JPH03183689A - Device and method for pulling up single crystal - Google Patents

Device and method for pulling up single crystal

Info

Publication number
JPH03183689A
JPH03183689A JP1320948A JP32094889A JPH03183689A JP H03183689 A JPH03183689 A JP H03183689A JP 1320948 A JP1320948 A JP 1320948A JP 32094889 A JP32094889 A JP 32094889A JP H03183689 A JPH03183689 A JP H03183689A
Authority
JP
Japan
Prior art keywords
single crystal
heater
crucible
melt
pulling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1320948A
Other languages
Japanese (ja)
Inventor
Kazuhiro Ikezawa
池澤 一浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Silicon Corp
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Japan Silicon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp, Japan Silicon Co Ltd filed Critical Mitsubishi Materials Corp
Priority to JP1320948A priority Critical patent/JPH03183689A/en
Publication of JPH03183689A publication Critical patent/JPH03183689A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To control the concn. of oxygen contained in single crystal grown from the melt of a raw material and to enhance the yield of single crystal by providing a heater elevating mechanism which elevates a heater for heating the raw material of polycrystal in a crucible. CONSTITUTION:In a device for pulling up single crystal by a Czochralski process, the relative position of the liquid surface of melt Y of a raw material and a heater 6 is controlled as shown in a method described hereunder and the concn. of oxygen contained in single crystal T is controlled. (1) In an initial period for pulling up single crystal, the position of the heater 6 is highly preset for the liquid surface of melt in a crucible 5. The high-temp. part of the heater is opposed to the side face of the crucible 5. The area of the high-temp. part in the inner face of the crucible which touches melt Y is reduced and thereby the amount of SiO2 eluted into the melt is reduced. The concn. of oxygen in single crystal is lowered. (2) In the intermediate period for pulling up single crystal, the position of the heater 6 is lowered in the place lower than the case (1). The utmost part of the temp. of the heater is dislocated to the vicinity of the bottom part of the crucible 5. The amount of SiO2 eluted into the melt is increased. The concn. of oxygen contained in single crystal is enhanced by making oxygen to be easily fetched into single crystal.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、半導体用シリコン単結晶等の製造に用いられ
る単結晶引上装置および引上方法に係わり、特に、単結
晶中の酸素濃度を制御するための改良に関する。
Detailed Description of the Invention "Industrial Application Field" The present invention relates to a single crystal pulling apparatus and a pulling method used for producing silicon single crystals for semiconductors, and in particular, to Regarding improvements to control.

「従来の技術」 チヨクラスキー法(CZ法)によるシリコン単結晶の引
き上げにおいては、シリコン融液を保持する石英ルツボ
の内面から5iO1が溶出し、シリコン融液中に酸素が
入る。この酸素の大部分は揮発性のSiOとなり液面か
ら蒸発するが、一部は融液に残留して単結晶に取り込ま
れる。また石英ルツボ内面からの5iOyの溶出量は、
ルツボと融液の接触面温度に比例する。
"Prior Art" In pulling a silicon single crystal by the Czyoklaski method (CZ method), 5iO1 is eluted from the inner surface of a quartz crucible that holds a silicon melt, and oxygen enters the silicon melt. Most of this oxygen becomes volatile SiO and evaporates from the liquid surface, but some remains in the melt and is incorporated into the single crystal. In addition, the amount of 5iOy eluted from the inner surface of the quartz crucible is
It is proportional to the temperature of the contact surface between the crucible and the melt.

行なう場合、引上初期において融液と接するルツボの内
側面および内底面の温度が高く、これらからの5i04
溶出による融液中の酸素濃度が高くなる。その後、定常
状態になれば引き上げにつれてルツボ内面と接触する融
液からの酸素供給量が減少して単結晶中の酸素濃度が低
下し、さらに引上後期において融成残量が少なくなると
、ルツボ内底面の温度が上昇して、ここからの5iOy
溶出量が増大して、再び単結晶中の酸素濃度が増加する
In this case, the temperature of the inner surface and inner bottom surface of the crucible in contact with the melt is high at the initial stage of pulling, and the 5i04
The oxygen concentration in the melt increases due to elution. After that, as the steady state is reached, the amount of oxygen supplied from the melt in contact with the inner surface of the crucible decreases as the single crystal is pulled, and the oxygen concentration in the single crystal decreases. The temperature at the bottom rises and 5iOy from here
The amount of elution increases, and the oxygen concentration in the single crystal increases again.

