WO2001081661A1 - Silicon single-crystal wafer, method for producing silicon single crystal, and method for fabricating silicon single-crystal wafer - Google Patents
Silicon single-crystal wafer, method for producing silicon single crystal, and method for fabricating silicon single-crystal wafer Download PDFInfo
- Publication number
- WO2001081661A1 WO2001081661A1 PCT/JP2001/003317 JP0103317W WO0181661A1 WO 2001081661 A1 WO2001081661 A1 WO 2001081661A1 JP 0103317 W JP0103317 W JP 0103317W WO 0181661 A1 WO0181661 A1 WO 0181661A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- silicon single
- single crystal
- wafer
- silicon
- crystal wafer
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B15/00—Single-crystal growth by pulling from a melt, e.g. Czochralski method
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/02—Elements
- C30B29/06—Silicon
Definitions
- the present invention relates to a high-quality silicon single crystal wafer manufactured by the CZ method (Chiyoklarsky method) used for manufacturing a semiconductor device, and a method for manufacturing the same. More specifically, a silicon wafer manufactured from a single crystal grown by the CZ method, and the uniformity of the electrical characteristics, in which the concentration of heavy metal impurities, particularly the Fe (iron) concentration, has been reduced to the outermost region of the wafer.
- the present invention relates to extremely high quality silicon wafers and a method for producing the same. Background art
- items related to quality can be divided into items related to the shape of A-E8 and items related to the crystal quality of silicon single crystals.
- Items related to e-shape, such as surface flatness and warpage, are strongly related to the device manufacturing process, such as wiring pattern formation in the photolithography process and adsorption to the stage in the etching and film formation process.
- the area of the periphery of the wafer becomes particularly large, so that the effect of improving the yield in the peripheral area of the wafer becomes high.
- such a large-diameter wafer requires a silicon wafer having high uniformity up to the outermost peripheral region of the wafer, which has not been a problem in the past.
- the CZ method of growing and pulling single crystals from a melt in a quartz crucible is widely used.
- a seed crystal is immersed in a silicon melt in a quartz crucible under an inert gas atmosphere, and the quartz crucible and the seed crystal are slowly pulled up while rotating. This is to produce a con single crystal.
- a quartz crucible is used, so that the silicon melt reacts with the quartz and oxygen atoms are eluted in the silicon melt, and a part of the oxygen atoms elutes into the growing silicon single crystal.
- Incorporated to provide an effect of improving mechanical strength and to be a gettering source for heavy metal impurities mixed in during the manufacture of semiconductor integrated circuit devices.
- most of the oxygen atoms evaporate from the melt surface as silicon oxides, and some of them adhere to components in the pulling furnace. If such deposits fall onto the surface of the silicon melt, they adhere to the growing silicon single crystal, causing dislocation troubles, and significantly lower the yield of the single crystal product.
- a rectifying cylinder is often used to rectify the inert gas introduced into the upper furnace and efficiently discharge such oxides from the silicon melt.
- the rectifying cylinder referred to in the present invention is an inert gas that is disposed so as to surround a silicon single crystal grown on the silicon melt surface in the CZ method and is introduced from the upper part of the chamber of the CZ device.
- a substance that acts to regulate the flow of gas. Therefore, the rectifying cylinder referred to here is a member arranged close to the grown crystal having the above function.
- the term is used as a generic term, and does not imply any particular language or name. Includes heat shields, heat insulators, etc., which are placed close to the crystal.
- the diameter of the silicon single crystal to be grown becomes large, the speed at which the crystal is pulled must be reduced, the silicon melt becomes large, and the oxygen supply increases due to the increase in the size of the quartz crucible. Since the amount of oxides increases, dislocation troubles in the silicon single crystal are likely to occur. Therefore, in order to produce a silicon single crystal with a large diameter of 200 mm or more at a high yield, it is necessary to arrange a rectifying cylinder in the CZ device.
- one of the quality evaluations of silicon wafers is the lifetime of a minority carrier. This carrier lifetime indicates the time it takes for electron-hole pairs generated when high-energy pulsed light is incident on the silicon surface to return to the original thermal equilibrium state by recombination.
- the present invention has been made in view of the above points, and it is an object of the present invention to provide a substrate for manufacturing a semiconductor integrated circuit element capable of obtaining a high yield without deterioration in characteristics even at the outermost periphery of the wafer. Furthermore, even in the case of producing large-diameter crystals, it is possible to reduce the heavy metal contamination around the wafer to the utmost and to provide an industrially efficient method for producing silicon single crystals by using a rectifying cylinder with moderate purity. It is in.
- the present invention for solving the above problems is directed to a silicon single crystal wafer produced from a silicon single crystal grown by a CZ method, wherein the silicon single crystal wafer has an Fe concentration of 1 XIO ⁇ atoms / A silicon single crystal wafer having a size of not more than cm 3 .
- the silicon single crystal grown by the CZ method has a Fe concentration of 1 XIO i Q atoms / cm 3 or less
- the silicon single crystal grown with the carrier has a carrier as described above. Silicon single crystal wafers that are unlikely to cause problems such as a reduction in lifetime can be used.
- the CZ wafer it is easy to increase the diameter of the wafer, the yield of semiconductor elements obtained from the outer periphery thereof is also improved, and the overall yield of semiconductor manufacturing can be improved.
- the present invention is also directed to a silicon single crystal wafer manufactured from a silicon single crystal grown by the cZ method, wherein the carrier lifetime variation width over the entire surface of the silicon single crystal wafer is set to (maximum value).
- (Single minimum value) A silicon single crystal wafer, characterized in that the fluctuation range when expressed by the Z maximum value is 50% or less.
- the silicon single crystal silicon wafer having a small variation in carrier lifetime over the entire surface of the silicon wafer can have a small variation in electrical characteristics of a semiconductor device manufactured on the surface layer of the silicon wafer.
- such a wafer is particularly advantageous when a device is formed on a large-diameter wafer because the carrier lifetime in the periphery of the wafer can be kept small.
- the present invention relates to a silicon single crystal wafer manufactured from a silicon single crystal grown by the cZ method, wherein an e concentration of 10% around the silicon single crystal wafer is 1 XI 0
- This is a silicon single crystal wafer having a density of 10 atoms Z cm 3 or less.
- a silicon single crystal wafer having a Fe concentration of 10% or less around the silicon single crystal wafer at 1 ⁇ 10 10 atoms Z cm 3 or less has a large diameter even if the wafer has a large diameter.
- the carrier lifetime in the peripheral portion is hardly reduced, and the yield of device fabrication can be improved.
- 10% around the eha is the distance from the outermost periphery of the eha to the It means the outer edge within 10% in diameter.
- the diameter can be 20 O mm or more.
- the silicon single crystal wafer of the present invention is a silicon single crystal wafer manufactured from a silicon single crystal grown using a rectifying tube in the cZ method. ⁇ It is Eha.
- the present invention provides a method for producing a silicon single crystal in which a silicon single crystal is grown while surrounding the silicon single crystal with a rectifying cylinder in the CZ method, wherein the Fe concentration on the surface is 0.05 ppm or less.
- a method for producing a silicon single crystal characterized in that a silicon single crystal is grown using a rectifying cylinder having a film formed thereon.
- the film applied to the flow straightening cylinder can sufficiently exhibit its effect even if the coating is applied only to the inner surface of the flow straightening cylinder facing the grown crystal, or the coating can be applied to the entire flow straightening cylinder.
- These options depend on the method and cost of coating on the flow straightening tube, or the furnace internal structure. It should be selected variously for reasons such as the design of the product.
- the film is preferably made of pyrolytic carbon or silicon carbide. If the film is made of pyrolytic carbon or silicon carbide in this way, the Fe concentration on the surface of the flow regulating cylinder can be easily kept low, and high purity can be maintained.
- the thickness of the film is preferably 30 // m or more.
- the film thickness is 30 / zm or more, the volatilization of heavy metals such as Fe from the surface of the rectifying cylinder can be sufficiently prevented, and the film is sufficiently resistant to long-time use at high temperatures. It becomes something that can be obtained.
- a silicon single crystal wafer is manufactured from the silicon single crystal of the present invention, a silicon single crystal wafer with a small carrier lifetime variation over the entire surface of the wafer even with a large diameter can be easily manufactured. be able to.
- the present invention also provides a flow regulating cylinder arranged so as to surround a silicon single crystal grown in the CZ method, and for regulating the flow of an inert gas introduced from the top of the chamber of the cZ apparatus.
- the rectifying cylinder is characterized in that a film with an Fe concentration of 0.05 ppm or less is formed on the rectifying cylinder.
- Such a flow straightening tube surely prevents Fe contamination from occurring in a single crystal grown from the flow straightening tube, and can improve the quality and yield particularly in the production of large-diameter silicon single crystals.
- the film is preferably made of pyrolytic carbon or silicon carbide. If the film is made of pyrolytic carbon or silicon carbide in this way, the Fe concentration on the surface of the flow regulating cylinder can be easily kept low, and high purity can be maintained.
- the thickness of the film is preferably 30 / m or more.
- the film thickness is 30 ⁇ or more, it is possible to sufficiently prevent the volatilization of heavy metals such as Fe from the surface of the rectifying cylinder, and to sufficiently withstand long-time use at high temperatures. It becomes something that can be obtained.
- the apparatus for producing a silicon single crystal having the rectifying cylinder of the present invention can reliably prevent Fe contamination from occurring in the single crystal grown from the rectifying cylinder. Can be manufactured with high productivity.
- a rectifying cylinder used for growing a silicon single crystal. Since a high-purity film is formed on the surface of the silicon single crystal, heavy metal impurities do not adhere to the surface of the silicon single crystal since vapor containing heavy metal generated from the rectifying tube during the growth of the single crystal is not generated. Even at high temperatures, heavy metal impurities do not diffuse into the crystal, so that heavy metal contamination, especially in the peripheral area, is reduced to the utmost.
- a silicon wafer manufactured from the silicon single crystal according to the present invention at the time of manufacturing a semiconductor device, high purity can be maintained up to the outermost peripheral region of the wafer, thereby improving the manufacturing yield of the semiconductor integrated circuit device.
- FIG. 4 is a diagram showing the in-plane distribution of the Fe concentration when the in-plane Fe concentration is measured.
- FIG. 2 shows that a silicon single crystal was grown using a rectifying cylinder made of silicon carbide film, the single crystal was processed into wafers, and the in-plane Fe concentration was measured by the SPV method.
- FIG. 4 is a diagram showing a concentration in-plane distribution of the present invention.
- FIG. 3 shows the results when a silicon single crystal was grown using a rectifying cylinder with no coating, the single crystal was processed into a wafer, and the in-plane Fe concentration was measured by the SPV method.
