JPH09183692A - Apparatus for producing silicon single crystal and method therefor - Google Patents

Apparatus for producing silicon single crystal and method therefor

Info

Publication number
JPH09183692A
JPH09183692A JP7353056A JP35305695A JPH09183692A JP H09183692 A JPH09183692 A JP H09183692A JP 7353056 A JP7353056 A JP 7353056A JP 35305695 A JP35305695 A JP 35305695A JP H09183692 A JPH09183692 A JP H09183692A
Authority
JP
Japan
Prior art keywords
crucible
single crystal
silicon
pulling
silicon single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7353056A
Other languages
Japanese (ja)
Other versions
JP3528888B2 (en
Inventor
Susumu Sonokawa
将 園川
Ryoji Hoshi
亮二 星
Toshiro Hayashi
俊郎 林
Izumi Fusegawa
泉 布施川
Tomohiko Ota
友彦 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP35305695A priority Critical patent/JP3528888B2/en
Publication of JPH09183692A publication Critical patent/JPH09183692A/en
Application granted granted Critical
Publication of JP3528888B2 publication Critical patent/JP3528888B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To stably produce a silicon single crystal of a large diameter improved in the continuity of an impurity concn. from a large amt. of a silicon melt by housing this melt into a quartz crucible of a large diameter in an apparatus for producing the single crystal by an HMCZ method (horizontal magnetic field impression CZ method). SOLUTION: This apparatus for producing the silicon single crystal is provided with a heater having the length Ls of slits 4a which are exothermic parts of >=0.3 to <=0.7 times the inside diameter of the crucible as a resistance heater 4 for heating the crucible 2. The resistance heater and the crucible are made liftable by a lifting mechanism. At the time of producing the silicon single crystal by operating conditions under which the silicon melt amt. in the crucible of such apparatus for production decreases with lapse of the single crystal pulling-up time, the center Cs in the vertical direction of the slits of the resistance heater is positioned lower than the surface Sm of the silicon melt 6 and the falling component of the surface Sm by the pulling up of the single crystal is offset by rising of the crucible.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、大口径ルツボ内の
シリコン融液に水平磁場を印加しつつ前記融液から大直
径のシリコン単結晶を引き上げる、水平磁場印加CZ法
(HMCZ法)に基づく大直径シリコン単結晶の製造装
置および方法に関する。
TECHNICAL FIELD The present invention is based on a horizontal magnetic field application CZ method (HMCZ method) in which a large-diameter silicon single crystal is pulled from a silicon melt in a large-diameter crucible while applying a horizontal magnetic field to the silicon melt. The present invention relates to a large diameter silicon single crystal manufacturing apparatus and method.

【0002】[0002]

【従来の技術】近年、半導体デバイスの高集積化、高精
度化がますます進み、半導体結晶基板は大直径化、高品
質化の一途をたどっている。半導体結晶は主にチョクラ
ルスキー法(引上げ法)で製造されており、現在、更な
る大直径化、高品質化への努力が続けられている。
2. Description of the Related Art In recent years, as semiconductor devices have become more highly integrated and more highly accurate, semiconductor crystal substrates have become larger in diameter and higher in quality. Semiconductor crystals are mainly manufactured by the Czochralski method (pulling method), and at present, efforts are being made to further increase the diameter and quality.

【0003】このチョクラルスキー法でシリコン単結晶
棒を製造する装置および方法について図5を参照して説
明すると、引上げチャンバ1のほぼ中央に、黒鉛サセプ
タ3に保持された石英ルツボ2を設け、この黒鉛サセプ
タ3の底部中央を、回転・上下自在の支持軸10で下方
から支持する。石英ルツボ2の中に原料の多結晶シリコ
ンを充填し、これを、保温体5で囲まれた抵抗加熱ヒー
タ(黒鉛ヒータ)4により加熱・溶融して融液6とす
る。引上げ室1の天井中央には開口部12を有し、これ
に接続したサブチャンバ13の中を通って、先端に種結
晶14を保持した回転・上下自在の引上げ軸7を設け
る。単結晶引上げに際しては、引上げ軸7を降下させ、
種結晶14を融液6に浸漬した後、引上げ軸7および石
英ルツボ2を回転させながら種結晶14を引き上げるこ
とにより、その下に単結晶棒8を成長させることができ
る。
An apparatus and method for producing a silicon single crystal ingot by the Czochralski method will be described with reference to FIG. 5. A quartz crucible 2 held by a graphite susceptor 3 is provided at approximately the center of a pulling chamber 1. The center of the bottom of the graphite susceptor 3 is supported from below by a support shaft 10 which is rotatable and vertically movable. Polycrystalline silicon as a raw material is filled in the quartz crucible 2 and heated and melted by a resistance heater (graphite heater) 4 surrounded by a heat retaining body 5 to form a melt 6. An opening 12 is provided at the center of the ceiling of the pulling chamber 1, and a rotatable / upward / downward pulling shaft 7 holding a seed crystal 14 at the tip is provided through a subchamber 13 connected to the opening 12. When pulling the single crystal, lower the pulling shaft 7,
After immersing the seed crystal 14 in the melt 6, the single crystal ingot 8 can be grown under the seed crystal 14 by pulling the seed crystal 14 while rotating the pulling shaft 7 and the quartz crucible 2.