特に、光学的直径制御方式を用いる引上方法においては
、常に融液破面を一定の高さに保つ必要があり、引き上
げにつれてルツボを上昇するため、ルツボ内側面と内底
面の加熱割合が引き上げの初期、中期、後期において漸
次変化する。したがって、この方法で得られる単結晶は
、頭部で酸素濃度が高く、固化率15%位からほぼ一定
の酸素濃度を有する定常状態となり、さらに尾部で酸素
濃度が低い、引上方向での酸素濃度勾配が比較的大きい
ものとなる。
In particular, in the pulling method that uses the optical diameter control method, it is necessary to always maintain the melt fracture surface at a constant height, and as the crucible is raised as it is pulled, the heating rate of the inner surface and inner bottom of the crucible increases. It changes gradually in the early, middle, and late stages. Therefore, the single crystal obtained by this method has a high oxygen concentration at the head and reaches a steady state with an almost constant oxygen concentration from about 15% solidification rate, and a lower oxygen concentration at the tail in the pulling direction. The concentration gradient will be relatively large.

しかしながら、単結晶中の酸素濃度は素子製造において
重要な因子であり、特に、単結晶中の酸素原子で微小欠
陥の生成を制御し、不純物元素のゲッター源として利用
するIG法では、適切で均一な酸素濃度分布の単結晶を
作成することが必須であるため、前記のように濃度変化
の大きい単結晶では素子として使用可能な部分が少なく
、酸素濃度をある狭い範囲内に規制すれば頭部の切り捨
て量が大きくなり、歩留まりが悪い欠点を有していた。
However, the oxygen concentration in a single crystal is an important factor in device manufacturing, and in particular, in the IG method, which controls the generation of microdefects with oxygen atoms in the single crystal and uses them as a getter source for impurity elements, it is necessary to obtain an appropriate and uniform Since it is essential to create a single crystal with a uniform oxygen concentration distribution, as mentioned above, a single crystal with a large concentration change has only a small portion that can be used as an element, and if the oxygen concentration is regulated within a certain narrow range, the head This method had the disadvantage that the amount of truncation was large, resulting in poor yield.

このため、ルツボの周囲に配置するヒータを上下方向複
数段に分割し、これら分割ヒータのそれぞれへのa電量
を引き上げ進行Iこ応じて調節しうる単結晶引上装置も
提案されている。
For this reason, a single crystal pulling apparatus has also been proposed in which the heater arranged around the crucible is divided into multiple stages in the vertical direction and the amount of electricity supplied to each of these divided heaters can be adjusted according to the progress of pulling.

「発明が解決しようとする課題」 しかし実際のところ、上記の単結晶引上装置では、融液
中の酸素濃度の変動が大きく無段階かつ正確に濃度調節
しにくい、操作に手間がかかり生産性が低い等の欠点を
有していた。
``Problem to be solved by the invention'' However, in reality, with the above-mentioned single crystal pulling apparatus, the oxygen concentration in the melt fluctuates greatly, making it difficult to adjust the concentration steplessly and accurately, and the operation is labor-intensive, resulting in poor productivity. It had drawbacks such as low

そこで本発明者らは、ヒータの温度分布とルツボ位置と
酸素濃度との相関を詳細に調べ、その結果、原料融液の
液面とヒータとの相対位置を調節することにより、以下
■、■のように原料融液からの単結晶中の酸素濃度が制
御できることを見い出した。
Therefore, the present inventors investigated in detail the correlation between the temperature distribution of the heater, the crucible position, and the oxygen concentration, and as a result, by adjusting the relative position between the liquid level of the raw material melt and the heater, the following It was discovered that the oxygen concentration in the single crystal from the raw material melt could be controlled as shown in the figure.

■ 引」二初期は、ルツボ内の原料融液面に対するヒー
タの位置を従来より高く設定し、ヒータの高ijA部を
ルツボの側面部に対向させ、融液と接するルツボ内面の
高温部分面積を減少させれば、融液中へのSin、の溶
出量が減少し、単結晶中に酸素か取り込まれにくくなり
、単結晶中の酸素濃度が低下する。
■ At the beginning of the second stage, the position of the heater with respect to the surface of the raw material melt in the crucible is set higher than before, and the high ijA part of the heater is opposed to the side surface of the crucible, so that the area of the high-temperature part of the inner surface of the crucible in contact with the melt is reduced. If it is decreased, the amount of Sin eluted into the melt will be reduced, oxygen will be difficult to be incorporated into the single crystal, and the oxygen concentration in the single crystal will be reduced.

■ 引上中期は、■の場合よりらヒータの位置を下げ、
ヒータの温度最高部位をルツボの底部に近い側へ変位さ
せることにより、融液と接触するルツボの内面の高温部
分面積が増大し、融液へのSiO,の溶出量が増大し、
単結晶中に酸素が取り込まれやすくなり、単結晶の酸素
濃度が高めになる。
■ During the middle stage of lifting, lower the heater position than in the case of ■.
By shifting the highest temperature part of the heater to the side closer to the bottom of the crucible, the area of the high-temperature part of the inner surface of the crucible that comes into contact with the melt increases, and the amount of SiO eluted into the melt increases.
Oxygen is more easily incorporated into the single crystal, increasing the oxygen concentration in the single crystal.

