gradually decreased from here to 0.8.

〔試験例〕(Test example)

第1図に示した如き設備(坩堝直径16インチ)を用
い、単結晶中酸素濃度目標値を16×1017atm/cm3とし、
坩堝2を一定速度で回転させ、直径16インチの単結晶を
引き上げ、その間引上率に応じて第3図に示す如き出力
パターンでサイドヒータ3及び坩堝2の底から20mm下方
に配したボトムヒータ4の各出力配分を制御し、坩堝2
の回転中心から100〜300mmの部分を集中的に加熱しつつ
単結晶を製造させ、得られた単結晶についてその成長方
向の酸素濃度を検出した。
Using the equipment shown in FIG. 1 (crucible diameter 16 inches), the oxygen concentration target value in the single crystal was set to 16 × 10 17 atm / cm 3 ,
The crucible 2 is rotated at a constant speed to pull up a single crystal having a diameter of 16 inches, and the side heater 3 and the bottom heater 4 placed 20 mm below the bottom of the crucible 2 in an output pattern as shown in FIG. Controls the output distribution of each, and crucible 2
A single crystal was produced while intensively heating a portion of 100 to 300 mm from the rotation center of, and the oxygen concentration in the growth direction of the obtained single crystal was detected.

結果は第4図に示す如くである。第4図は横軸に引上
率を、また縦軸に酸素濃度をとって示してあり、このグ
ラフから明らかな如く略目標値に近い酸素濃度であっ
て、しかも引上率0.75で±3%以内の酸素濃度分布が得
られた。
The results are as shown in FIG. In FIG. 4, the horizontal axis indicates the pulling rate and the vertical axis indicates the oxygen concentration. As is clear from this graph, the oxygen concentration is close to the target value, and the pulling rate is 0.75 ± 3. An oxygen concentration distribution within% was obtained.

なお、上述した実施例では坩堝2の周壁,底部に夫々
単一のサイドヒータ3,ボトムヒータ4を設けた構成につ
いて説明したが、何らこれに限定するものではなく、各
複数個のヒータを設け、夫々の出力を制御することとし
てもよいことは勿論である。
In the above-described embodiment, the configuration in which the single side heater 3 and the bottom heater 4 are provided on the peripheral wall and the bottom of the crucible 2 has been described, but the present invention is not limited to this, and a plurality of heaters are provided. Of course, each output may be controlled.

〔効果〕〔effect〕

以上の如く本発明方法にあっては、坩堝の周囲,底部
の加熱手段の出力を制御することとしているから、遮蔽
部材を用いた単結晶製造設備に適用して、単結晶の成長
方向において目標酸素濃度をばらつきなく得られる優れ
た効果を奏するものである。
As described above, in the method of the present invention, since the output of the heating means at the periphery and bottom of the crucible is controlled, the method is applied to a single crystal manufacturing facility using a shielding member, and the target in the growth direction of the single crystal is applied. It has an excellent effect that the oxygen concentration can be obtained without variation.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明方法の実施状態を示す模式図、第2図は
本発明方法の実施に用いたボトムヒータの模式的平面
図、第3図は本発明方法におけるヒータの出力制御パタ
ーンを示すグラフ、第4図は本発明方法に依った場合の
単結晶の成長方向における酸素濃度分布を示すグラフ、
第5図は坩堝内溶融液温度分布に対する遮蔽部材の影響
を示すグラフである。 1……チャンバ、2……坩堝、2a……内坩堝、2b……外
坩堝、3……サイドヒータ、4……ボトムヒータ、6…
…遮蔽部材、9……種結晶、10……単結晶
FIG. 1 is a schematic diagram showing an implementation state of the method of the present invention, FIG. 2 is a schematic plan view of a bottom heater used for implementing the method of the present invention, and FIG. 3 is a graph showing an output control pattern of a heater in the method of the present invention. FIG. 4 is a graph showing an oxygen concentration distribution in the growth direction of a single crystal according to the method of the present invention,
FIG. 5 is a graph showing the influence of the shielding member on the temperature distribution of the melt in the crucible. 1 ... chamber, 2 ... crucible, 2a ... inner crucible, 2b ... outer crucible, 3 ... side heater, 4 ... bottom heater, 6 ...
… Shielding member, 9 …… Seed crystal, 10… Single crystal

フロントページの続き (56)参考文献 特開 昭62−153191(JP,A) 特開 昭60−46993(JP,A) 特開 平1−93489(JP,A) 特開 昭59−13695(JP,A) 特開 昭57−135796(JP,A) 特開 昭60−239389(JP,A) 特開 昭63−159285(JP,A) 特開 昭62−119189(JP,A)Continuation of the front page (56) Reference JP 62-153191 (JP, A) JP 60-46993 (JP, A) JP 1-93489 (JP, A) JP 59-13695 (JP , A) JP 57-135796 (JP, A) JP 60-239389 (JP, A) JP 63-159285 (JP, A) JP 62-119189 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】単結晶の引上領域を除く他の部分を覆う態
様で遮蔽部材を配設した坩堝からCZ法により単結晶を引
上げる過程で、単結晶中の酸素濃度を調節すべく、坩堝
の周囲,底部に臨ませた各加熱手段の出力を制御するこ
とを特徴とする単結晶製造方法。
1. In the process of pulling a single crystal by a CZ method from a crucible provided with a shielding member so as to cover other portions except a pulled-up region of the single crystal, in order to adjust the oxygen concentration in the single crystal, A method for producing a single crystal, characterized in that the output of each heating means facing the periphery and bottom of the crucible is controlled.
JP3473689A 1989-02-14 1989-02-14 Single crystal manufacturing method Expired - Lifetime JP2681115B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3473689A JP2681115B2 (en) 1989-02-14 1989-02-14 Single crystal manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3473689A JP2681115B2 (en) 1989-02-14 1989-02-14 Single crystal manufacturing method