- FIG. 4 is a diagram showing the in-plane distribution of the Fe concentration of FIG.
- Figure 4 is a diagram showing the outline of a crystal pulling device equipped with a flow straightening tube.
- the present inventors have found that the life time varies in the plane of the eaves, and that the life time in the peripheral area is lower than that in the vicinity of the center of the eaves, and that a certain regularity is observed. As a result of repeated experimental studies, it was found that the cause of the decrease in the lifetime was due to impurities present in the ewa, especially Fe contamination. Then, the present inventors observed a pattern of Fe contamination appearing on the silicon wafer surface in an outer peripheral region of about 20 to 30 mm from the periphery.
- Figure 3 is an in-plane Fe concentration map showing an example of measurement of in-plane Fe contamination of silicon wafers produced from crystals grown by the conventional silicon single crystal growth method.
- the crystal is grown by the silicon single crystal manufacturing apparatus 11 shown in FIG. 4, and this apparatus 11 includes a rectifying cylinder 4 made of a graphite material.
- this apparatus 11 120 kg of polysilicon was charged into a quartz crucible 5 having a diameter of 56 cm to dissolve the polycrystal, and then a seed crystal having a (001) plane was melted. Then, a boron-doped silicon single crystal 3 having a diameter of 200 mm and a specific resistance adjusted to 10 ⁇ ⁇ cm was grown through a drawing step.
- a silicon single crystal wafer was produced through various processes necessary for industrial production of ordinary silicon wafers, such as cylindrical polishing, slicing, lapping, and polishing of the grown silicon single crystal. .
- Fe concentration measurement of the wafer was performed by the SPV method (Surface Photovoltage Method).
- SPV method Surface Photovoltage Method
- Fe dissolved in a boron-doped silicon single crystal is combined with boron as a dopant at room temperature and stabilized in the form of Fe_B (iron-boron pair).
- the binding energy of F e — B is about 0.68 eV, 200 ° C
- Fei interstitial iron atom
- the diffusion length of minority carriers was long before the heat treatment at about 200 ° C, but the diffusion length of minority carriers becomes short after the heat treatment because Fei acts as a recombination center. Therefore, in the SPV method, the Fe concentration can be measured by measuring the difference. In addition, the measurement results of the Fe concentration by the SPV method can also estimate the carrier life time variation that is proportional to the carrier diffusion length in principle (Analysis Handbook for ULSI Manufacturing, p. 386- 1991, 1991, "SPV method").
- the present inventors have conceived of covering a rectifying cylinder arranged around a silicon single crystal grown at the time of manufacturing a silicon single crystal with a high-purity film.
- a rectifying tube does not generate heavy metal impurity vapors including Fe, and therefore, a silicon single crystal of high contamination and uniformity up to the outermost periphery of the wafer. It was thought that training was possible. Therefore, the present inventors conducted the following experiment on the relationship between the effect of providing a film on the surface of the flow control cylinder and the purity of the film.
- Each single crystal was grown by a crystal pulling device equipped with a rectifying cylinder made of graphite material with a pyrolytic carbon film of different purity formed on the surface, and each wafer was manufactured from the grown silicon single crystal.
- the state of Fe contamination was measured by the SPV method.
- the layer thickness of the pyrolytic carbon film formed on the rectifying cylinder is 40 / m, and the Fe concentration of the film is 0.01, 0.03, 0.05, 0.10, 0.1.
- Eight types of 5, 0.20, 0.25 and 0.30 ppm were used. Except for using such a covered flow straightening tube, the procedure was the same as in Experiment 1, and the confirmation and evaluation of Fe contamination by the SPV method was also performed in the same manner as in Experiment 1.
- the Fe concentration of the film was measured by using an ICP (InducuttilyeCoupledP1asma) emission spectrometry.
- Fig. 1 (A) to (C) With regard to the e-aperator manufactured using a rectifier with a Fe concentration of 0.05 ppm or less from the force, no Fe contamination around the e-aer was observed. Despite the use of a flow straightening tube, no Fe contamination was detected up to the periphery of the wafer, and a high-quality silicon single crystal wafer was obtained. On the other hand, from Figs. 1 (D) to (H), it can be seen from Fig. 1 that, for the e-chamber manufactured using a rectifying cylinder with an Fe concentration of more than 0.05 ppm, the Fe Contamination was scattered.
- the shape of the rectifying cylinder used in the present invention is not particularly specified.
- any form can be used as long as it is arranged close to and surrounding the growing crystal.
- the present invention can be applied to any of them.
- a carbon material such as a graphite member is used as a general rectifying cylinder, and a distance in a range of 100 mm to 200 mm from the crystal, and a distance of 10 to 100 mm in proximity to the crystal. It is arranged so that it may touch.
- a high melting point metal such as tungsten or molybdenum can be used.
- stainless steel or copper can be used as a material for the flow regulating cylinder.
- the high-purity coating material of the rectifying cylinder is a pyrolytic carbon film as described above or a silicon carbide film.
- the thickness of the film is preferably 30 ⁇ m or more. This is because if the thickness of the film is less than 10 ⁇ m, the film may be deteriorated by pulling the silicon single crystal several times, and it may not be possible to completely prevent heavy metal contamination. .
- the film thickness is preferably at most about 200 / m, and it is preferable to select the film thickness of the rectifying cylinder film according to the conditions within this range.
- a raw material gas such as a mixed gas of C 3 H 8 and H 2 is used for a conventional base material having sufficient heat resistance.
- a pyrolytic carbon film is formed by CVD (Chemica 1 Vapor Deposition) method.
- the purity of the film is The concentration should be less than 0.05 ppm.
- Such a purity can be achieved by increasing the purity of the raw material gas, so that it is easier than increasing the purity of the carbon substrate itself. According to the method of the present invention, since the setting of the purity only needs to be paid when the rectifying tube is manufactured, the cost is not so much higher than the conventional method using the rectifying tube.
- the film formed on the rectifying cylinder may be silicon carbide.
- Silicon carbide has the advantage of excellent mechanical strength, heat resistance and corrosion resistance.
- a silicon wafer was manufactured from a silicon single crystal grown by a crystal pulling device equipped with a rectifying cylinder with a pyrolytic carbon film.
- the crystal pulling apparatus is the same as the existing crystal pulling apparatus shown in FIG. 4 except that the flow straightening tube used in the pulling method of the present invention is provided.
- the rectifying cylinder 4 used was a main body made of a graphite material on which a pyrolytic carbon film was formed by a CVD method.
- the size of the flow straightening cylinder 4 was 25 mm in inner diameter so that the gap between the crystal and the flow straightening cylinder was 25 mm.
- the layer thickness of the pyrolytic carbon film covering the flow straightening tube was set to 40 m, and the Fe concentration was set to 0.05 ppm or less when forming the film.
- the purity of the film formed on the rectifier tube was measured by the above-mentioned ICP emission spectrometry, and the result was as shown in Table 1 below. From this, it can be seen that the Fe concentration of the pyrolytic carbon film formed on the surface of the rectifying cylinder of Example 1 is 0.05 ppm or less.
- Comparative example Pyrolytic carbon 0.009 0.10 0.009 0.444 1.98 0.16 Using the single crystal pulling apparatus described above, 120 kg of polysilicon is charged into a quartz crucible having a diameter of 56 cm to dissolve the polycrystal, and then a seed crystal having a (001) plane is converted into silicon melt. A boron-doped silicon single crystal having a specific resistance of 200 ⁇ ⁇ cm and a diameter of 200 mm was grown through a immersion process and a drawing process. Silicon single crystal wafers were produced through various processes necessary for industrial production of ordinary silicon wafers, such as cylindrical polishing, slicing, lapping, and polishing of the grown silicon single crystals.
- the Fe contamination of the manufactured silicon single crystal wafer was evaluated by the SPV method described above. The results are shown in FIG. 1 (B). From Fig. 1 (B), no Fe contamination around the wafer was observed, and it was found that the Fe concentration from the center to the outer edge of the wafer was less than 1 XI 0 10 & toms / cm 3. Was.
- the Fe concentration by the SPV method was calculated from the diffusion length of minority carriers that is proportional to the carrier lifetime. From Fig. 1 (B), the carrier lifetime can be sufficiently (maximum, minimum). Value) It was found that the Z maximum value was 50% or less. Therefore, by using the method of the present invention, a large-diameter high-quality silicon single crystal wafer without Fe contamination can be obtained at a high yield by using a rectifying cylinder.
- a silicon wafer was manufactured from a silicon single crystal grown by a crystal pulling device equipped with a rectifying cylinder formed with a silicon carbide film.
- the crystal pulling apparatus was carried out by an existing crystal pulling apparatus shown in FIG. 4 except that a straightening tube used in the pulling method of the present invention was provided.
- Example 2 a silicon carbide film was formed on the rectifying cylinder 4 whose main body was made of a graphite material by a sputter deposition method.
- a flow straightening tube having an inner diameter of 250 mm was used so that the gap between the crystal and the flow straightening tube was 25 mm.
- the layer thickness of the silicon carbide film coated on the rectifying cylinder was set to 70 / xm, and the Fe concentration was set to 0.05 ppm or less when forming the film.
- Table 1 also shows the results of measuring the purity of the film formed on the rectifying tube 4 by ICP emission analysis in the same manner as in Example 1. From this, this Example 1 It can be seen that the Fe concentration of the silicon carbide film formed on the surface of the rectifying cylinder was 0.05 ppm or less.
- FIG. 2 shows that no Fe contamination around the wafer was observed as in Example 1, and that a high-quality silicon single crystal wafer with no Fe contamination was obtained up to the periphery of the wafer.
- the carrier lifetime of the wafer was calculated, and the maximum value (maximum value-minimum value) was calculated to be 50% or less.
- Example 2 In the same manner as in Example 1, a silicon wafer was produced from a silicon single crystal grown by a crystal pulling apparatus equipped with a rectifying cylinder having a pyrolytic carbon film formed thereon.
- a pyrolytic carbon film was formed under the condition that the standard for the purity of the pyrolytic carbon film formed in the rectifying cylinder 4 whose main body was made of graphite material was relaxed as compared with the example 1.
- the size of the flow straightening tube 4 was a 250 mm inner diameter flow straightening tube such that the gap between the crystal and the flow straightening tube was 25 mm.
- Table 1 also shows the results of measuring the purity of the film formed on the rectifying cylinder. From this measurement result, it can be seen that the Fe concentration of the film is 0.1 O Op pm. Otherwise, as in Example 1, a silicon single crystal was grown to produce a silicon single crystal wafer.