本発明は上記の知見に基づいてなされたもので、初期の
酸素濃度を低く、中期の酸素濃度を高くず化率5%位か
ら製品化でき、単結晶の歩留まりが向上できる単結晶引
上装置および引上方法を提供することを課題としている
The present invention has been made based on the above findings, and is a single crystal pulling device that can be commercialized with a low initial oxygen concentration and a high mid-term oxygen concentration, with a reduction rate of about 5%, and that can improve the yield of single crystals. The objective is to provide a lifting method.

「課題を解決するための手段」 以下、本発明に係わる単結晶引上装置および引上方法を
具体的に説明する。
"Means for Solving the Problems" Hereinafter, a single crystal pulling apparatus and a single crystal pulling method according to the present invention will be specifically explained.

第1図は、本発明に使用する単結晶引上装置の一実施例
を示す縦断面図である。
FIG. 1 is a longitudinal sectional view showing an embodiment of a single crystal pulling apparatus used in the present invention.

図中符号lは、図示しない台座を介して床面上に設置さ
れた炉体で、この炉体1の内部中央には、炉体1の底板
部IAを垂直に貫通して下軸2が設けられている。この
下軸2の下端2Aは図示しない昇降回転機構に連結され
、この下端2Aと底板部IAとの間には伸縮可能なベロ
ーズ3が掛は渡され、底板部IAと下軸2の間隙が気密
的に封止されている。
Reference numeral l in the figure indicates a furnace body installed on the floor via a pedestal (not shown), and a lower shaft 2 vertically penetrates the bottom plate part IA of the furnace body 1 in the center of the interior of the furnace body 1. It is provided. The lower end 2A of the lower shaft 2 is connected to an elevating and rotating mechanism (not shown), and an expandable bellows 3 is hooked between the lower end 2A and the bottom plate part IA, so that the gap between the bottom plate part IA and the lower shaft 2 is Hermetically sealed.

下軸2の上端には、黒鉛等からなるサセプタ4を介して
石英ルツボ5が同軸に固定され、サセプタ4の周囲には
円筒状のヒータ6か同軸に配置さJ4 9  L  L
  J−l+    l−Jw  /!  ?  ti
 n口 Jw  y  kじkh  ++ ml  r
rz  10温潤7が設けられている。また、炉体lの
上部には引上機構(図示時)メ(設けられ、ワイヤ8の
下端にホルダー9を介して固定された種結晶10を融d
Yに浸漬して、単結晶Tを引き上げる。
A quartz crucible 5 is coaxially fixed to the upper end of the lower shaft 2 via a susceptor 4 made of graphite or the like, and a cylindrical heater 6 is coaxially arranged around the susceptor 4.
J-l+ l-Jw/! ? Ti
n mouth Jw y kjikh ++ ml r
rz 10 onsen 7 are provided. Further, a pulling mechanism (as shown) is provided in the upper part of the furnace body l, and a seed crystal 10 fixed to the lower end of the wire 8 via a holder 9 is melted.
The single crystal T is immersed in Y and pulled up.

前記ヒータ6は黒鉛等の抵抗体からなり、その上下長は
サセプタ4よりも長く、下端には下向きに一対の電極ロ
ッド11が固定されている。なお、ヒータ6の発熱分布
は、第2図および第3図に示すように上下端で温度が低
く中央部では高い半円形となる。
The heater 6 is made of a resistor such as graphite, has a vertical length longer than the susceptor 4, and has a pair of electrode rods 11 fixed downwardly to its lower end. As shown in FIGS. 2 and 3, the heat generation distribution of the heater 6 has a semicircular shape in which the temperature is low at the upper and lower ends and high at the center.

各電極ロッド11は底板部IAを貫通し、底板部IAの
下方に水平に配置された昇降板12の上面に固定され、
電源装置(図示時)に接続されている。また各電極ロッ
ド11を囲んで、昇降板12と底板部IAとの間にはそ
れぞれ伸縮可能なベローズ13が掛は渡され、各電極ロ
ッド11と底板部IAとの間隙が気密的に封止されてい
る。
Each electrode rod 11 passes through the bottom plate part IA and is fixed to the upper surface of a lifting plate 12 horizontally arranged below the bottom plate part IA,
Connected to the power supply (as shown). In addition, a bellows 13 that can be expanded and contracted is provided between the elevating plate 12 and the bottom plate part IA, surrounding each electrode rod 11, so that the gap between each electrode rod 11 and the bottom plate part IA is hermetically sealed. has been done.

底板部IAの下面と床面に設置された基台14との間に
は、昇降板12を摺動可能に貫通する複数のガイドロッ
ド15が垂直に固定されるとともに、昇降板12に形成
された雌ネジ孔16に螺合するスクリュウロッド17が
軸回り回転自在に垂直に掛は渡されている。そしてスク
リュウロッド!7は、基台14に固定されたモータ18
により減速器19を介して回転される構成となっており
、それに伴い昇降板12およびヒータ6が上下動する。
A plurality of guide rods 15 that slidably penetrate the elevating plate 12 are vertically fixed between the lower surface of the bottom plate part IA and a base 14 installed on the floor surface, and are formed on the elevating plate 12. A screw rod 17, which is screwed into a female threaded hole 16, extends vertically so as to be rotatable about an axis. And the screw rod! 7 is a motor 18 fixed to the base 14;
The elevating plate 12 and the heater 6 move up and down accordingly.