【0004】単結晶の大直径化のためには、すなわち結
晶棒8の直径を例えば約200mmと、従来の単結晶棒
よりも相当に大きくするには、これに対応して石英ルツ
ボ2の内径を例えば500mm以上と大きくして、シリ
コン融液6の量を増やさなければならない。ところが、
このようにするとシリコン融液6の対流9が不規則とな
り、対流によって運ばれる不純物濃度および、結晶成長
面での融液温度が不安定となり、大直径シリコン単結晶
を安定的に製造するのが困難となる。このため何らかの
手段で、融液6の対流を適切なものに制御することが必
要になる。
In order to increase the diameter of the single crystal, that is, to increase the diameter of the crystal rod 8 to about 200 mm, which is considerably larger than that of the conventional single crystal rod, the inner diameter of the quartz crucible 2 is correspondingly increased. Must be increased to, for example, 500 mm or more to increase the amount of silicon melt 6. However,
By doing so, the convection 9 of the silicon melt 6 becomes irregular, the concentration of impurities carried by the convection and the melt temperature on the crystal growth surface become unstable, and a large-diameter silicon single crystal can be stably manufactured. It will be difficult. Therefore, it is necessary to control the convection of the melt 6 to an appropriate one by some means.

【0005】そこで上記制御手段として、図5に示すよ
うに引上げチャンバ1の外側に電磁石21,22をルツ
ボ2を挟んで対向配備し、これらの電磁石により融液6
に水平磁場を印加しながら単結晶棒8を引き上げるHM
CZ法が用いられていることが知られている。
Therefore, as the control means, as shown in FIG. 5, electromagnets 21 and 22 are provided outside the pulling chamber 1 so as to face each other with the crucible 2 interposed therebetween, and the melt 6 is melted by these electromagnets.
HM that pulls the single crystal ingot 8 while applying a horizontal magnetic field to the
It is known that the CZ method is used.

【0006】[0006]

【発明が解決しようとする課題】図5の装置では水平磁
場印加により、ルツボ内シリコン融液6の対流状態は改
善されるが、ルツボの大口径化に伴い、水平磁場を印加
するだけでは充分な効果が得られず、結晶内の不純物濃
度の分布が、単結晶の成長方向に不均一になること、す
なわち不純物濃度が変化しやすくなることが、本発明者
らによって明らかになった。
In the apparatus of FIG. 5, the convection state of the silicon melt 6 in the crucible is improved by applying the horizontal magnetic field, but it is sufficient to apply the horizontal magnetic field as the diameter of the crucible becomes larger. The present inventors have revealed that such an effect cannot be obtained, and that the distribution of the impurity concentration in the crystal becomes non-uniform in the growth direction of the single crystal, that is, the impurity concentration easily changes.

【0007】現在、シリコン単結晶の引上げ工程におい
て、シリコン単結晶中の量が制御されている不純物の例
としては、格子間酸素や、シリコン単結晶のキャリア濃
度を決定するドーパントと呼ばれる原子が挙げられる。
酸素濃度が微小な範囲で高濃度、低濃度にばらつくこと
はデバイス工程において、例えば高濃度の場合、結晶欠
陥を形成する基となり、あるいは低濃度の場合、重金属
不純物のゲッタリング不足となり、デバイスの特性およ
び収率を低下させるという悪影響を及ぼす。
At present, in the step of pulling up a silicon single crystal, examples of impurities whose amount in the silicon single crystal is controlled include interstitial oxygen and atoms called dopants that determine the carrier concentration of the silicon single crystal. To be
The fact that the oxygen concentration varies to a high concentration or a low concentration in a minute range becomes a base for forming a crystal defect in the device process, for example, in the case of a high concentration, or when it is a low concentration, the gettering of heavy metal impurities is insufficient, resulting in a device defect. The adverse effect is that the properties and yield are reduced.

【0008】本発明は、このような背景のもとになされ
たもので、その目的は、HMCZ法による単結晶製造装
置において大口径の石英ルツボに多量のシリコン融液を
収納し、この融液から不純物濃度、特に結晶内での酸素
濃度の均一性を改善した大直径のシリコン単結晶を安定
して製造することができるシリコン単結晶製造装置、お
よび製造方法を提供することにある。
The present invention has been made under such a background, and an object thereof is to store a large amount of silicon melt in a quartz crucible having a large diameter in an apparatus for producing a single crystal by the HMCZ method. From the above, it is an object of the present invention to provide a silicon single crystal production apparatus and a production method capable of stably producing a large-diameter silicon single crystal in which the uniformity of the impurity concentration, especially the oxygen concentration in the crystal is improved.