- the Fe contamination of the manufactured silicon single crystal wafer was evaluated by the SPV method as in Example 1. The results are shown in FIG. 1 (D). From Fig. 1 (D), it can be seen that forming a film on the flow straightening tube can reduce Fe contamination, but if the purity of the film is insufficient, Fe contamination occurs.
- the carrier lifetime of Aeha was calculated (maximum value-minimum value), and the maximum value was calculated. The value at this time exceeded 50%. This was due to the fact that Fe contamination reduced the carrier lifetime near the outer periphery of the eha, and exceeded 50% due to variations in the lifetime within the eha plane. Seems to be.
- the present invention is not limited to this, and a diameter of 8 to 16 inches or It can be applied to even larger silicon single crystals and can work more effectively. Further, it is needless to say that the present invention can also be applied to a so-called MCS method in which a horizontal magnetic field, a vertical magnetic field, a cusp magnetic field, or the like is applied to a silicon melt.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
Abstract
A CZ silicon single-crystal wafer having an Fe concentration of 1x1010 atoms/cm3 or less, a silicon single-crystal wafer produced from a silicon single crystal grown by the CZ method by using a flow straitening tube and having an Fe concentration of 1x1010 atoms/cm3 or less, and a CZ method for producing a silicon single crystal by growing a silicon single crystal disposed in a flow straitening tube on which a film having an Fe concentration of 0.05 ppm or less is formed are disclosed. A substrate for producing a semiconductor integrated circuit device the characteristics of which do not deteriorate from even the outermost part of a wafer with high yield.
Description
明 細 書 シリ コン単結晶ゥエーハ及びシリ コン単結晶の製造方法 Description Silicon single crystal wafer and method for producing silicon single crystal
並びにシリ コン単結晶ゥエーハの製造方法 技術分野 And manufacturing method of silicon single crystal wafer
本発明は、 半導体素子の製造に用いられる C Z法 (チヨクラルスキー法) によ り製造された高品質シリ コン単結晶ゥエーハとその製造方法に関するものである。 より詳しくは C Z法により育成された単結晶より製造されたシリ コンゥエーハで あって、 ゥエーハの最外周領域まで重金属不純物濃度、 特に F e (鉄) 濃度が低 減された電気的特性の均一性が極めて高い高品質であるシリ コンゥエーハ及びそ の製造方法に関するものである。 背景技術 The present invention relates to a high-quality silicon single crystal wafer manufactured by the CZ method (Chiyoklarsky method) used for manufacturing a semiconductor device, and a method for manufacturing the same. More specifically, a silicon wafer manufactured from a single crystal grown by the CZ method, and the uniformity of the electrical characteristics, in which the concentration of heavy metal impurities, particularly the Fe (iron) concentration, has been reduced to the outermost region of the wafer. The present invention relates to extremely high quality silicon wafers and a method for producing the same. Background art
近年、半導体集積回路素子の高集積化とそれに伴う微細化の進展は目覚ましく、 素子製造の歩留まり向上のためにゥエーハ口径の大型化と高品質シリ コンゥエー ハへの強い要求がある。 この要求の中で品質に関するものは、 ゥエー八の形状に 関連した項目とシリ コン単結晶の結晶品質に関連した項目に分けることができる。 表面の平坦度や反りなどのゥエーハ形状に関連した項目は、 写真製版工程での配 線パターン形成及びェツチングゃ成膜工程でのステージへの吸着などデバイス製 造プロセスとの関わりが強い。 In recent years, high integration of semiconductor integrated circuit devices and accompanying miniaturization have been remarkable, and there is a strong demand for large-diameter wafers and high-quality silicon wafers in order to improve the yield of device manufacturing. Among these requirements, items related to quality can be divided into items related to the shape of A-E8 and items related to the crystal quality of silicon single crystals. Items related to e-shape, such as surface flatness and warpage, are strongly related to the device manufacturing process, such as wiring pattern formation in the photolithography process and adsorption to the stage in the etching and film formation process.
一方、 基板酸素濃度や重金属不純物などの結晶品質に関連した項目は、 半導体 集積回路素子の特性に影響を与える (ウルトラク リーンテクノロジー、 V o l . 5 N O 5 / 6 "シリ コンゥエーハの重金属汚染と酸化膜欠陥 ")。 特に F e などの重金属汚染により、 M O Sのゲート酸化膜耐圧の劣化などが報告されてお り重大な問題である。 また、 近年の高集積化された半導体集積回路素子のチップ サイズはビッ ト数が増大するためその 1つのチップに必要とされる面積が大きく なってしまい、 同一結晶口径のシリ コンゥエー八から得られる素子数が減少して しまう (応用物理、 Vol . 6 5 N o . 1 1 、 1 9 9 6、 "ギガビッ ト時代の D R
A M技術 ")。 On the other hand, items related to crystal quality, such as substrate oxygen concentration and heavy metal impurities, affect the characteristics of semiconductor integrated circuit devices (Ultra Clean Technology, Vol. 5 NO5 / 6 "Heavy Metal Contamination and Oxide Film of Silicon wafers. Flaw "). In particular, deterioration of the MOS gate oxide withstand voltage due to heavy metal contamination such as Fe has been reported and is a serious problem. In addition, the chip size of a highly integrated semiconductor integrated circuit device in recent years increases the number of bits, so the area required for one chip increases, and it can be obtained from silicon wafers with the same crystal diameter. The number of elements decreases (Applied Physics, Vol. 65 No. 11, 1996, "DR in the Gigabit Era" AM technology ").
これに対して収率向上のために直径 3 0 O m mにもなるシリ コン単結晶や、 他 の方法として同一ゥエーハ口径ではあるが、 ゥエーハの最外周領域からも半導体 集積回路素子を製造する改善案が提案されている。 大口径ゥエーハを用いた場合 においては特にゥエーハ外周の面積がより広くなるのでゥエーハの外周領域の収 率向上効果は高いものとなる。 一方、 このような大口径ゥエーハでは、 従来では 問題とならなかったゥエーハの最外周領域まで均一性の高いシリ コンゥエーハが 必要とされる。 On the other hand, to improve the yield, silicon single crystal with a diameter of 30 Omm or an alternative method of manufacturing the semiconductor integrated circuit device from the outermost peripheral area of the wafer, even though the diameter of the wafer is the same. A plan has been proposed. In the case where a large-diameter wafer is used, the area of the periphery of the wafer becomes particularly large, so that the effect of improving the yield in the peripheral area of the wafer becomes high. On the other hand, such a large-diameter wafer requires a silicon wafer having high uniformity up to the outermost peripheral region of the wafer, which has not been a problem in the past.
このよ うな半導体集積回路素子の製造に用いられるシリ コン単結晶の製造には、 石英ルツボ内の融液から単結晶を成長させつつ引き上げる C Z法が広く行われて いる。 良く知られているように C Z法は、 不活性ガス雰囲気下で石英ルツボ内の シリ コン融液に種結晶を浸し、 該石英ルツボ及び種結晶を回転させながらゆつく り引き上げることにより所定のシリ コン単結晶を製造するものである。 For the production of silicon single crystals used in the production of such semiconductor integrated circuit devices, the CZ method of growing and pulling single crystals from a melt in a quartz crucible is widely used. As is well known, in the CZ method, a seed crystal is immersed in a silicon melt in a quartz crucible under an inert gas atmosphere, and the quartz crucible and the seed crystal are slowly pulled up while rotating. This is to produce a con single crystal.
このような C Z法においては、 石英ルツボを用いるのでシリ コン融液と石英が 反応してシリ コ ン融液中に酸素原子が溶出し、 その一部は育成中のシリ コ ン単結 晶に取りこまれ、 機械的強度の向上効果を与えたり、 半導体集積回路素子の製造 時に混入した重金属不純物のゲッタ リ ング源となる。 一方、 大部分の酸素原子は シリ コンの酸化物として融液表面より蒸発し、 その一部が引上炉内の構成部材に 付着する。 かかる付着物がシリ コン融液表面に落下した場合には育成中のシリ コ ン単結晶に付着し有転位化トラブルを起こし、 単結晶製品の歩留まりを著しく低 下させる。 In such a CZ method, a quartz crucible is used, so that the silicon melt reacts with the quartz and oxygen atoms are eluted in the silicon melt, and a part of the oxygen atoms elutes into the growing silicon single crystal. Incorporated to provide an effect of improving mechanical strength and to be a gettering source for heavy metal impurities mixed in during the manufacture of semiconductor integrated circuit devices. On the other hand, most of the oxygen atoms evaporate from the melt surface as silicon oxides, and some of them adhere to components in the pulling furnace. If such deposits fall onto the surface of the silicon melt, they adhere to the growing silicon single crystal, causing dislocation troubles, and significantly lower the yield of the single crystal product.
このために近年の大型化したシリ コン単結晶の育成には、 例えば特開平 3 — 9 7 6 8 8号ゃ特開平 6 - 2 1 9 8 8 6号などに記載されているように、 引上炉に 導入される不活性ガスを整流させ、 かかる酸化物を効率的にシリ コン融液より排 出するための整流筒を使用することが多く行われている。 For this reason, the growth of large silicon single crystals in recent years requires the drawbacks described in, for example, Japanese Patent Application Laid-Open No. 3-97688 / Japanese Patent Application Laid-Open No. Hei 6-219886. A rectifying cylinder is often used to rectify the inert gas introduced into the upper furnace and efficiently discharge such oxides from the silicon melt.