炉体lにはまた、光学式液面位置センサーおよび自動直
径制御センサー(共に図示時)がそれぞれ設置され、こ
れらからの電気信号に基づき、ルツボ5内の融液面が単
結晶Tの引き上げにつれて常に一定の高さに維持される
とともに、引上機構による単結晶Tの成長速度をフィー
ドバック制御し、一定の直径が得られるようになってい
る。
The furnace body 1 is also equipped with an optical liquid level position sensor and an automatic diameter control sensor (both shown in the figure), and based on electrical signals from these sensors, the melt level in the crucible 5 changes as the single crystal T is pulled up. In addition to always maintaining a constant height, the growth rate of the single crystal T by a pulling mechanism is feedback-controlled to obtain a constant diameter.

上記構成からなる単結晶引上装置によれば、炉体lの気
密性を損ねたり、炉、体l内でのArガスの流れを乱す
ことなく、ヒータ6を任意の速度で上昇あるいは下降さ
せることができる。
According to the single crystal pulling apparatus having the above configuration, the heater 6 can be raised or lowered at an arbitrary speed without impairing the airtightness of the furnace body 1 or disturbing the flow of Ar gas within the furnace and body 1. be able to.

次に、上記の装置を用いた単結晶引上方法を説明する。Next, a method for pulling a single crystal using the above-mentioned apparatus will be explained.

本発明に係わる単結晶引上方法の特徴は、下記a、bの
ように、所望の酸素濃度に応じてヒータ6の位置を綱部
する点にある。
A feature of the single crystal pulling method according to the present invention is that the position of the heater 6 is determined according to the desired oxygen concentration, as shown in a and b below.

a、単結晶T中の酸素濃度を低下させるには、第2図に
示すようにヒータ6を上昇し、ヒータ6の温度最高点を
サセプタ4の側面に対向させ、ルツボ5内の原料融液7
面の中心に設定する。これにより、融液Yと接触するル
ツボ内面のうち特に内底面の温度が相対的に低下し、融
液Yと接触する内面の高温部分面積が減少して融液への
S r Oを溶出量が減少し、単結晶T中に取り込まれ
る酸素濃度か低下する。
a. To reduce the oxygen concentration in the single crystal T, raise the heater 6 as shown in FIG. 7
Set to the center of the surface. As a result, the temperature of the inner surface of the crucible that comes into contact with the melt Y, especially the inner bottom surface, decreases relatively, and the area of the high-temperature part of the inner surface that comes into contact with the melt Y decreases, reducing the amount of S r O eluted into the melt. decreases, and the concentration of oxygen taken into the single crystal T decreases.

b、一方、単結晶T中に含まれる酸素濃度を上昇させる
には、第3図に示すようにヒータ6を降下させ、ヒータ
6の温度最高点をサセプタ4の底部に対向させる。これ
により、ルツボ5の内底面の温度が相対的に高くなり、
融液Yと接触する内面の高温部分面積が拡大して融液へ
のSiO!溶出量が増大し、融液Y中の酸素濃度が高く
なり、単結晶T中の酸素濃度が上昇する。
b. On the other hand, in order to increase the oxygen concentration contained in the single crystal T, the heater 6 is lowered as shown in FIG. 3 so that the highest temperature point of the heater 6 faces the bottom of the susceptor 4. As a result, the temperature of the inner bottom surface of the crucible 5 becomes relatively high,
The area of the high-temperature part of the inner surface that comes into contact with the melt Y expands, and SiO! The amount of elution increases, the oxygen concentration in the melt Y increases, and the oxygen concentration in the single crystal T increases.

具体例を挙げると、酸素濃度が通常品と同程度(1、5
〜1 、7 X 10 ”atoms/C1)で長手方
向に均一な単結晶を得る場合には、通常の引上方法では
酸素濃度が高くなる引上初期において、第2図のように
ヒータ6を従来法よりも高く位置決めし、ヒータ6の温
度最高点をルツボ5の融液と接触している側面部と対向
させ、加熱しながら単結晶の肩部T1を形成する。これ
により、引き上げ初期における酸素濃度を低下させる。
To give a specific example, the oxygen concentration is about the same as that of regular products (1, 5
In order to obtain a longitudinally uniform single crystal with a density of ~1.7 x 10 ''atoms/C1), the heater 6 is turned off as shown in Fig. 2 at the initial stage of pulling when the oxygen concentration is high in the normal pulling method. It is positioned higher than in the conventional method, and the highest temperature point of the heater 6 is opposed to the side surface of the crucible 5 that is in contact with the melt, and the shoulder T1 of the single crystal is formed while heating. Reduces oxygen concentration.