【0009】上記の問題を解決するために、本発明者ら
は種々の実験を行い、その結果、図5における抵抗加熱
ヒータ4の発熱部であるスリット4aの長さが結晶内の
酸素濃度の不均一性に密接に関係していることをつきと
めた。すなわち、上記スリット4aの長さがルツボ2の
内径に近い場合には、シリコン融液全体がほぼ均一温度
に加熱され、融液深さ方向の温度勾配が小さくなるの
で、シリコン融液の対流の方向性や均一性を望ましいも
のに制御することが難しく、その結果、酸素濃度の不均
一が生じていることが判った。
In order to solve the above problems, the present inventors have conducted various experiments, and as a result, the length of the slit 4a, which is the heat generating portion of the resistance heater 4, in FIG. He found that it was closely related to non-uniformity. That is, when the length of the slit 4a is close to the inner diameter of the crucible 2, the entire silicon melt is heated to a substantially uniform temperature, and the temperature gradient in the depth direction of the melt is reduced. It has been found that it is difficult to control the directionality and uniformity to desired values, and as a result, the oxygen concentration becomes nonuniform.

【0010】[0010]

【課題を解決するための手段】本発明のシリコン単結晶
の製造装置は、引上げチャンバ内に有底円筒状ルツボ
と、このルツボを囲繞する抵抗加熱ヒータとを設け、磁
場印加装置の電磁石を構成するコイルを前記引上げチャ
ンバ外に、かつ前記ルツボを挟んで同軸的に対向配備
し、ルツボ内のシリコン融液に水平磁場を印加しつつ前
記融液から大直径の単結晶を引き上げるシリコン単結晶
の製造装置において、図1に示すように、抵抗加熱ヒー
タ4として、発熱部であるスリット4aの長さLsがル
ツボ2の内径Rの0.3倍以上、0.7倍以下であるも
のを設けたことを特徴とする。
In the apparatus for producing a silicon single crystal of the present invention, a cylindrical crucible having a bottom and a resistance heater surrounding the crucible are provided in a pulling chamber to form an electromagnet of a magnetic field applying apparatus. A coil outside the pulling chamber, and coaxially opposed to each other with the crucible sandwiched, of a silicon single crystal pulling a large diameter single crystal from the melt while applying a horizontal magnetic field to the silicon melt in the crucible. In the manufacturing apparatus, as shown in FIG. 1, a resistance heater 4 having a length Ls of a slit 4a, which is a heat generating portion, of 0.3 times or more and 0.7 times or less of an inner diameter R of the crucible 2 is provided. It is characterized by that.

【0011】スリット4aの長さLsを上記範囲に限定
したことにより、結晶成長界面近傍のシリコン融液に温
度勾配が発生するため、これに印加する水平磁場の効果
と相まって、その対流を適切なものに制御することが可
能となり、シリコン単結晶内の不純物濃度、特に結晶成
長方向の格子間酸素濃度の連続性が改善されて、結晶成
長方向のミクロな酸素濃度分布が均一になり、高品質の
シリコンウエーハを安定して製造することができる。な
お、上記長さLsがルツボ2の内径Rの0.3倍未満で
は発熱部が短すぎてルツボ内のシリコン全体を溶融状態
に維持するのが困難となり、0.7倍を超えると発熱部
の長さが従来と同等であるため、上記した問題が発生す
る。
By limiting the length Ls of the slit 4a to the above range, a temperature gradient is generated in the silicon melt in the vicinity of the crystal growth interface. The concentration of impurities in the silicon single crystal, especially the continuity of interstitial oxygen concentration in the crystal growth direction, is improved, and the micro oxygen concentration distribution in the crystal growth direction becomes uniform, resulting in high quality. The silicon wafer can be stably manufactured. If the length Ls is less than 0.3 times the inner diameter R of the crucible 2, the heating portion is too short and it is difficult to maintain the entire silicon in the crucible in a molten state. Since the length is the same as the conventional one, the above-mentioned problem occurs.

【0012】ところで従来、図5に示すシリコン単結晶
の製造装置では、ルツボ2内のシリコン融液量、従って
その深さが単結晶引上げ時間の経過とともに減少するシ
リコン単結晶製造方法が、主に採用されている。本発明
の製造装置において、この引上げ方法を採用するために
は、抵抗加熱ヒータ4およびルツボ2は昇降機構(図示
せず)により昇降可能とすることが好ましい。この場
合、図1に示すように、結晶引上げ開始時点において抵
抗加熱ヒータ4のスリット4aの上下方向の中心Cs
を、シリコン融液6の表面Smより下方に位置させると
ともに、シリコン単結晶の引上げによるルツボ内シリコ
ン融液量の減少に伴うシリコン融液表面の降下分をルツ
ボ2の上昇により相殺することが望ましい。
Conventionally, in the silicon single crystal manufacturing apparatus shown in FIG. 5, a silicon single crystal manufacturing method in which the amount of silicon melt in the crucible 2, and hence its depth, decreases with the elapse of the single crystal pulling time is mainly used. Has been adopted. In order to adopt this pulling method in the manufacturing apparatus of the present invention, it is preferable that the resistance heater 4 and the crucible 2 can be moved up and down by an elevating mechanism (not shown). In this case, as shown in FIG. 1, the vertical center Cs of the slit 4a of the resistance heater 4 at the start of crystal pulling.
Is located below the surface Sm of the silicon melt 6, and it is desirable to offset the drop of the silicon melt surface due to the decrease of the amount of silicon melt in the crucible due to the pulling of the silicon single crystal by the rise of the crucible 2. .