こ こで、 本発明でいう整流筒とは、 C Z法においてシリ コン融液面上で育成す るシリ コン単結晶を囲繞するように配置され、 C Z装置のチヤンバー上部から導 入される不活性ガスの流れを整える働き等をするものをいう。 したがって、 ここ で言う整流筒は、 上記のような機能を有する育成結晶に近接して配置される部材
の総称として用いるものであって、 特にその文言、名称に拘泥するものではない。 遮熱板、 断熱板等であって、 結晶に近接して配置されているものも含む。 特に成 長させるシリ コン単結晶の直径が大きくなると、 結晶を引き上げる速度を低速化 しなくてはならず、 シリ コン融液も多量となり、 石英ルツボの大型化による酸素 供給量の増加で炉内酸化物が増えるため、 シリ コン単結晶の有転位化トラブルを 生じ易くなる。 そのため高い歩留りで直径 2 0 0 m m以上の大直径のシリ コン単 結晶を製造するためには、 C Z装置に整流筒を配置することが必要となっている。 一方、 シリ コンゥエーハの品質評価の一つとして少数キヤ リ ァのライフタイム ( L i f e t i m e ) がある。 このキャ リ アライフタイムは、 エネルギーの高 いパルス光をシリ コン表面に入射することにより発生した電子正孔対が、 再結合 することで元の熱平衡状態に戻るまでの時間を示したものであり、 ゥエーハ内に 重金属や、 結晶欠陥などが存在すると少数キャ リ アの再結合中心となるのでライ フタイムが著しく低下してしまう。 従ってシリ コン単結晶に重金属汚染があった 場合には、 少数キャ リ アのライフタイムに大きな影響を与え、 ひいてはゥエーハ 上に構成した半導体集積回路素子の特性に問題が生じる可能性がある。 Here, the rectifying cylinder referred to in the present invention is an inert gas that is disposed so as to surround a silicon single crystal grown on the silicon melt surface in the CZ method and is introduced from the upper part of the chamber of the CZ device. A substance that acts to regulate the flow of gas. Therefore, the rectifying cylinder referred to here is a member arranged close to the grown crystal having the above function. The term is used as a generic term, and does not imply any particular language or name. Includes heat shields, heat insulators, etc., which are placed close to the crystal. In particular, when the diameter of the silicon single crystal to be grown becomes large, the speed at which the crystal is pulled must be reduced, the silicon melt becomes large, and the oxygen supply increases due to the increase in the size of the quartz crucible. Since the amount of oxides increases, dislocation troubles in the silicon single crystal are likely to occur. Therefore, in order to produce a silicon single crystal with a large diameter of 200 mm or more at a high yield, it is necessary to arrange a rectifying cylinder in the CZ device. On the other hand, one of the quality evaluations of silicon wafers is the lifetime of a minority carrier. This carrier lifetime indicates the time it takes for electron-hole pairs generated when high-energy pulsed light is incident on the silicon surface to return to the original thermal equilibrium state by recombination. Yes, heavy metals and crystal defects in the wafer become recombination centers for a small number of carriers, which significantly reduces the life time. Therefore, if heavy metal contamination occurs in the silicon single crystal, the lifetime of the minority carrier is greatly affected, and the characteristics of the semiconductor integrated circuit device formed on the wafer may be problematic.
ところが、 このキャ リ アライフタイムの低下は、 大型シリ コン単結晶から作製 された大直径のシリ コンゥエーハの外周部において特に顕著であった。 このよ う なキャリアライフタイムの低下が見られたシリ コンゥエーハについて調査を行つ たところ、 これらのシリ コン単結晶ゥエーハの周辺部には F e汚染が検出され、 何らかの原因でシリ コン単結晶に F e汚染が生じていることが疑われた。 このよ うなライフタイムの低下が発生すると、 ゥエーハ面内の均一性が劣化するので歩 留まりが低下するという問題があった。 発明の開示 However, this reduction in carrier lifetime was particularly noticeable in the outer periphery of large diameter silicon wafers made from large silicon single crystals. Investigations were conducted on silicon wafers where such a decrease in carrier lifetime was observed, and Fe contamination was detected in the vicinity of these silicon single crystals and wafers. Suspected of Fe contamination. When such a reduction in the lifetime occurs, the uniformity in the wafer surface is deteriorated, and there is a problem that the yield is reduced. Disclosure of the invention
本発明は上記の点に鑑みてなされたものであり、 ゥエーハの最外周であっても 特性劣化がなく高歩留まりが得られるような半導体集積回路素子の製造用基板を 供給することにある。 更に大口径結晶を製造する場合においてもゥエーハ周辺の 重金属汚染を極限まで低減でき、 かつ適度の純度を有する整流筒を使用すること により工業的に効率の良いシリ コン単結晶の製造方法を提供することにある。
上記課題を解決するための本発明は、 C Z法により育成されたシリ コン単結晶 より製造されたシリ コン単結晶ゥェーハであって、 該シリ コン単結晶ゥエーハの F e濃度が 1 X I O ^ a t o m s / c m3以下であることを特徴とするシリ コン 単結晶ゥエーハである。 The present invention has been made in view of the above points, and it is an object of the present invention to provide a substrate for manufacturing a semiconductor integrated circuit element capable of obtaining a high yield without deterioration in characteristics even at the outermost periphery of the wafer. Furthermore, even in the case of producing large-diameter crystals, it is possible to reduce the heavy metal contamination around the wafer to the utmost and to provide an industrially efficient method for producing silicon single crystals by using a rectifying cylinder with moderate purity. It is in. The present invention for solving the above problems is directed to a silicon single crystal wafer produced from a silicon single crystal grown by a CZ method, wherein the silicon single crystal wafer has an Fe concentration of 1 XIO ^ atoms / A silicon single crystal wafer having a size of not more than cm 3 .
このように、 C Z法によ り育成されたシリ コン単結晶ゥエー八であっても、 F e濃度が 1 X I O i Q a t o m s / c m 3以下であるシリ コン単結晶ゥエーハは、 前述したようなキャリアライフタイムの低下等の問題が生じ難いシリ コン単結晶 ゥエーハとすることができる。 さらに、 C Zゥエーハであればゥエーハの大直径 化も容易であり、 その外周部から得られる半導体素子の収率も向上し、 半導体製 造全体の収率を向上させることができる。 As described above, even if the silicon single crystal grown by the CZ method has a Fe concentration of 1 XIO i Q atoms / cm 3 or less, the silicon single crystal grown with the carrier has a carrier as described above. Silicon single crystal wafers that are unlikely to cause problems such as a reduction in lifetime can be used. Furthermore, if the CZ wafer is used, it is easy to increase the diameter of the wafer, the yield of semiconductor elements obtained from the outer periphery thereof is also improved, and the overall yield of semiconductor manufacturing can be improved.
また、 本発明は、 c Z法により育成されたシリ コン単結晶より製造されたシリ コン単結晶ゥエーハであって、 該シリ コン単結晶ゥエーハの全面におけるキヤリ ァライフタイムの変動幅を (最大値一最小値) Z最大値で表わした時に、 該変動 幅が 5 0 %以下であることを特徴とするシリ コン単結晶ゥエーハである。 The present invention is also directed to a silicon single crystal wafer manufactured from a silicon single crystal grown by the cZ method, wherein the carrier lifetime variation width over the entire surface of the silicon single crystal wafer is set to (maximum value). (Single minimum value) A silicon single crystal wafer, characterized in that the fluctuation range when expressed by the Z maximum value is 50% or less.
このように、 ゥエーハの全面においてキャリアライフタイムのバラツキが少な ぃシリ コン単結晶ゥエーハは、 ゥエーハ表層部に製造された半導体デバイスの電 気的特性のバラツキが少ないものとすることができる。 特に、 このようなゥエー ハであればゥエーハ周辺部のキヤリァライフタイムのバラツキが少ないものとす ることができるため、 大直径ゥエーハにデバイスを形成した場合に特に有利とな る。 As described above, the silicon single crystal silicon wafer having a small variation in carrier lifetime over the entire surface of the silicon wafer can have a small variation in electrical characteristics of a semiconductor device manufactured on the surface layer of the silicon wafer. In particular, such a wafer is particularly advantageous when a device is formed on a large-diameter wafer because the carrier lifetime in the periphery of the wafer can be kept small.
また、 本発明は、 c Z法により育成されたシリ コン単結晶よ り製造されたシリ コン単結晶ゥエーハであって、 該シリ コン単結晶ゥエーハの周辺 1 0 %の e濃 度が 1 X I 0 1 0 a t o m s Z c m3以下であることを特徴とするシリ コン単結晶 ゥエーハである。 Further, the present invention relates to a silicon single crystal wafer manufactured from a silicon single crystal grown by the cZ method, wherein an e concentration of 10% around the silicon single crystal wafer is 1 XI 0 This is a silicon single crystal wafer having a density of 10 atoms Z cm 3 or less.
このよ うに、 シリ コン単結晶ゥエーハの周辺 1 0 %の部分の F e濃度が 1 X 1 0 1 0 a t o m s Z c m3以下であるシリ コン単結晶ゥエーハは、 大直径のゥエー ハであっても、 周辺部のキャリアライフタイムの低下が生じ難く、 デバイス作製 の収率を向上し得るものとなる。 As described above, a silicon single crystal wafer having a Fe concentration of 10% or less around the silicon single crystal wafer at 1 × 10 10 atoms Z cm 3 or less has a large diameter even if the wafer has a large diameter. In addition, the carrier lifetime in the peripheral portion is hardly reduced, and the yield of device fabrication can be improved.
なお、 ここでゥエーハの周辺 1 0 %とは、 ゥエーハの最外周からゥエーハの直
径 1 0 %以内の外縁部を意味する。 例えば、 直径 2 0 0 mm、 8インチのゥエー ハであれば、 ゥエーハの最外周から 2 O mmの範囲にある外縁部を意味する。 この場合、 本発明では直径 2 0 O mm以上であるものとすることができる。 このよ うに、 シリ コン単結晶ゥエーハの直径が 2 0 0 mm以上であれば、 ゥェ ーハ外周領域の面積がより広くなるので、 ゥェ一ハの外周領域の収率向上効果は 高いものとなる。 特に大直径のシリ コンゥエーハは外周部での F e汚染が頻発す るので、 本発明のシリ コン単結晶ゥエーハのように、 F e濃度が小さく、 F e濃 度のバラツキ及びキヤリァライフタイムのバラツキが少ないものであれば、 半導 体デバイス作製の収率を大幅に向上させることができる。 Here, 10% around the eha is the distance from the outermost periphery of the eha to the It means the outer edge within 10% in diameter. For example, in the case of a wafer having a diameter of 200 mm and 8 inches, this means an outer edge portion within a range of 2 O mm from the outermost periphery of the wafer. In this case, in the present invention, the diameter can be 20 O mm or more. As described above, if the diameter of the silicon single crystal wafer is 200 mm or more, the area of the wafer outer peripheral area becomes larger, and the yield improving effect of the wafer outer peripheral area is high. Becomes Especially Siri Konueha large diameter Runode be frequently is F e contamination in the outer peripheral portion, as in the silicon single crystal Ueha of the present invention, a small F e concentration of F e concentration variations and Kiyari § lifetime If there is little variation, the yield of semiconductor device fabrication can be greatly improved.
また、 本発明のシリ コン単結晶ゥエーハは、 c Z法において整流筒を用いて育 成されたシリ コン単結晶より製造されたシリ コン単結晶ゥエーハであることを特 徴とするシリ コン単結晶ゥエーハである。 Further, the silicon single crystal wafer of the present invention is a silicon single crystal wafer manufactured from a silicon single crystal grown using a rectifying tube in the cZ method.ゥ It is Eha.