次いで、単結晶Tの肩部の形成を終え、直胴部の形成に
移行すると同時に(融液面の位置はルツボ5の上昇によ
り常に一定に保たれる)、モータ18を作動してスクリ
ュウロッド17を回転し、昇降板12およびヒータ6を
徐々に定速で下降させ、ルツボ5内の原料融液Yの底部
に温度最高点がくるようにする。これにより、直胴部の
成長に伴う酸素濃度の低下を相殺し、引上の早期にほぼ
一定の酸素濃度に到達させ、以後融液のルツボ壁面の減
少による緩やかな酸素濃度の減少傾向を維持することが
できる。
Next, when the formation of the shoulder part of the single crystal T is completed and the formation of the straight body part begins (the position of the melt surface is always kept constant by the upward movement of the crucible 5), the motor 18 is activated to move the screw rod. 17, the elevating plate 12 and the heater 6 are gradually lowered at a constant speed so that the highest temperature point is at the bottom of the raw material melt Y in the crucible 5. This offsets the decrease in oxygen concentration due to the growth of the straight body, reaching a nearly constant oxygen concentration early in the pulling process, and thereafter maintaining a gradual decreasing trend in oxygen concentration due to the decrease in the crucible wall surface of the melt. can do.

なお、ヒータ6の最適移動量および移動速度は、各部の
寸法やヒータ6の温度分布、および所望の酸素濃度等に
よって異なるため、試験的に決定すべきである。
Note that the optimum moving amount and moving speed of the heater 6 should be determined experimentally because they vary depending on the dimensions of each part, the temperature distribution of the heater 6, the desired oxygen concentration, etc.

一方、単結晶Tの用途によっては、酸素濃度を通常より
も小さくする場合(1,2〜1.4X10”atoms
/cm3)もあるが、その際には、引き上げ初期でヒー
タ6を高い位置に設定したうえ、引き上げにつれてさら
にヒータ6を定速で上昇させる。これにより、ルツボ壁
面と底面の融液Yとの接触面の温度を低下させ、酸素濃
度が定常状態で小さい単結晶を得ることができる。
On the other hand, depending on the use of single crystal T, the oxygen concentration may be lower than usual (1.2 to 1.4 x 10" atoms).
/cm3), but in that case, the heater 6 is set at a high position at the beginning of the pulling process, and then the heater 6 is further raised at a constant speed as the lifting process progresses. Thereby, the temperature of the contact surface between the crucible wall surface and the bottom surface of the melt Y can be lowered, and a single crystal with a small oxygen concentration in a steady state can be obtained.

なお、本発明は単結晶中の酸素濃度を長手方向に均一に
する目的だけでなく、逆に酸素濃度の勾配を大きくする
目的にも使用可能である。
Note that the present invention can be used not only for the purpose of making the oxygen concentration in the single crystal uniform in the longitudinal direction, but also for the purpose of increasing the gradient of the oxygen concentration.

「実験例」 次に、実験例を挙げて本発明の効果を実証する。"Experiment example" Next, the effects of the present invention will be demonstrated by giving experimental examples.

(実験例1) 第1図に示した装置構成において、口径14インヂの石
英ルツボに30kgのシリコン原料を充填し、炉体内圧
25 Torr%Arガス流量(常圧換算)30Q/分
の条件で単結晶の引き上げを行なった。
(Experiment Example 1) In the equipment configuration shown in Fig. 1, 30 kg of silicon raw material was filled into a quartz crucible with a diameter of 14 inches, and the furnace internal pressure was 25 Torr%, and the Ar gas flow rate (converted to normal pressure) was 30Q/min. A single crystal was pulled.

なお、引き上げ開始から終了時までルツボを徐々に上昇
させ、融液面位置は常に一定とした。
Note that the crucible was gradually raised from the start to the end of pulling, and the melt surface position was always kept constant.

種結晶の浸漬から単結晶の肩部を成長させるまでの間は
、ヒータとサセプタの上端を一致させた。
The upper ends of the heater and the susceptor were aligned from the time of soaking the seed crystal until the shoulder of the single crystal was grown.

次いで、直径1105xの直胴部の成長を開始するとと
もにヒータの下降を開始し、直胴部が100x* (固
化率7%)成長する間にヒータを401111下降させ
た。以後はヒータを停止したまま、全長!300■のシ
リコン単結晶を引き上げた。
Next, the growth of the straight body part with a diameter of 1105x was started, and the heater was started to be lowered, and the heater was lowered by 401111 times while the straight body part was growing to 100x* (solidification rate 7%). After that, keep the heater off and run the entire length! A 300μ silicon single crystal was pulled.