【0013】本発明に係るシリコン単結晶の製造装置お
よび方法は、通常のCZ法により1つのルツボから1本
の単結晶を引き上げる場合に限らず、いわゆるマルチプ
ルCZ(RCCZ法:Recharge CZ法)、または連続
チャージ引上げ法(CCCZ法:Continuous Charging
CZ法)より引き上げる場合にも適用できる。通常のC
Z法およびRCCZ法では、結晶引上げ時間の経過とと
もにルツボ内融液の深さが減少する。CCCZ法では結
晶引上げ中、ルツボ内融液の深さが実質的に引上げ開始
時点の深さと変わらず一定である。
The apparatus and method for producing a silicon single crystal according to the present invention is not limited to the case of pulling one single crystal from one crucible by the usual CZ method, but a so-called multiple CZ (RCCZ method: Recharge CZ method), Or continuous charge pulling method (CCCZ method: Continuous Charging)
It can also be applied to the case of pulling up from the CZ method). Normal C
In the Z method and the RCCZ method, the depth of the melt in the crucible decreases as the crystal pulling time elapses. In the CCCZ method, the depth of the melt in the crucible during the crystal pulling is substantially the same as the depth at the start of pulling and is constant.

【0014】[0014]

【試験例】図1の装置によるシリコン単結晶引上げの試
験例について説明する。 試験例1〜3 図1は、シリコン単結晶製造装置の要部構造を示す断面
図であり、ルツボ周りの構造は、図5の従来装置と同様
である。このシリコン単結晶製造装置では、抵抗加熱ヒ
ータ4のスリット4aの長さLsを、試験例1,2,3
でそれぞれルツボ内径Rの0.3倍、0.45倍、0.
8倍とした。その他の条件(引上げ装置の仕様および引
上げ方法・条件)は全て、試験例1,2,3で共通にし
た。抵抗加熱ヒータ4およびルツボ2は昇降機構により
昇降可能とした。図1の装置を使用し、RCCZ法によ
るシリコン単結晶の引上げを行った。この単結晶引上げ
法では、ルツボ内融液の深さが経時とともに減少する。
[Test Example] A test example of pulling a silicon single crystal by the apparatus of FIG. 1 will be described. Test Examples 1 to 3 FIG. 1 is a cross-sectional view showing the main structure of the silicon single crystal manufacturing apparatus, and the structure around the crucible is the same as that of the conventional apparatus of FIG. In this silicon single crystal manufacturing apparatus, the length Ls of the slit 4a of the resistance heater 4 is set to the test examples 1, 2, 3
, 0.3 times, 0.45 times, and 0.
8 times. All other conditions (specifications of the pulling device and pulling method / conditions) were common to Test Examples 1, 2, and 3. The resistance heater 4 and the crucible 2 can be moved up and down by an elevating mechanism. Using the apparatus shown in FIG. 1, a silicon single crystal was pulled by the RCCZ method. In this single crystal pulling method, the depth of the melt in the crucible decreases with time.

【0015】引上げ装置の主な仕様 (1)ルツボの内径R:約586mm (2)ルツボの深さ:約408mm (3)加熱ヒータの外径:約750mm (4)電磁石のコイル径Rc(図5を参照):約600
mm (5)電磁石のコイル間距離Dc(図5を参照):約1
800mm
Main specifications of the pulling device (1) Crucible inner diameter R: about 586 mm (2) Crucible depth: about 408 mm (3) Heater outer diameter: about 750 mm (4) Electromagnet coil diameter Rc (Fig. 5): about 600
mm (5) Distance between coils of electromagnet Dc (see FIG. 5): about 1
800 mm

【0016】引上げ方法・条件 (1)目標とするシリコン単結晶直胴部の直径×長さ:
8インチ(約210mm)×700mm (2)ルツボの回転数:0.5rpm (3)種結晶の回転数:16rpm(ルツボの回転方向
とは逆) (4)引上げ開始時のルツボ内シリコン融液の深さ:約
260mm (5)引上げ終了時のルツボ内シリコン融液の深さ:約
180mm (6)ルツボの中心軸l上の点における磁場の強度分布
(磁場の等強度線分布)は、ルツボ中心(ルツボ深さの
1/2の位置)で4000ガウス、ルツボ中心の上方1
50mmの位置では3750ガウス (7)その他:適量の不活性ガス(Ar)を供給しなが
ら、引上げチャンバ内の圧力を50mbarの減圧状態
に保持した。
Pulling Method / Conditions (1) Target diameter of straight body of silicon single crystal × length:
8 inches (about 210 mm) x 700 mm (2) Crucible rotation speed: 0.5 rpm (3) Seed crystal rotation speed: 16 rpm (opposite to crucible rotation direction) (4) Silicon melt in crucible at the start of pulling Depth: about 260 mm (5) Depth of silicon melt in the crucible at the end of pulling: about 180 mm (6) Strength distribution of the magnetic field at the point on the central axis l of the crucible (concentration line distribution of the magnetic field) is 4000 gauss at the center of the crucible (at half the depth of the crucible), 1 above the center of the crucible
At a position of 50 mm, 3750 gauss (7) Others: While supplying an appropriate amount of inert gas (Ar), the pressure inside the pulling chamber was maintained at a reduced pressure of 50 mbar.