このよ うに、 本発明は、 C Z法において整流筒を用いて育成されたシリ コン単 結晶より製造されたシリ コン単結晶ゥエーハであっても、 ゥェ一ハ中の F e濃度 を l X 1 0 1 0 a t o m s Z c m3以下とすることができる。 そのため、 大直径の シリ コン単結晶であっても、 整流筒を用いて有転位化等を防止して高歩留りで容 易に製造することができるとともに、 F e汚染がないものとすることができる。 また本発明は、 C Z法においてシリ コン単結晶の周囲を整流筒で囲繞しつつシ リ コン単結晶を育成するシリ コン単結晶の製造方法において、 表面に F e濃度が 0 . 0 5 p p m以下の皮膜が形成された整流筒を用いてシリ コン単結晶を育成す ることを特徴とするシリ コン単結晶の製造方法である。 As described above, according to the present invention, even if a silicon single crystal wafer is produced from a silicon single crystal grown using a rectifying tube in the CZ method, the Fe concentration in the wafer is reduced to 1 × 1 It can be set to 0 10 atoms Z cm 3 or less. Therefore, even if a silicon single crystal has a large diameter, it can be easily manufactured at a high yield by using a straightening cylinder to prevent dislocations and the like, and it must be free from Fe contamination. it can. Further, the present invention provides a method for producing a silicon single crystal in which a silicon single crystal is grown while surrounding the silicon single crystal with a rectifying cylinder in the CZ method, wherein the Fe concentration on the surface is 0.05 ppm or less. A method for producing a silicon single crystal, characterized in that a silicon single crystal is grown using a rectifying cylinder having a film formed thereon.
このように整流筒を用いるシリ コン単結晶の製造方法において、 表面に F e濃 度 0 . 0 5 p p m以下の皮膜が形成された整流筒を用いてシリ コン単結晶を育成 するようにすれば、 整流筒から育成する単結晶に F e汚染が生じることを確実に 防止し、 特に大直径シリ コン単結晶製造の品質と歩留りを向上させることができ る。 In the method of manufacturing a silicon single crystal using a rectifying cylinder as described above, it is possible to grow a silicon single crystal using a rectifying cylinder having a film with a Fe concentration of 0.05 ppm or less formed on the surface. In addition, it is possible to reliably prevent the occurrence of Fe contamination in the single crystal grown from the flow straightening tube, and to improve the quality and yield of large-diameter silicon single crystal production in particular.
なお、 整流筒に施す皮膜は、 育成結晶と対じする整流筒内表面のみに皮膜を施 してもその効果を十分に発揮するものであり、 あるいは整流筒全体に皮膜を施し ても良い。 これらの選択は、 整流筒への皮膜の方法やコス ト、 あるいは炉内構造
物の設計上の理由等により種々選択されるべきものである。 The film applied to the flow straightening cylinder can sufficiently exhibit its effect even if the coating is applied only to the inner surface of the flow straightening cylinder facing the grown crystal, or the coating can be applied to the entire flow straightening cylinder. These options depend on the method and cost of coating on the flow straightening tube, or the furnace internal structure. It should be selected variously for reasons such as the design of the product.
この場合、 前記皮膜は熱分解炭素または炭化珪素から成ることが好ましい。 このように皮膜を熱分解炭素または炭化珪素から成るようにすれば、 容易に整 流筒表面の F e濃度を低く保って、 高純度を維持することができるからである。 In this case, the film is preferably made of pyrolytic carbon or silicon carbide. If the film is made of pyrolytic carbon or silicon carbide in this way, the Fe concentration on the surface of the flow regulating cylinder can be easily kept low, and high purity can be maintained.
この場合、 前記皮膜の厚さは 3 0 // m以上であることが好ましい。 In this case, the thickness of the film is preferably 30 // m or more.
このように皮膜の厚さが 3 0 /z m以上であれば、 十分に整流筒表面からの F e 等の重金属の揮散を防止することができ、 また高温下長時間の使用にも十分に耐 えるものとなる。 As described above, when the film thickness is 30 / zm or more, the volatilization of heavy metals such as Fe from the surface of the rectifying cylinder can be sufficiently prevented, and the film is sufficiently resistant to long-time use at high temperatures. It becomes something that can be obtained.
そして、 本発明のシリ コン単結晶からシリ コン単結晶ゥエーハを製造するよ う にすれば、 大直径であってもゥエーハ全面でキャリアライフタイムのバラツキの 少ないシリ コン単結晶ゥエーハを容易に製造することができる。 If a silicon single crystal wafer is manufactured from the silicon single crystal of the present invention, a silicon single crystal wafer with a small carrier lifetime variation over the entire surface of the wafer even with a large diameter can be easily manufactured. be able to.
また、 本発明は、 C Z法において育成するシリ コン単結晶を囲繞するよ うに配 置され、 c Z装置のチャンバ一上部から導入される不活性ガスの流れを整える整 流筒であって、 表面に F e濃度が 0 . 0 5 p p m以下の皮膜が形成されているこ とを特徴とする整流筒である。 The present invention also provides a flow regulating cylinder arranged so as to surround a silicon single crystal grown in the CZ method, and for regulating the flow of an inert gas introduced from the top of the chamber of the cZ apparatus. The rectifying cylinder is characterized in that a film with an Fe concentration of 0.05 ppm or less is formed on the rectifying cylinder.
このよ うな整流筒は、 整流筒から育成する単結晶に F e汚染が生じることを確 実に防止し、 特に大直径シリ コン単結晶製造の品質と歩留りを向上させる.ことが できる。 Such a flow straightening tube surely prevents Fe contamination from occurring in a single crystal grown from the flow straightening tube, and can improve the quality and yield particularly in the production of large-diameter silicon single crystals.
この場合、 前記皮膜は熱分解炭素または炭化珪素から成ることが好ましい。 このように皮膜を熱分解炭素または炭化珪素から成るようにすれば、 容易に整 流筒表面の F e濃度を低く保って、 高純度を維持することができるからである。 In this case, the film is preferably made of pyrolytic carbon or silicon carbide. If the film is made of pyrolytic carbon or silicon carbide in this way, the Fe concentration on the surface of the flow regulating cylinder can be easily kept low, and high purity can be maintained.
この場合、 前記皮膜の厚さは 3 0 / m以上であることが好ましい。 In this case, the thickness of the film is preferably 30 / m or more.
このように皮膜の厚さが 3 0 μ ιη以上であれば、 十分に整流筒表面からの F e 等の重金属の揮散を防止することができ、 また高温下長時間の使用にも十分に耐 えるものとなる。 As described above, when the film thickness is 30 μιη or more, it is possible to sufficiently prevent the volatilization of heavy metals such as Fe from the surface of the rectifying cylinder, and to sufficiently withstand long-time use at high temperatures. It becomes something that can be obtained.
そして、 本発明の整流筒を具備するシリ コン単結晶製造装置は、 整流筒から育 成する単結晶に F e汚染が生じることを確実に防止できるため、 特に高品質の大 直径シリ コン単結晶を高生産性で製造することができるものとなる。 The apparatus for producing a silicon single crystal having the rectifying cylinder of the present invention can reliably prevent Fe contamination from occurring in the single crystal grown from the rectifying cylinder. Can be manufactured with high productivity.
以上で明らかなように本発明によれば、 シリ コン単結晶育成時に用いる整流筒
に高純度の皮膜を形成することにより、 単結晶育成中に整流筒より発生した重金 属を含む蒸気が発生しないので、 該シリ コン単結晶表面に重金属不純物が付着せ ず、 従って結晶成長中の高温の状態においても重金属不純物が結晶内部に拡散し ないので特に周辺部の重金属汚染が極限まで低減される。 そして、 半導体素子の 製造時に本発明によるシリ コン単結晶より製造されたシリ コンゥエーハを用いる ことにより、 ゥエーハの最外周領域まで高純度に保たれるので半導体集積回路素 子の製造歩留まりが向上する。 図面の簡単な説明 As is apparent from the above, according to the present invention, a rectifying cylinder used for growing a silicon single crystal. Since a high-purity film is formed on the surface of the silicon single crystal, heavy metal impurities do not adhere to the surface of the silicon single crystal since vapor containing heavy metal generated from the rectifying tube during the growth of the single crystal is not generated. Even at high temperatures, heavy metal impurities do not diffuse into the crystal, so that heavy metal contamination, especially in the peripheral area, is reduced to the utmost. By using a silicon wafer manufactured from the silicon single crystal according to the present invention at the time of manufacturing a semiconductor device, high purity can be maintained up to the outermost peripheral region of the wafer, thereby improving the manufacturing yield of the semiconductor integrated circuit device. BRIEF DESCRIPTION OF THE FIGURES
図 1の (A ) 〜 (H ) は、 F e濃度の異なる熱分解炭素を皮膜した整流筒を用 いてシリ コン単結晶を育成し、 その単結晶をゥエーハに加工して、 S P V法によ り面内の F e濃度を測定したときの F e濃度面内分布を示した図である。 (A) to (H) in Fig. 1 show that a silicon single crystal is grown using a rectifying cylinder coated with pyrolytic carbon with different Fe concentrations, and that single crystal is processed into wafers, and the SPV method is used. FIG. 4 is a diagram showing the in-plane distribution of the Fe concentration when the in-plane Fe concentration is measured.
図 2は、 炭化珪素皮膜によ る整流筒を用いてシリ コ ン単結晶を育成し、 その単結晶をゥエーハに加工して、 S P V法によ り 面内の F e濃度を測 定したと きの 濃度面内分布を示した図である。 Figure 2 shows that a silicon single crystal was grown using a rectifying cylinder made of silicon carbide film, the single crystal was processed into wafers, and the in-plane Fe concentration was measured by the SPV method. FIG. 4 is a diagram showing a concentration in-plane distribution of the present invention.
図 3は、 皮膜が形成されていない整流筒を用いてシリ コ ン単結晶を育成 し、 その単結晶をゥエーハに加工して、 S P V法によ り 面内の F e 濃度 を測定したと きの F e 濃度面内分布を示した図である。 Fig. 3 shows the results when a silicon single crystal was grown using a rectifying cylinder with no coating, the single crystal was processed into a wafer, and the in-plane Fe concentration was measured by the SPV method. FIG. 4 is a diagram showing the in-plane distribution of the Fe concentration of FIG.
図 4は、 整流筒を装備した結晶引上げ装置の概要を示した図である。 発明を実施するための最良の形態 Figure 4 is a diagram showing the outline of a crystal pulling device equipped with a flow straightening tube. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明について、 さらに詳細に説明する。 Hereinafter, the present invention will be described in more detail.