(比較例1) 実験例1と同じ装置を用い、種結晶の浸漬から単結晶の
肩部を成長させる時点で、ヒータの上端をサセプタの上
端から50xm下方とし、引き上げ完了までこの位置で
固定した。その他の条件は実験例Iと同じにし、全長l
300■のシリコン単結晶を引き上げた。
(Comparative Example 1) Using the same apparatus as in Experimental Example 1, the upper end of the heater was set 50 x m below the upper end of the susceptor at the time of growing the shoulder of the single crystal from dipping the seed crystal, and was fixed at this position until the pulling was completed. . Other conditions were the same as in Experimental Example I, and the total length was l.
A 300μ silicon single crystal was pulled.

実験例1および比較例で得られた単結晶について、酸素
濃度の分布を計測した結果を第3図に示す。実験例!で
は比較例1に比べて頭部での酸素濃度が低下し、平均化
している。これにより、比較例で得られた単結晶に比し
て、酸素濃度の範囲が約30%挟まった。
FIG. 3 shows the results of measuring the oxygen concentration distribution for the single crystals obtained in Experimental Example 1 and Comparative Example. Experimental example! In comparison with Comparative Example 1, the oxygen concentration at the head was reduced and averaged out. As a result, the range of oxygen concentration was narrowed by about 30% compared to the single crystal obtained in the comparative example.

(実験例2) 実験例1と同じ条件において1000JIx(固化率7
0%)の長さまで単結晶を成長させた後、この時点で再
びヒータの下降を開始し、1300zmに達するまでに
さらに40ix降下させ、全長1300■の単結晶を得
た。
(Experimental example 2) Under the same conditions as experimental example 1, 1000 JIx (solidification rate 7
After the single crystal was grown to a length of 0%), at this point the heater was started to descend again and was further lowered by 40ix until it reached 1300 zm, yielding a single crystal with a total length of 1300 cm.

第4図はこの実験例2と前記比較例1の酸素濃度分布を
比較したグラフである。実験例2では実験例1に比して
定常部での酸素濃度の低下が防止され、さらに均一化が
図られている。
FIG. 4 is a graph comparing the oxygen concentration distributions of Experimental Example 2 and Comparative Example 1. In Experimental Example 2, as compared to Experimental Example 1, a decrease in oxygen concentration in the stationary region was prevented and further uniformity was achieved.

(実験例3) 酸素濃度の小さい単結晶の製造を行なった。実験例1と
同じ装置を用い、種結晶の浸漬から単結晶の肩部を成長
させる時点で、ヒータとサセプタの上端を一致させた。
(Experimental Example 3) A single crystal with a low oxygen concentration was produced. Using the same apparatus as in Experimental Example 1, the upper ends of the heater and susceptor were made to coincide with each other at the time when the shoulder of the single crystal was grown from immersion of the seed crystal.

次いで、直径105zzの直胴部の成長を開始するとと
もにヒータの上昇を開始し、直胴部が100yi(固化
率9%)成長する間にヒータを等速で30xx上昇させ
た。以後はヒータを停止したまま、全長1100Oxの
シリコン単結晶を引き上げた。その他の条件は実験例1
と同様にした。
Next, the growth of a straight body portion having a diameter of 105zz was started, and the heater was started to rise, and while the straight body portion was growing by 100yi (solidification rate: 9%), the heater was raised 30xx at a constant speed. Thereafter, a silicon single crystal with a total length of 1,100 Ox was pulled while the heater was stopped. Other conditions are Experimental Example 1
I did the same thing.

(比較例2) 実験例3と同じ装置および条件を用い、種結晶の浸漬か
ら単結晶の肩部を成長さ仕る時点で、ヒータの上端をサ
セプタの上端から25jIjI下方とし、引き上げ完了
までこの位置で固定して、直径105xxの直胴部を有
する全長1000■のシリコン単結晶を引き上げた。
(Comparative Example 2) Using the same equipment and conditions as in Experimental Example 3, the top end of the heater was set 25jIjI below the top end of the susceptor from the immersion of the seed crystal to the point where the shoulder of the single crystal was grown, and the top end of the heater was kept at this level until the pulling was completed. A silicon single crystal with a total length of 1000 cm and a straight body portion with a diameter of 105xx was pulled up while being fixed at a certain position.

第6図は、実験例3と比較例2の結果を示すグラフであ
る。実験例3で得られた単結晶は全長に亙って酸素濃度
が小さく、比較例2に比べて酸素濃度の範囲が約30%
狭まった。
FIG. 6 is a graph showing the results of Experimental Example 3 and Comparative Example 2. The single crystal obtained in Experimental Example 3 had a low oxygen concentration over its entire length, and the range of oxygen concentration was about 30% compared to Comparative Example 2.
Narrowed down.