【0017】まず、ルツボに多結晶シリコンを入れない
状態でルツボ中心軸上の温度分布を熱電対により測定し
た。結果を図2に示す。この図において横軸はルツボ中
心軸上の(上下方向の)位置を示し、抵抗加熱ヒータ4
のスリット4aの上下方向中心Csをゼロとしてある。
曲線Aはスリット長がルツボ内径の0.8倍のときの結
果を、曲線Bはスリット長がルツボ内径の0.3倍のと
きの結果をそれぞれ示している。なお、上記2種類の抵
抗加熱ヒータは、それぞれのスリットの上端が同一高さ
になるように設けた。
First, the temperature distribution on the central axis of the crucible was measured with a thermocouple in a state where polycrystalline silicon was not put in the crucible. The results are shown in FIG. In this figure, the horizontal axis indicates the position on the central axis of the crucible (in the vertical direction), and the resistance heater 4
The vertical center Cs of the slit 4a is zero.
A curve A shows the result when the slit length is 0.8 times the crucible inner diameter, and a curve B shows the result when the slit length is 0.3 times the crucible inner diameter. The above two types of resistance heaters were provided so that the upper ends of the slits were at the same height.

【0018】曲線A,Bを比較して明らかなように、ス
リット長が長い場合には温度分布が緩やかであり、スリ
ット長が短い場合には温度分布がより急峻になってい
る。従って、スリット長が短い抵抗加熱ヒータを設け、
ルツボ中心軸上の温度勾配を利用することによって、ル
ツボ内融液の対流を望ましいものに制御できることが分
かる。また、抵抗加熱ヒータとルツボ内融液との上下方
向の間隔を適宜なものに設定することで所望の対流状態
を形成し、これにより望ましい品質のシリコン単結晶を
製造することができる。
As is clear from the comparison between the curves A and B, the temperature distribution is gentle when the slit length is long and steep when the slit length is short. Therefore, by providing a resistance heater with a short slit length,
It can be seen that the convection of the melt in the crucible can be controlled to be desirable by utilizing the temperature gradient on the central axis of the crucible. Further, a desired convection state can be formed by setting an appropriate vertical gap between the resistance heater and the melt in the crucible, whereby a silicon single crystal of desired quality can be manufactured.

【0019】上記温度分布測定の後、試験例1,3にお
いて上記条件によりシリコン単結晶を引き上げた。そし
て、これらのシリコン単結晶における結晶成長方向の酸
素濃度分布測定した。結果を図3に示す。ミクロな酸素
濃度分布は、マイクロFT−IR法によりビームサイズ
100×200μmを用い、結晶成長方向に250μm
ステップで測定した。図3(a)(b)において横軸の
「試験片上の距離」は、成長した単結晶の成長方向の距
離に相当する。試験片は、結晶直胴20〜24cm部分
を縦切りし、結晶軸中心部から、厚さ2mm・幅20m
mとして切り出した。
After the temperature distribution was measured, the silicon single crystal was pulled under the above conditions in Test Examples 1 and 3. Then, the oxygen concentration distribution in the crystal growth direction of these silicon single crystals was measured. The results are shown in FIG. The micro oxygen concentration distribution is 250 μm in the crystal growth direction using a beam size of 100 × 200 μm by the micro FT-IR method.
Measured in steps. In FIGS. 3A and 3B, the “distance on the test piece” on the horizontal axis corresponds to the distance in the growth direction of the grown single crystal. As for the test piece, the crystal straight body 20 to 24 cm is vertically cut, and the thickness is 2 mm and the width is 20 m from the center of the crystal axis.
Cut out as m.

【0020】図3から明らかなように、抵抗加熱ヒータ
のスリット長をルツボ内径の0.7倍以下に設定するこ
とにより、結晶成長方向の酸素濃度のミクロなバラツキ
が小さくなり、結晶成長方向の格子間酸素濃度やキャリ
ア濃度の連続性を改善することができる。
As is clear from FIG. 3, by setting the slit length of the resistance heater to be 0.7 times or less of the inner diameter of the crucible, microscopic variation in oxygen concentration in the crystal growth direction is reduced, and the oxygen concentration in the crystal growth direction is reduced. The continuity of interstitial oxygen concentration and carrier concentration can be improved.

【0021】引き上げた単結晶における成長方向の酸素
濃度分布はそのまま、この単結晶から作製されるウエー
ハに反映するので、酸素濃度のばらつきは、できるだけ
小さいことが望ましい。具体的には上記試験片上の、単
結晶成長方向の距離4cmの部分における最大値の最小
値の差が1.0ppma(JEIDA)以下、特に0.
5ppma(JEIDA)以下であることが望ましい。
Since the oxygen concentration distribution in the growth direction of the pulled single crystal is reflected as it is on the wafer produced from this single crystal, it is desirable that the variation in oxygen concentration is as small as possible. Specifically, the difference between the maximum value and the minimum value on the test piece at a distance of 4 cm in the single crystal growth direction is 1.0 ppma (JEIDA) or less, and particularly 0.
It is preferably 5 ppma (JEIDA) or less.