本発明者らは、 ゥエーハの面内でライフタイムにバラツキがあり、 特に周辺部 でのライフタイムがゥエーハ中心付近に比べて低い値を示し一定の規則性が見ら れることから、 その原因について実験検討を重ねた結果、 ライフタイム低下の原 因はゥエーハ中に存在する不純物、 なかでも F e汚染に起因していることがわか つた。 そして、 本発明者らはシリ コンゥエーハ表面に現れる F e汚染のパターン が周辺から 2 0〜 3 0 m m程度の外縁領域に観察されることから、 ゥエーハ周辺 部の F e汚染の原因は、 シリ コンメルト中に混入した重金属不純物が偏析により
シリ コン単結晶中に取り込まれたものではなく、 育成するシリ コン単結晶の外側 に配置された整流筒などから発生した F eを含む重金属蒸気が成長中の結晶表面 に付着し、 結晶育成中の高温から室温まで冷却される過程において結晶内部に拡 散して汚染されたものであると仮定した。 The present inventors have found that the life time varies in the plane of the eaves, and that the life time in the peripheral area is lower than that in the vicinity of the center of the eaves, and that a certain regularity is observed. As a result of repeated experimental studies, it was found that the cause of the decrease in the lifetime was due to impurities present in the ewa, especially Fe contamination. Then, the present inventors observed a pattern of Fe contamination appearing on the silicon wafer surface in an outer peripheral region of about 20 to 30 mm from the periphery. Heavy metal impurities mixed in due to segregation Heavy metal vapor, including Fe, generated from a rectifying tube placed outside the silicon single crystal to be grown, instead of being taken into the silicon single crystal, adheres to the growing crystal surface, and the crystal grows. It was assumed that the metal was diffused inside the crystal during the process of cooling from high temperature to room temperature and was contaminated.
なぜなら、 実際にシリ コ ンメルトに混入した不純物が偏析により結晶中に混入 した場合には、 融液温度の不均一性が原因で固化速度の違いにより形成される成 長縞に起因したミクロな不純物濃度ムラや、 ファセッ ト成長などにより局所的に 不純物濃度が高い領域が観察されるが、 ゥエーハ全体で見た場合にはほぼ均一に 混入されることが確認されている (シリ コン、 pp 120- 139, 1994、 "結晶成長とゥ エーハ加工", 培風館)。 したがって、 シリ コ ンメルトからの不純物汚染が原因と 考えた場合には、 前記ゥエーハ周辺部のみに現れる F e汚染域や、 周辺部の少数 キャリアのライフタイム低下を説明することができないからである。 This is because, when impurities actually mixed into the silicon melt are mixed into the crystal due to segregation, micro impurities due to growth fringes formed due to a difference in solidification rate due to non-uniformity of the melt temperature. A region with a high impurity concentration is observed locally due to concentration unevenness or facet growth. However, it has been confirmed that the impurity is almost uniformly mixed in the entire wafer (silicon, pp 120- 139, 1994, "Crystal growth and エ ー a processing", Baifukan). Therefore, if impurity contamination from silicon melt is considered to be the cause, it is not possible to explain the Fe-contaminated region that appears only in the periphery of the wafer or the decrease in the lifetime of minority carriers in the periphery.
そこで、 本発明者らはこの仮定を確認すべく、 以下の実験を行った。 (実験 1 ) Therefore, the present inventors conducted the following experiment to confirm this assumption. (Experiment 1)
図 3は従来のシリ コン単結晶育成方法にて育成した結晶より製造したシリ コン ゥエーハのゥエーハ面内 F e汚染の測定例について示した F e濃度面内マップで ある。 結晶は図 4に示したシリ コン単結晶製造装置 1 1により育成したものであ り、 この装置 1 1は黒鉛材から成る整流筒 4を具備している。 この装置 1 1 を用 いて、 1 2 0 k gのポリシリ コ ンを直径 5 6 c mの石英ルツボ 5にチャージし多 結晶を溶解した後に、 (0 0 1 ) 面を有する種結晶をシリ コ ンメル ト 2に浸し、 絞り工程を経て直径 2 0 0 m mの比抵抗を 1 0 Ω · c mに調整したボロンドープ のシリ コン単結晶 3を育成した。 育成したシ リ コン単結晶を円筒研磨、 スライ ス、 ラッピング、 ポリ ツシングなど、 通常のシリ コ ンゥエーハを工業的に製造するた めに必要な諸過程を経て、 シリ コ ン単結晶ゥエーハを製造した。 Figure 3 is an in-plane Fe concentration map showing an example of measurement of in-plane Fe contamination of silicon wafers produced from crystals grown by the conventional silicon single crystal growth method. The crystal is grown by the silicon single crystal manufacturing apparatus 11 shown in FIG. 4, and this apparatus 11 includes a rectifying cylinder 4 made of a graphite material. Using this apparatus 11, 120 kg of polysilicon was charged into a quartz crucible 5 having a diameter of 56 cm to dissolve the polycrystal, and then a seed crystal having a (001) plane was melted. Then, a boron-doped silicon single crystal 3 having a diameter of 200 mm and a specific resistance adjusted to 10 Ω · cm was grown through a drawing step. A silicon single crystal wafer was produced through various processes necessary for industrial production of ordinary silicon wafers, such as cylindrical polishing, slicing, lapping, and polishing of the grown silicon single crystal. .
ゥエーハの F e濃度測定については S P V法 (Surface Photovoltage Method) により行った。 すなわち、 ボロンドープのシリ コン単結晶中に固溶した F eは、 室温ではドーパントであるボロンと結合して F e _ B (鉄一ボロンペア) の形で 安定化している。 F e — Bの結合エネルギーは 0 . 6 8 e V程度であり、 2 0 0 °C
程度でほとんどが解離し F e i (格子間に存在する鉄原子) となる。 F e i は深 い準位を形成するので、 少数キャ リ アの再結合中心として働き、 少数キャ リ アの 拡散長を低下させる。 すなわち、 2 0 0 °C程度の熱処理前に少数キャリアの拡散 長の長かったものが、 熱処理後には F e i が再結合中心として働くためにに少数 キャリアの拡散長が短くなる。 そこで S P V法では、 その差を測定することによ り F e濃度が測定できる。 また、 この S P V法による F e濃度の測定結果は、 原 理的にキヤリァの拡散長に比例したキヤリアライフタイムのバラツキも推定する ことができる (U L S I製造のための分析ハンドブック、 p 3 8 6 〜 3 9 1 、 1 9 9 4年、 " S P V法")。 (4) The Fe concentration measurement of the wafer was performed by the SPV method (Surface Photovoltage Method). In other words, Fe dissolved in a boron-doped silicon single crystal is combined with boron as a dopant at room temperature and stabilized in the form of Fe_B (iron-boron pair). The binding energy of F e — B is about 0.68 eV, 200 ° C Most dissociate to the extent that Fei (interstitial iron atom) is formed. Since Fei forms a deep level, it acts as a recombination center for minority carriers and reduces the diffusion length of minority carriers. That is, the diffusion length of minority carriers was long before the heat treatment at about 200 ° C, but the diffusion length of minority carriers becomes short after the heat treatment because Fei acts as a recombination center. Therefore, in the SPV method, the Fe concentration can be measured by measuring the difference. In addition, the measurement results of the Fe concentration by the SPV method can also estimate the carrier life time variation that is proportional to the carrier diffusion length in principle (Analysis Handbook for ULSI Manufacturing, p. 386- 1991, 1991, "SPV method").
この S P V法による測定結果の一例と しては、 図 3に示すよ うに、 ゥエーハの 周辺から 2 0 〜 3 0 m mの領域では F e汚染が顕著に測定され、 問題を生ずる場 合があった。 なお、 最もゥエー八の外周で F e濃度が低いのは S P V法による測 定上の領域の問題である。 この図 3は全体的には周辺ほど F e濃度が高い結果を 示しており、 汚染はシリ コンメルトからの混入ではなく、 単結晶育成時に結晶表 面から中心部に向かう F eの拡散による混入であると考えられる。 As an example of the SPV measurement result, as shown in Fig. 3, Fe contamination was remarkably measured in the area of 20 to 30 mm from the periphery of the e-wafer, which sometimes caused a problem. . The lowest Fe concentration around the periphery of the A-A-H8 is due to the problem of the measurement area by the SPV method. Fig. 3 shows that the Fe concentration is higher in the periphery as a whole, and the contamination is not due to contamination from silicon melt but to contamination due to diffusion of Fe from the crystal surface toward the center during single crystal growth. It is believed that there is.
また、 F eのシリ コン中の拡散係数の温度依存性を考慮した場合に、 本結晶の 結晶成長速度 (約 l m mノ m i n ) より算出した熱履歴にて F eの表面から結晶 中心部への拡散距離を計算すると約 2 4 m mである。 これに対して、 実験結果で は F eの拡散距離は 2 0 . 5 m mであり、計算値とほぼ一致する結果が得られた。 すなわち、 ゥエーハ周囲で生じる F e汚染はシリ コンメルト中に混入した F e不 純物の影響ではなく、 結晶育成中に結晶表面に付着した F e不純物の拡散である との考察を支持するものである。 Also, considering the temperature dependence of the diffusion coefficient of Fe in silicon, the thermal history calculated from the crystal growth rate (about lmm min) The calculated diffusion distance is about 24 mm. On the other hand, the experimental results showed that the diffusion distance of Fe was 20.5 mm, which was almost the same as the calculated value. In other words, it supports the observation that Fe contamination generated around the wafer is not the effect of Fe impurities mixed into the silicon melt but the diffusion of Fe impurities attached to the crystal surface during crystal growth. is there.
このような F e不純物の拡散による汚染を防止するためには、 シリ コン単結晶 製造時における、特に 8 0 0 °C以上の高温域において何らかの対策が必要となる。 本発明者らは上記の問題を解決すべく、 シリ コン単結晶製造時に育成するシリ コン単結晶の周囲に配置した整流筒を高純度の皮膜で被うことを発想した。 すな わち、 単結晶成長中の高温の状態においてもかかる整流筒では F eを含む重金属 不純物蒸気が発生せず、 従ってゥエーハの最外周まで、 汚染がなく均一性の高い シリ コン単結晶の育成が可能であると考えられた。
そこで、 本発明者らは整流筒表面に皮膜を設けることによる効果と、 皮膜の純 度の関係について、 以下の実験を行った。 In order to prevent such contamination due to the diffusion of Fe impurities, some countermeasures are required during the production of silicon single crystals, especially in the high temperature range of 800 ° C or higher. In order to solve the above problems, the present inventors have conceived of covering a rectifying cylinder arranged around a silicon single crystal grown at the time of manufacturing a silicon single crystal with a high-purity film. In other words, even in a high temperature state during single crystal growth, such a rectifying tube does not generate heavy metal impurity vapors including Fe, and therefore, a silicon single crystal of high contamination and uniformity up to the outermost periphery of the wafer. It was thought that training was possible. Therefore, the present inventors conducted the following experiment on the relationship between the effect of providing a film on the surface of the flow control cylinder and the purity of the film.