「発明の効果」 以上説明したように、本発明に係わる単結晶引上装置お
よび引上方法によれば、単結晶中の酸素濃度を低下させ
る場合に、ヒータの温度最高部位をルツボの側面部に対
向させ、ルツボの内面の高温部分の面積を減少させるこ
とにより、融液への5iO7の溶出量を減少させ、単結
晶中に取り込まれる酸素量を低下させる。
"Effects of the Invention" As explained above, according to the single crystal pulling apparatus and the pulling method according to the present invention, when lowering the oxygen concentration in the single crystal, the highest temperature part of the heater is set to the side surface of the crucible. By reducing the area of the high-temperature portion of the inner surface of the crucible, the amount of 5iO7 eluted into the melt is reduced, and the amount of oxygen incorporated into the single crystal is reduced.

一方、単結晶中の酸素濃度を上昇させる場合には、iZ
j記の場合よりらヒータの温度最高部位をルツボの底部
に近い側へ変位させ、融液と接触するルツホの内面の高
温部分の面積を増大させることに上り、融液へのSiO
xの溶出量を増大させ、単結晶中に取り込まれる酸素量
を増大させる。
On the other hand, when increasing the oxygen concentration in the single crystal, iZ
Compared to case J, the highest temperature part of the heater is moved closer to the bottom of the crucible, increasing the area of the high-temperature part of the inner surface of the crucible that comes into contact with the melt, and reducing the amount of SiO into the melt.
The elution amount of x is increased, and the amount of oxygen taken into the single crystal is increased.

したがって、本発明の装置および方法によれば、単結晶
中の酸素濃度の制御を正確に行なうことができ、所望の
酸素濃度を有する単結晶の生産性を向」、することが可
能である。
Therefore, according to the apparatus and method of the present invention, it is possible to accurately control the oxygen concentration in a single crystal, and it is possible to improve the productivity of a single crystal having a desired oxygen concentration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係わる単結晶引上装置の一実施例を示
す縦断面図、第2図および第3図は本発明の単結晶中」
三方法の作用の説明図、第4図ないし第6図は本発明の
実験例の結果を示すグラフである。 1・・・炉体、2・・・下軸、3・・・ベローズ、4・
・サセプタ、5・・・ルツボ、6・・・ヒータ、7・・
・保温筒、8・・・引き上げワイヤ、IO・・・種結晶
、11・・・電極ロッド、!2・・・昇降板、13・・
・ベローズ、15・・・ガイドロッド、17・・・スク
リュウロッド(ヒータ昇降機構の要部)、18・・・モ
ータ、19・・・減速器、T・単結晶、Y・・・融液。
FIG. 1 is a longitudinal cross-sectional view showing an embodiment of a single crystal pulling device according to the present invention, and FIGS.
4 to 6 are graphs showing the results of experimental examples of the present invention. 1... Furnace body, 2... Lower shaft, 3... Bellows, 4...
・Susceptor, 5... Crucible, 6... Heater, 7...
・Heating cylinder, 8... Pulling wire, IO... Seed crystal, 11... Electrode rod,! 2... Elevating plate, 13...
-Bellows, 15...Guide rod, 17...Screw rod (essential part of heater lifting mechanism), 18...Motor, 19...Recelerator, T-Single crystal, Y...Melten liquid.

Claims (2)

【特許請求の範囲】[Claims] (1)昇降および回転操作される下軸の上端にサセプタ
を介して固定されたルツボと、このルツボの周囲に配置
されルツボ内の多結晶原料を加熱するヒータと、ルツボ
内の原料融液に種結晶を浸漬し単結晶を引き上げる引上
機構とを備えた単結晶引上装置において、 前記ヒータを昇降させるヒータ昇降機構を設けたことを
特徴とする単結晶引上装置。
(1) A crucible fixed via a susceptor to the upper end of a lower shaft that is operated to move up and down and rotate, a heater placed around the crucible to heat the polycrystalline raw material in the crucible, and a heater that heats the raw material melt in the crucible. What is claimed is: 1. A single crystal pulling apparatus comprising a pulling mechanism for immersing a seed crystal and pulling the single crystal, comprising: a heater lifting mechanism for lifting and lowering the heater.
(2)ルツボ内に保持した多結晶原料を、ルツボ周囲に
配置したヒータで加熱して原料融液を生成させ、この原
料融液に種結晶を浸漬して単結晶を育成させる単結晶引
上方法において、 a、単結晶中の酸素濃度を低下させる場合には、ヒータ
の温度最高部位をルツボの側面部に対向させる一方、 b、単結晶中の酸素濃度を上昇させる場合には、前記a
の場合よりもヒータの温度最高部位をルツボの底部に近
い側へ変位させることを特徴とする単結晶引上方法。
(2) Single crystal pulling by heating the polycrystalline raw material held in the crucible with a heater placed around the crucible to generate a raw material melt, and growing a single crystal by immersing a seed crystal in this raw material melt. In the method, a. When decreasing the oxygen concentration in the single crystal, the highest temperature part of the heater is opposed to the side surface of the crucible; b. When increasing the oxygen concentration in the single crystal, the above step a.
A single crystal pulling method characterized by shifting the highest temperature part of the heater to a side closer to the bottom of the crucible than in the case of.
JP1320948A 1989-12-11 1989-12-11 Device and method for pulling up single crystal Pending JPH03183689A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1320948A JPH03183689A (en) 1989-12-11 1989-12-11 Device and method for pulling up single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1320948A JPH03183689A (en) 1989-12-11 1989-12-11 Device and method for pulling up single crystal