【0022】図4は試験例1〜3の結果を示すグラフで
あって、ルツボ内径に対するヒータスリット長の比と、
ミクロな酸素濃度のばらつき(単位はppma−JEI
DA)との関係を示したものである。但し、上記ばらつ
きは試験片上の、単結晶成長方向の距離4cmの部分に
おける最大値と最小値との差である。図4の結果から、
従来装置では上記差が約1.3ppmaであるのに対
し、本発明によれば上記差を約0.4〜0.8ppma
に抑えられることが分かる。
FIG. 4 is a graph showing the results of Test Examples 1 to 3, showing the ratio of the heater slit length to the inner diameter of the crucible,
Microscopic variation in oxygen concentration (unit: ppma-JEI
DA). However, the above-mentioned variation is a difference between the maximum value and the minimum value in a portion on the test piece at a distance of 4 cm in the single crystal growth direction. From the result of FIG.
In the conventional device, the difference is about 1.3 ppma, whereas according to the present invention, the difference is about 0.4 to 0.8 ppma.
You can see that it is suppressed to.

【0023】[0023]

【発明の効果】以上の説明で明らかなように、本発明で
は、抵抗加熱ヒータのスリットの長さを、シリコン単結
晶引上げ用ルツボの内径の0.3倍以上、0.7倍以下
に設定することにより、結晶成長界面近傍のシリコン融
液に温度勾配が発生するため、これに印加する水平磁場
の効果と相まって、その対流を適切なものに制御するこ
とが可能となり、シリコン単結晶内の不純物濃度、特に
結晶成長方向の格子間酸素濃度の連続性が改善され、高
品質のシリコンウエーハを安定して製造することができ
る。また、抵抗加熱ヒータとルツボ内シリコン融液との
上下方向の相対位置を適宜に制御することで、シリコン
単結晶内の不純物濃度を所望のものに制御することがで
きて、より多種の品質要求に的確に対応することができ
る。
As is apparent from the above description, in the present invention, the length of the slit of the resistance heater is set to 0.3 times or more and 0.7 times or less of the inner diameter of the silicon single crystal pulling crucible. By doing so, a temperature gradient is generated in the silicon melt in the vicinity of the crystal growth interface, so that it becomes possible to control the convection to an appropriate one in combination with the effect of the horizontal magnetic field applied to this, and it becomes possible to The impurity concentration, especially the continuity of the interstitial oxygen concentration in the crystal growth direction is improved, and a high-quality silicon wafer can be stably manufactured. Further, by appropriately controlling the vertical relative position of the resistance heater and the silicon melt in the crucible, the impurity concentration in the silicon single crystal can be controlled to a desired one, and various quality requirements can be met. Can be dealt with accurately.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例に係るシリコン単結晶製造装置
の要部構造を示す概略縦断面図である。
FIG. 1 is a schematic vertical cross-sectional view showing a main part structure of a silicon single crystal manufacturing apparatus according to an embodiment of the present invention.

【図2】試験例においてルツボを空にして測定された、
ルツボ中心軸上の温度分布を示すグラフである。
FIG. 2 is measured in an empty crucible in a test example.
It is a graph which shows the temperature distribution on a crucible center axis.

【図3】試験例1,3で得られたシリコン単結晶におけ
る、結晶成長方向の酸素濃度分布を示すグラフである。
FIG. 3 is a graph showing an oxygen concentration distribution in a crystal growth direction in silicon single crystals obtained in Test Examples 1 and 3.

【図4】試験例1〜3の結果を示すグラフであって、ル
ツボ内径に対するヒータスリット長の比と、得られたシ
リコン単結晶におけるミクロ酸素濃度ばらつきとの関係
を示すものである。
FIG. 4 is a graph showing the results of Test Examples 1 to 3, showing the relationship between the ratio of the heater slit length to the inner diameter of the crucible and the variation in micro oxygen concentration in the obtained silicon single crystal.

【図5】HMCZ法によるシリコン単結晶製造装置の従
来例を示す概略縦断面図である。
FIG. 5 is a schematic vertical sectional view showing a conventional example of a silicon single crystal manufacturing apparatus by the HMCZ method.

【符号の説明】[Explanation of symbols]

1 引上げチャンバ 2 石英ルツボ 4 抵抗加熱ヒータ 4a スリット 6 シリコン融液 8 単結晶棒 9 シリコン融液の対流 21,22 電磁石 Cc 電磁石のコイル中心軸 Cm シリコン融液の深さの1/2の位置 Cs スリットの上下方向中心 Dc 電磁石のコイル間距離 Dm シリコン融液の深さ Ls スリットの長さ R ルツボの内径 Rc 電磁石のコイル径 Sm シリコン融液の表面 1 Pulling Chamber 2 Quartz Crucible 4 Resistance Heater 4a Slit 6 Silicon Melt 8 Single Crystal Rod 9 Convection of Silicon Melt 21,22 Electromagnet Cc Electromagnetic Coil Center Cm Cm Half Position of Silicon Melt Depth Cs Center of vertical direction of slit Dc Distance between coils of electromagnet Dm Depth of silicon melt Ls Length of slit R Inner diameter of crucible Rc Coil diameter of electromagnet Sm Surface of silicon melt