Publications (2)

Publication Number Publication Date
JPH02217388A JPH02217388A (en) 1990-08-30
JP2681115B2 true JP2681115B2 (en) 1997-11-26

Family

ID=12422604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3473689A Expired - Lifetime JP2681115B2 (en) 1989-02-14 1989-02-14 Single crystal manufacturing method

Country Status (1)

Country Link
JP (1) JP2681115B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7160386B2 (en) 2001-09-28 2007-01-09 Komatsu Denshi Kinzoku Kabushiki Kaisha Single crystal semiconductor manufacturing apparatus and manufacturing method, and single crystal ingot
WO2008038450A1 (en) 2006-09-27 2008-04-03 Sumco Techxiv Corporation Single crystal manufacturing apparatus and method
DE112005000715T5 (en) 2004-03-31 2008-07-03 Komatsu Denshi Kinzoku K.K., Hiratsuka Semiconductor single crystal manufacturing device and graphite crucible
DE112006002595T5 (en) 2005-09-30 2008-10-23 Sumco Techxiv K.K., Hiratsuka Manufacturing apparatus and method of manufacturing a single crystal semiconductor
JP2011256103A (en) * 2010-06-09 2011-12-22 Siltronic Ag Method for producing semiconductor wafer composed of silicon

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7160386B2 (en) 2001-09-28 2007-01-09 Komatsu Denshi Kinzoku Kabushiki Kaisha Single crystal semiconductor manufacturing apparatus and manufacturing method, and single crystal ingot
DE112005000715T5 (en) 2004-03-31 2008-07-03 Komatsu Denshi Kinzoku K.K., Hiratsuka Semiconductor single crystal manufacturing device and graphite crucible
DE112006002595T5 (en) 2005-09-30 2008-10-23 Sumco Techxiv K.K., Hiratsuka Manufacturing apparatus and method of manufacturing a single crystal semiconductor
DE112006002595B4 (en) 2005-09-30 2018-03-01 Sumco Techxiv K.K. Manufacturing apparatus and manufacturing method for a single crystal semiconductor
WO2008038450A1 (en) 2006-09-27 2008-04-03 Sumco Techxiv Corporation Single crystal manufacturing apparatus and method
JP2008081352A (en) * 2006-09-27 2008-04-10 Sumco Techxiv株式会社 Apparatus and method for producing single crystal
US8216371B2 (en) 2006-09-27 2012-07-10 Sumco Techxiv Corporation Single crystal manufacturing apparatus and method
JP2011256103A (en) * 2010-06-09 2011-12-22 Siltronic Ag Method for producing semiconductor wafer composed of silicon

Also Published As

Publication number Publication date
JPH02217388A (en) 1990-08-30

Similar Documents

Publication Publication Date Title
CA1261715A (en) Apparatus and process for growing monocrystals of semiconductor materials from shallow crucibles by czochralski technique
JP2686460B2 (en) Single crystal manufacturing method
US4936949A (en) Czochraski process for growing crystals using double wall crucible
US5260037A (en) Apparatus for producing silicon single crystal
JPH1029894A (en) Method for regulating specific resistance of single crystal silicon and apparatus for producing single crystal silicon
JP2681115B2 (en) Single crystal manufacturing method
JP2813592B2 (en) Single crystal manufacturing method
JPH10167892A (en) Method for pulling silicon single crystal
JP4408148B2 (en) Single crystal manufacturing method and apparatus therefor
JP2670548B2 (en) Silicon single crystal manufacturing equipment
US3360405A (en) Apparatus and method of producing semiconductor rods by pulling the same from a melt
JP2681114B2 (en) Single crystal manufacturing method
JPH04305087A (en) Method and device for producing single crystal
JPH10167881A (en) Method for pulling semiconductor single crystal
JPS6046073B2 (en) Manufacturing method of semiconductor single crystal
JPH01317188A (en) Production of single crystal of semiconductor and device therefor
JP2633057B2 (en) Silicon single crystal manufacturing equipment
JP3885245B2 (en) Single crystal pulling method
KR20190088653A (en) Method and apparatus for silicon single crystal growth
JPS63319288A (en) Flanged quartz crucible
JPH01160892A (en) Method for controlling oxygen concentration in silicon single crystal
JPH02116695A (en) Production of single crystal
JP2542434B2 (en) Compound semiconductor crystal manufacturing method and manufacturing apparatus
JP2677859B2 (en) Crystal growth method of mixed crystal type compound semiconductor
JP2759105B2 (en) Single crystal manufacturing method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20070808

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20080808

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080808

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20090808

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20090808