Publications (1)

Publication Number Publication Date
JPH03183689A true JPH03183689A (en) 1991-08-09

Family

ID=18127078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1320948A Pending JPH03183689A (en) 1989-12-11 1989-12-11 Device and method for pulling up single crystal

Country Status (1)

Country Link
JP (1) JPH03183689A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0781868A3 (en) * 1995-12-26 1998-04-22 Shin-Etsu Handotai Company Limited A single crystal growing apparatus
JP2002060296A (en) * 2000-08-21 2002-02-26 Crystal System:Kk Crucible and apparatus for producing single crystal, and method of producing single crystal using the same
US9103049B2 (en) * 2006-07-13 2015-08-11 Sumco Techxiv Kabushiki Kaisha Method for melting semiconductor wafer raw material and crystal growing method for semiconductor wafer
JP2016132590A (en) * 2015-01-19 2016-07-25 トヨタ自動車株式会社 Single crystal manufacturing device
CN115198350A (en) * 2022-07-15 2022-10-18 麦斯克电子材料股份有限公司 Thermal field system capable of reducing oxygen content of silicon crystal and process method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5913695A (en) * 1982-07-09 1984-01-24 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Silicon crystal growth
JPS59223291A (en) * 1983-05-31 1984-12-15 Toshiba Corp Production of single crystal
JPS6153187A (en) * 1984-08-24 1986-03-17 Sony Corp Device for growing single crystal
JPS61183971U (en) * 1985-05-08 1986-11-17

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5913695A (en) * 1982-07-09 1984-01-24 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Silicon crystal growth
JPS59223291A (en) * 1983-05-31 1984-12-15 Toshiba Corp Production of single crystal
JPS6153187A (en) * 1984-08-24 1986-03-17 Sony Corp Device for growing single crystal
JPS61183971U (en) * 1985-05-08 1986-11-17

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0781868A3 (en) * 1995-12-26 1998-04-22 Shin-Etsu Handotai Company Limited A single crystal growing apparatus
JP2002060296A (en) * 2000-08-21 2002-02-26 Crystal System:Kk Crucible and apparatus for producing single crystal, and method of producing single crystal using the same
US9103049B2 (en) * 2006-07-13 2015-08-11 Sumco Techxiv Kabushiki Kaisha Method for melting semiconductor wafer raw material and crystal growing method for semiconductor wafer
JP2016132590A (en) * 2015-01-19 2016-07-25 トヨタ自動車株式会社 Single crystal manufacturing device
CN105803530A (en) * 2015-01-19 2016-07-27 丰田自动车株式会社 Single crystal production apparatus
CN115198350A (en) * 2022-07-15 2022-10-18 麦斯克电子材料股份有限公司 Thermal field system capable of reducing oxygen content of silicon crystal and process method

Similar Documents

Publication Publication Date Title
US8123855B2 (en) Device and process for growing Ga-doped single silicon crystals suitable for making solar cells
KR100906284B1 (en) Semiconductor single crystal growth method improved in oxygen concentration characteristics
EP1831436A1 (en) Controlling melt-solid interface shape of a growing silicon crystal using a variable magnetic field
JP5169814B2 (en) Method for growing silicon single crystal and silicon single crystal grown by the method
JPH06345584A (en) Method and apparatus for pulling monocrystal
JP2008162809A (en) Single crystal pulling apparatus and method for manufacturing single crystal
US5876495A (en) Method of pulling semiconductor single crystals
JPH03183689A (en) Device and method for pulling up single crystal
JPH09249486A (en) Method for pulling up single crystal
JP3907727B2 (en) Single crystal pulling device
JP3598642B2 (en) Method for producing silicon single crystal by continuous charge method
JP4063904B2 (en) Semiconductor single crystal pulling method
JP3528888B2 (en) Apparatus and method for producing silicon single crystal
JP4640796B2 (en) Method for producing silicon single crystal
JP6485286B2 (en) Method for producing silicon single crystal
GB2084046A (en) Method and apparatus for crystal growth
JP6658421B2 (en) Method for producing silicon single crystal
JP4310980B2 (en) Pulling method of silicon single crystal
JP2520925B2 (en) Method for controlling oxygen concentration in silicon single crystal
JP4341379B2 (en) Single crystal manufacturing method
JPH06271383A (en) Production of silicon single crystal
KR20100071507A (en) Apparatus, method of manufacturing silicon single crystal and method of controlling oxygen density of silicon single crystal
TWI424104B (en) Silicon single crystal production method
KR20090008969A (en) Growing apparatus for silicon single crystal and manufacturing method for the same
JPH08133886A (en) Production of single crystal