───────────────────────────────────────────────────── フロントページの続き (72)発明者 布施川 泉 福島県西白河郡西郷村大字小田倉字大平 150番地 信越半導体株式会社白河工場内 (72)発明者 太田 友彦 福島県西白河郡西郷村大字小田倉字大平 150番地 信越半導体株式会社白河工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Izumi Fusegawa, Izumi Fusegawa, Saidai-mura, Nishishirakawa-gun, Fukushima, Odaira, Odaira 150, Odaira, Shirakawa Plant, Shin-Etsu Semiconductor Co., Ltd. Ohira 150 Shin-Etsu Semiconductor Co., Ltd. Shirakawa factory

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 引上げチャンバ内に有底円筒状ルツボ
と、このルツボを囲繞する抵抗加熱ヒータとを設け、磁
場印加装置の電磁石を構成するコイルを前記引上げチャ
ンバ外に、かつ前記ルツボを挟んで同軸的に対向配備
し、ルツボ内のシリコン融液に水平磁場を印加しつつ前
記融液から大直径の単結晶を引き上げるシリコン単結晶
の製造装置において、前記抵抗加熱ヒータは、発熱部で
あるスリットの長さが前記ルツボの内径の0.3倍以
上、0.7倍以下であることを特徴とするシリコン単結
晶の製造装置。
1. A cylindrical crucible having a bottom and a resistance heater surrounding the crucible are provided in a pulling chamber, and a coil constituting an electromagnet of a magnetic field applying device is provided outside the pulling chamber and with the crucible sandwiched therebetween. In a device for producing a silicon single crystal that is coaxially arranged oppositely and pulls a large diameter single crystal from the melt while applying a horizontal magnetic field to the silicon melt in the crucible, the resistance heater is a slit that is a heat generating part. Is 0.3 times or more and 0.7 times or less of the inner diameter of the crucible, the apparatus for producing a silicon single crystal.
【請求項2】 前記抵抗加熱ヒータおよび前記ルツボは
昇降機構により昇降可能としたことを特徴とする請求項
1に記載のシリコン単結晶の製造装置。
2. The apparatus for producing a silicon single crystal according to claim 1, wherein the resistance heater and the crucible can be raised and lowered by a raising and lowering mechanism.
【請求項3】 請求項2に記載のシリコン単結晶の製造
装置において、前記ルツボ内のシリコン融液量が単結晶
引上げ時間の経過とともに減少する操作条件によりシリ
コン単結晶を製造する方法であって、結晶引上げ開始時
点において前記抵抗加熱ヒータのスリットの上下方向の
中心を、前記シリコン融液の表面より下方に位置させ、
シリコン単結晶の引上げによるルツボ内シリコン融液量
の減少に伴うシリコン融液表面の降下分をルツボの上昇
により相殺するとともに、前記抵抗加熱ヒータ自身を昇
降させることを特徴とするシリコン単結晶の製造方法。
3. A method for producing a silicon single crystal according to claim 2, wherein the amount of silicon melt in the crucible decreases with the elapse of the single crystal pulling time. , At the start of crystal pulling, the vertical center of the slit of the resistance heater is located below the surface of the silicon melt,
Manufacture of a silicon single crystal characterized by raising and lowering the resistance heating heater itself while offsetting a drop in the silicon melt surface due to a decrease in the amount of silicon melt in the crucible due to pulling of the silicon single crystal by raising the crucible. Method.
JP35305695A 1995-12-28 1995-12-28 Apparatus and method for producing silicon single crystal Expired - Lifetime JP3528888B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35305695A JP3528888B2 (en) 1995-12-28 1995-12-28 Apparatus and method for producing silicon single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35305695A JP3528888B2 (en) 1995-12-28 1995-12-28 Apparatus and method for producing silicon single crystal

Publications (2)

Publication Number Publication Date
JPH09183692A true JPH09183692A (en) 1997-07-15
JP3528888B2 JP3528888B2 (en) 2004-05-24

Family

ID=18428271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35305695A Expired - Lifetime JP3528888B2 (en) 1995-12-28 1995-12-28 Apparatus and method for producing silicon single crystal

Country Status (1)

Country Link
JP (1) JP3528888B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000055393A1 (en) * 1999-03-17 2000-09-21 Shin-Etsu Handotai Co., Ltd. Method for producing silicon single crystal and apparatus for producing the same, and single crystal and wafer produced with the method
JP2008189525A (en) * 2007-02-06 2008-08-21 Covalent Materials Corp Single crystal pulling apparatus
CN101812727A (en) * 2010-04-13 2010-08-25 上海太阳能电池研究与发展中心 Method for directionally solidifying and purifying polycrystalline silicon under DC electric field
JP2017043515A (en) * 2015-08-26 2017-03-02 株式会社Sumco N-type silicon single crystal ingot manufacturing method, n-type silicon wafer manufacturing method, and n-type silicon wafer
CN115044966A (en) * 2022-05-26 2022-09-13 西安奕斯伟材料科技有限公司 Heater and working method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56106398U (en) * 1980-01-18 1981-08-19
JPH0442894A (en) * 1990-06-07 1992-02-13 Shin Etsu Handotai Co Ltd Growth of silicon single crystal
JPH0543385A (en) * 1991-08-16 1993-02-23 Toshiba Ceramics Co Ltd Carbon heater for furnace for pulling up si single crystal
JPH0710682A (en) * 1993-06-29 1995-01-13 Toshiba Corp Drawing of single crystal and production machine therefor
JPH0761893A (en) * 1993-08-26 1995-03-07 Nec Corp Single crystal growing method
JPH07157391A (en) * 1993-10-18 1995-06-20 Sumitomo Sitix Corp Production of silicon single crystal excellent in oxidized film pressure resistance and device thereof
JPH07267776A (en) * 1994-03-31 1995-10-17 Sumitomo Sitix Corp Growth method of single crystal
JPH07277870A (en) * 1994-03-31 1995-10-24 Sumitomo Sitix Corp Method and device for growing single crystal
JPH09142989A (en) * 1995-11-22 1997-06-03 Nec Corp Apparatus for growing silicon single crystal