(実験 2 ) (Experiment 2)
表面に純度の異なる熱分解炭素皮膜を形成した本体が黒鉛材から成る整流筒を 装備した結晶引上装置にて、 各々シリ コン単結晶を育成し、 育成したシリ コン単 結晶より製造したゥエーハの F e汚染の状態を S P V法により測定した。 整流筒 に形成する熱分解炭素皮膜の層厚は 4 0 / mであり、 皮膜の F e濃度は、 0 . 0 1 、 0 . 0 3 、 0 . 0 5、 0 . 1 0、 0 . 1 5、 0 . 2 0 、 0 . 2 5、 0 . 3 0 p p mの 8種類のものを使用した。 このような被覆した整流筒を用いること以外 は実験 1 と同様な方法で行い、 S P V法による F e汚染の確認評価においても実 験 1 と同様な手法で行った。 - なお、 皮膜の F e濃度は、 I C P ( I n d u c t i v e l y C o u p l e d P 1 a s m a ) 発光分析法を用いて測定した。 Each single crystal was grown by a crystal pulling device equipped with a rectifying cylinder made of graphite material with a pyrolytic carbon film of different purity formed on the surface, and each wafer was manufactured from the grown silicon single crystal. The state of Fe contamination was measured by the SPV method. The layer thickness of the pyrolytic carbon film formed on the rectifying cylinder is 40 / m, and the Fe concentration of the film is 0.01, 0.03, 0.05, 0.10, 0.1. Eight types of 5, 0.20, 0.25 and 0.30 ppm were used. Except for using such a covered flow straightening tube, the procedure was the same as in Experiment 1, and the confirmation and evaluation of Fe contamination by the SPV method was also performed in the same manner as in Experiment 1. -The Fe concentration of the film was measured by using an ICP (InducuttilyeCoupledP1asma) emission spectrometry.
結果を図 1に示す。 図 1 (A) 〜 (C ) 力 ら F e濃度が 0 . 0 5 p p m以下の 整流筒を用いて作製されたゥエーハについては、 ゥエーハ周辺の F e汚染は観察 されず、 実験 1 と同様に整流筒を用いたにもかかわらず、 ゥエーハの外周まで F e汚染が検出されず、 高品質なシリ コン単結晶ゥエーハが得られた。 一方、 図 1 (D ) 〜 (H) より、 F e濃度が 0 . 0 5 p p mより大きい整流筒を用いて作製 されたゥエーハについては、 皮膜を設けたにもかかわらず、 ゥエーハ周辺に F e 汚染が散見された。 The results are shown in Figure 1. Fig. 1 (A) to (C) With regard to the e-aperator manufactured using a rectifier with a Fe concentration of 0.05 ppm or less from the force, no Fe contamination around the e-aer was observed. Despite the use of a flow straightening tube, no Fe contamination was detected up to the periphery of the wafer, and a high-quality silicon single crystal wafer was obtained. On the other hand, from Figs. 1 (D) to (H), it can be seen from Fig. 1 that, for the e-chamber manufactured using a rectifying cylinder with an Fe concentration of more than 0.05 ppm, the Fe Contamination was scattered.
すなわち、 整流筒に F e濃度が 0 . 0 5 p p m以下である高純度の熱分解炭素 の皮膜を形成することによ り、 シリ コン単結晶の製造中に高温となる整流筒から F eを含む蒸気が発生しないか、 その発生量が軽微であるために育成中のシリ コ ン単結晶の表面に F e汚染がなく、 F eの結晶中への拡散がなかったため、 周辺 部に F e汚染のないシリ コン単結晶ゥエーハを得ることができると考えられる。 このよ うに、 本発明の製造方法により半導体集積回路素子の製造に悪影響を及ぼ すシリ コンゥエーハの F e汚染を低減できることが確認できた。 In other words, by forming a film of high-purity pyrolytic carbon having an Fe concentration of 0.05 ppm or less on the rectifying cylinder, Fe can be collected from the rectifying cylinder that is heated to a high temperature during the production of a silicon single crystal. Since no vapor-containing vapor was generated or the amount of generated vapor was slight, there was no Fe contamination on the surface of the silicon single crystal being grown, and there was no diffusion of Fe into the crystal. It is thought that a silicon single crystal wafer without contamination can be obtained. As described above, it was confirmed that the manufacturing method of the present invention can reduce Fe contamination of the silicon wafer which adversely affects the manufacture of the semiconductor integrated circuit device.
以下、 本発明を、 さらに詳細に説明するが本発明はこれに限定されるものでは
ない。 Hereinafter, the present invention will be described in more detail, but the present invention is not limited thereto. Absent.
本発明で用いられる整流筒の形状は特に特定されるものではない。 例えば、 従 来型の特開平 6 — 2 1 9 8 8 6号に記載されているようなものの他、 成長結晶に 近接し、 これを囲うように配置されるものであれば、 どのよ うな形態のものであ つても本発明の適用が可能である。 The shape of the rectifying cylinder used in the present invention is not particularly specified. For example, in addition to the conventional type described in Japanese Patent Application Laid-Open No. Hei 6-219896, any form can be used as long as it is arranged close to and surrounding the growing crystal. The present invention can be applied to any of them.
しかし、 一般的な整流筒としては黒鉛部材等の炭素材が用いられ、 結晶から 1 0 mm〜 2 0 0 mmの範囲の距離、 さらには 1 0〜 : 1 0 0 mmの距離で結晶に近 接するように配置される。 また、 整流筒の材料としては、 タングステン、 モリブ デン等の高融点金属を用いることもできる。 さらに、 適当な冷媒を用いる場合に は、 ステンレスや銅を整流筒の材料として用いることもできる。 However, a carbon material such as a graphite member is used as a general rectifying cylinder, and a distance in a range of 100 mm to 200 mm from the crystal, and a distance of 10 to 100 mm in proximity to the crystal. It is arranged so that it may touch. In addition, as a material of the rectifying cylinder, a high melting point metal such as tungsten or molybdenum can be used. Further, when an appropriate refrigerant is used, stainless steel or copper can be used as a material for the flow regulating cylinder.
なお、 整流筒の高純度の被覆材質としては、 上記のような熱分解炭素皮膜であ つても、 あるいは炭化珪素皮膜であっても同等の効果が得られる。 また皮膜の厚 さは 3 0 μ m以上が望ましい。 これは、 皮膜の厚みが 1 0 μ m以下の場合にはシ リ コン単結晶引き上げを数回行うことにより、 皮膜の劣化が起こり、 重金属汚染 を完全には防止できなくなるおそれがあるからである。 It should be noted that the same effect can be obtained even when the high-purity coating material of the rectifying cylinder is a pyrolytic carbon film as described above or a silicon carbide film. The thickness of the film is preferably 30 μm or more. This is because if the thickness of the film is less than 10 μm, the film may be deteriorated by pulling the silicon single crystal several times, and it may not be possible to completely prevent heavy metal contamination. .
しかし、 その一方で皮膜の厚みを厚く し過ぎるのも、 整流筒の製造コス トや生 産性に配慮すれば好ましいものではなく、 また、 膜厚が厚くなるとクラックが入 りやすくなることもあり、 実用的にも膜厚は厚く とも 2 0 0 / m程度までとし、 この範囲で条件に応じて整流筒皮膜の膜厚を選択するのが好ましい。 However, on the other hand, making the film too thick is not preferable in consideration of the production cost and productivity of the flow straightening tube, and cracks may easily occur when the film thickness is large. Practically, the film thickness is preferably at most about 200 / m, and it is preferable to select the film thickness of the rectifying cylinder film according to the conditions within this range.
なお、 整流筒の材質としては炭素材を用いることが知られているが、 材質その ものの高純度化においても本発明と同等の効果が得られると考えられる。しかし、 炭素材の高純度化は成形体を高温でハロゲンガス雰囲気にさらすことにより行な われるため、 非常に長時間の処理が必要になり、 本発明と同様の効果が得られる ようなものは極めて高価になってしまうため、 前記高純度の皮膜を設けることが 好ましい。 It is known that a carbon material is used as the material of the rectifying cylinder, but it is considered that the same effect as that of the present invention can be obtained even when the material itself is highly purified. However, since the purification of the carbon material is performed by exposing the compact to a halogen gas atmosphere at a high temperature, a very long treatment is required. Since it becomes extremely expensive, it is preferable to provide the high-purity film.
熱分解炭素から成る皮膜を整流筒に形成する場合は、 例えば、 従来型の十分な 耐熱性を有する基材に対して、 C 3H 8と H2との混合ガス等の原料ガスを用いて C VD (C h e m i c a 1 V a p o u r D e p o s i t i o n ) 法等により、 熱分解炭素皮膜を形成する。 この場合における皮膜の純度は前述したように F e
濃度が 0 . 0 5 p p m以下になるようにする。 このような純度を達成するには、 原料ガスの純度を上げることによつて達成できるので、 上記炭素の基材そのもの の純度を上げるより容易である。 本発明の方法によれば、 この純度の設定は整流 筒を作製する際にのみ注意を払えば良いので、 従来の整流筒を用いる方法に比べ てそれ程に費用がかさむ訳ではない。 In the case of forming a film made of pyrolytic carbon on a rectifying cylinder, for example, a raw material gas such as a mixed gas of C 3 H 8 and H 2 is used for a conventional base material having sufficient heat resistance. A pyrolytic carbon film is formed by CVD (Chemica 1 Vapor Deposition) method. In this case, the purity of the film is The concentration should be less than 0.05 ppm. Such a purity can be achieved by increasing the purity of the raw material gas, so that it is easier than increasing the purity of the carbon substrate itself. According to the method of the present invention, since the setting of the purity only needs to be paid when the rectifying tube is manufactured, the cost is not so much higher than the conventional method using the rectifying tube.
前述のように、 整流筒に形成する皮膜は、 炭化珪素としても良い。 炭化珪素は 機械的強度、 耐熱性および耐食性に優れているという利点がある。 As described above, the film formed on the rectifying cylinder may be silicon carbide. Silicon carbide has the advantage of excellent mechanical strength, heat resistance and corrosion resistance.
以下、 本発明の実施例および比較例を挙げて具体的に説明するが、 本発明はこ れらに限定されるものではない。 Hereinafter, the present invention will be described specifically with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
(実施例 1 ) (Example 1)
α α
熱分解炭素皮膜を形成した整流筒を装備した結晶引上装置にて育成したシリ コ ン単結晶よりシリ コンゥエーハを製造した。 結晶引上装置は本発明の引上げ方法 で用いられる整流筒が配設されている以外は、 図 4に示される既存の結晶引上装 A silicon wafer was manufactured from a silicon single crystal grown by a crystal pulling device equipped with a rectifying cylinder with a pyrolytic carbon film. The crystal pulling apparatus is the same as the existing crystal pulling apparatus shown in FIG. 4 except that the flow straightening tube used in the pulling method of the present invention is provided.