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56106398U (en) * 1980-01-18 1981-08-19
JPH0442894A (en) * 1990-06-07 1992-02-13 Shin Etsu Handotai Co Ltd Growth of silicon single crystal
JPH0543385A (en) * 1991-08-16 1993-02-23 Toshiba Ceramics Co Ltd Carbon heater for furnace for pulling up si single crystal
JPH0710682A (en) * 1993-06-29 1995-01-13 Toshiba Corp Drawing of single crystal and production machine therefor
JPH0761893A (en) * 1993-08-26 1995-03-07 Nec Corp Single crystal growing method
JPH07157391A (en) * 1993-10-18 1995-06-20 Sumitomo Sitix Corp Production of silicon single crystal excellent in oxidized film pressure resistance and device thereof
JPH07267776A (en) * 1994-03-31 1995-10-17 Sumitomo Sitix Corp Growth method of single crystal
JPH07277870A (en) * 1994-03-31 1995-10-24 Sumitomo Sitix Corp Method and device for growing single crystal
JPH09142989A (en) * 1995-11-22 1997-06-03 Nec Corp Apparatus for growing silicon single crystal

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000055393A1 (en) * 1999-03-17 2000-09-21 Shin-Etsu Handotai Co., Ltd. Method for producing silicon single crystal and apparatus for producing the same, and single crystal and wafer produced with the method
US6423285B1 (en) 1999-03-17 2002-07-23 Shin-Etsu Handotai Co., Ltd. Method for producing silicon single crystal and production apparatus therefor, as well as single crystal and silicon wafer produced by the method
JP2008189525A (en) * 2007-02-06 2008-08-21 Covalent Materials Corp Single crystal pulling apparatus
CN101812727A (en) * 2010-04-13 2010-08-25 上海太阳能电池研究与发展中心 Method for directionally solidifying and purifying polycrystalline silicon under DC electric field
JP2017043515A (en) * 2015-08-26 2017-03-02 株式会社Sumco N-type silicon single crystal ingot manufacturing method, n-type silicon wafer manufacturing method, and n-type silicon wafer
CN115044966A (en) * 2022-05-26 2022-09-13 西安奕斯伟材料科技有限公司 Heater and working method thereof
CN115044966B (en) * 2022-05-26 2024-02-09 西安奕斯伟材料科技股份有限公司 Heater and working method thereof

Also Published As

Publication number Publication date
JP3528888B2 (en) 2004-05-24

Similar Documents

Publication Publication Date Title
US7611580B2 (en) Controlling melt-solid interface shape of a growing silicon crystal using a variable magnetic field
JP2940437B2 (en) Method and apparatus for producing single crystal
US7588638B2 (en) Single crystal pulling apparatus
JP3520883B2 (en) Single crystal manufacturing method
JP5240191B2 (en) Silicon single crystal pulling device
KR101942322B1 (en) An apparatus for growing a crystal ingot and a method for growing a crystal ingot using the same
JP3528888B2 (en) Apparatus and method for producing silicon single crystal
JP2020114802A (en) Method for manufacturing silicon single crystal
KR101540567B1 (en) Single crystalline ingots, method and apparatus for manufacturing the ingots
GB2084046A (en) Method and apparatus for crystal growth
JPH10167881A (en) Method for pulling semiconductor single crystal
JP2000247787A (en) Method and apparatus for producing single crystal
JP3521862B2 (en) Single crystal growth method
CN114616361B (en) Method for producing silicon single crystal
KR20100071507A (en) Apparatus, method of manufacturing silicon single crystal and method of controlling oxygen density of silicon single crystal
KR20190088653A (en) Method and apparatus for silicon single crystal growth
JPH03183689A (en) Device and method for pulling up single crystal
KR20050047348A (en) A manufacturing method for silicon ingot
JPH01160892A (en) Method for controlling oxygen concentration in silicon single crystal
JP3552455B2 (en) Single crystal manufacturing method and single crystal pulling apparatus
JP2024088149A (en) Single crystal pulling apparatus and method
JP3467942B2 (en) Single crystal pulling method
JP2007210865A (en) Silicon single crystal pulling device
JP2012036042A (en) Silicon single crystal production method
JPH02229786A (en) Production of single crystal

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040217

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080305

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080305

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080305

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120305

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120305

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term