6 6
置により行った。 Performed.
O寸 O size
ここで、 本実施例 1においては整流筒 4と して、 黒鉛材から成る本体に C V D 法により熱分解炭素皮膜を形成したものを用いた。 整流筒 4のサイズは結晶と整 流筒の隙間が 2 5 m mとなるように、 内径 2 5 O m mの整流筒を用いた。 整流筒 に被覆する熱分解炭素皮膜の層厚は 4 0 mとし、 皮膜を形成する際に F e濃度 が 0 . 0 5 p p m以下となるようにした。 整流筒に形成された皮膜の純度を前述 の I C P発光分析法により計測したところ、 以下の表 1に示すようになった。 こ れより、 本実施例 1の整流筒表面に形成された熱分解炭素皮膜の F e濃度が 0 . 0 5 p p m以下であることが判る。 Here, in Example 1, the rectifying cylinder 4 used was a main body made of a graphite material on which a pyrolytic carbon film was formed by a CVD method. The size of the flow straightening cylinder 4 was 25 mm in inner diameter so that the gap between the crystal and the flow straightening cylinder was 25 mm. The layer thickness of the pyrolytic carbon film covering the flow straightening tube was set to 40 m, and the Fe concentration was set to 0.05 ppm or less when forming the film. The purity of the film formed on the rectifier tube was measured by the above-mentioned ICP emission spectrometry, and the result was as shown in Table 1 below. From this, it can be seen that the Fe concentration of the pyrolytic carbon film formed on the surface of the rectifying cylinder of Example 1 is 0.05 ppm or less.
(表 1 ) (table 1 )
皮膜の組成 不純物濃 Film composition Impurity concentration
B Fe AI N i Cr N a B Fe AI N i Cr Na
実施例 1 熱分解炭素 0. 03 0. 03 0. 03 0. 1 4 0. 74 0. 05 Example 1 Pyrolytic carbon 0.03 0.03 0.03 0.1 4 0.74 0.05
実施例 2 炭化珪素 0. 1 2 0. 01 0. 01 0. 02 0. 07 Example 2 Silicon Carbide 0.12 0.01 0.01 0.02 0.07
比較例 熱分解炭素 0. 09 0. 1 0 0. 09 0. 44 1 . 98 0. 1 6
上記の単結晶引上装置を用いて、 1 2 0 k gのポリシリ コンを直径 5 6 c mの 石英ルツボにチャージし多結晶を溶解した後に、 (0 0 1 ) 面を有する種結晶を シリ コンメルトに浸し、 絞り工程を経て直径 2 0 0 mmの比抵抗を 1 0 Ω · c m に調整したボロンドープのシリ コン単結晶を育成した。 育成したシリ コン単結晶 を円筒研磨、 スライス、 ラッピング、 ポリ ツシングなど、 通常のシリ コンゥエー ハを工業的に製造するために必要な諸過程を経て、 シリ コン単結晶ゥエーハを製 造した。 Comparative example Pyrolytic carbon 0.009 0.10 0.009 0.444 1.98 0.16 Using the single crystal pulling apparatus described above, 120 kg of polysilicon is charged into a quartz crucible having a diameter of 56 cm to dissolve the polycrystal, and then a seed crystal having a (001) plane is converted into silicon melt. A boron-doped silicon single crystal having a specific resistance of 200 Ω · cm and a diameter of 200 mm was grown through a immersion process and a drawing process. Silicon single crystal wafers were produced through various processes necessary for industrial production of ordinary silicon wafers, such as cylindrical polishing, slicing, lapping, and polishing of the grown silicon single crystals.
製造されたシリ コン単結晶ゥエーハの F e汚染の評価を前述の S P V法によ り 行った。 結果を図 1 (B ) に示す。 図 1 (B ) からゥェ一ハ周辺の F e汚染は観 察されず、 ゥエーハの中心から外縁までの F e濃度は 1 X I 0 1 0 & t o m s / c m 3以下となっていることが判った。 また、 この S P V法による F e濃度はキ ャリアライフタイムに比例する少数キャリアの拡散長から算出されたものであり、 図 1 ( B ) より、 十分にキャ リ アライフタイムの (最大値 最小値) Z最大値が 5 0 %以下になっていることが判った。 したがって、 本発明の方法を用いること により、 大直径の F e汚染のない高品質なシリ コン単結晶ゥエーハを整流筒を用 いて高歩留りで得ることができる。 The Fe contamination of the manufactured silicon single crystal wafer was evaluated by the SPV method described above. The results are shown in FIG. 1 (B). From Fig. 1 (B), no Fe contamination around the wafer was observed, and it was found that the Fe concentration from the center to the outer edge of the wafer was less than 1 XI 0 10 & toms / cm 3. Was. The Fe concentration by the SPV method was calculated from the diffusion length of minority carriers that is proportional to the carrier lifetime. From Fig. 1 (B), the carrier lifetime can be sufficiently (maximum, minimum). Value) It was found that the Z maximum value was 50% or less. Therefore, by using the method of the present invention, a large-diameter high-quality silicon single crystal wafer without Fe contamination can be obtained at a high yield by using a rectifying cylinder.
(実施例 2 ) (Example 2)
炭化珪素皮膜を形成した整流筒を装備した結晶引上装置にて育成したシリ コン 単結晶よりシリ コンゥエーハを製造した。 結晶引上装置は本発明の引上げ方法で 用いられる整流筒が配設されている以外は、 図 4に示される既存の結晶引上装置 により行った。 A silicon wafer was manufactured from a silicon single crystal grown by a crystal pulling device equipped with a rectifying cylinder formed with a silicon carbide film. The crystal pulling apparatus was carried out by an existing crystal pulling apparatus shown in FIG. 4 except that a straightening tube used in the pulling method of the present invention was provided.
ここで、 本実施例 2においては本体が黒鉛材から成る整流筒 4に、 スパッタ蒸 着法により炭化珪素皮膜を形成した。 整流筒 4のサイズは結晶と整流筒の隙間が 2 5 mmとなるように、 内径 2 5 0 m mの整流筒を用いた。 整流筒に被覆する炭 化珪素皮膜の層厚は 7 0 /x mとし、 皮膜を形成する際に F e濃度が 0 . 0 5 p p m以下となるようにした。 実施例 1 と同様に I C P発光分析法により整流筒 4に 形成された皮膜の純度を計測した結果を表 1 に併記した。 これより、 本実施例 1
の整流筒表面に形成された炭化珪素皮膜の F e濃度が 0 . 0 5 p p m以下である ことが判る。 Here, in Example 2, a silicon carbide film was formed on the rectifying cylinder 4 whose main body was made of a graphite material by a sputter deposition method. For the size of the flow straightening tube 4, a flow straightening tube having an inner diameter of 250 mm was used so that the gap between the crystal and the flow straightening tube was 25 mm. The layer thickness of the silicon carbide film coated on the rectifying cylinder was set to 70 / xm, and the Fe concentration was set to 0.05 ppm or less when forming the film. Table 1 also shows the results of measuring the purity of the film formed on the rectifying tube 4 by ICP emission analysis in the same manner as in Example 1. From this, this Example 1 It can be seen that the Fe concentration of the silicon carbide film formed on the surface of the rectifying cylinder was 0.05 ppm or less.
製造されたシリ コン単結晶ゥェ一八の F e汚染の評価を実施例 1 と同じく S P V法により行った。 結果を図 2に示す。 図 2から実施例 1 と同様にゥエーハ周辺 の F e汚染は観察されず、 ゥエー八の外周まで F e汚染がない、 高品質なシリ コ ン単結晶ゥエーハが得られたことが判る。 Evaluation of Fe contamination of the manufactured silicon single crystal layer 18 was performed by the SPV method as in Example 1. The result is shown in figure 2. FIG. 2 shows that no Fe contamination around the wafer was observed as in Example 1, and that a high-quality silicon single crystal wafer with no Fe contamination was obtained up to the periphery of the wafer.
また、 このときのゥエーハのキャリアライフタイムを求め、 (最大値一最小値) ノ最大値を算出したところ 5 0 %以下であった。 At this time, the carrier lifetime of the wafer was calculated, and the maximum value (maximum value-minimum value) was calculated to be 50% or less.
すなわち、 整流筒に用いる高純度皮膜としては、 熱分解炭素から成るものであ つても、炭化珪素から成るものであってもほぼ同等な結果が得られることが判る。 That is, it can be seen that almost the same results can be obtained regardless of whether the high-purity film used for the flow control cylinder is made of pyrolytic carbon or silicon carbide.
(比較例) (Comparative example)
実施例 1 と同様に、 熱分解炭素皮膜を形成した整流筒を装備した結晶引上装置 にて育成したシリ コン単結晶よりシリ コンゥエーハを製造した。 本比較例におい ては、 本体が黒鉛材から成る整流筒 4に形成する熱分解炭素皮膜の純度について の基準を実施例 1 のものよ り緩和した条件として、 熱分解炭素皮膜を形成した。 整流筒 4のサイズは結晶と整流筒の隙間が 2 5 m mとなるように、 内径 2 5 0 m mの整流筒を用いた。 整流筒に形成された皮膜の純度を計測した結果を表 1に併 記した。 この計測結果によ り、 皮膜の F e濃度が 0 . l O p p mであることが判 る。 それ以外は、 実施例 1 と同様にシリ コン単結晶を育成してシリ コン単結晶ゥ エーハを製造した。 In the same manner as in Example 1, a silicon wafer was produced from a silicon single crystal grown by a crystal pulling apparatus equipped with a rectifying cylinder having a pyrolytic carbon film formed thereon. In this comparative example, a pyrolytic carbon film was formed under the condition that the standard for the purity of the pyrolytic carbon film formed in the rectifying cylinder 4 whose main body was made of graphite material was relaxed as compared with the example 1. The size of the flow straightening tube 4 was a 250 mm inner diameter flow straightening tube such that the gap between the crystal and the flow straightening tube was 25 mm. Table 1 also shows the results of measuring the purity of the film formed on the rectifying cylinder. From this measurement result, it can be seen that the Fe concentration of the film is 0.1 O Op pm. Otherwise, as in Example 1, a silicon single crystal was grown to produce a silicon single crystal wafer.
製造されたシリ コン単結晶ゥエーハの F e汚染の評価を実施例 1 と同じく S P V法により行った。 結果を図 1 ( D ) に示す。 図 1 ( D ) から整流筒に皮膜を 形成すると、 F e汚染は軽減できるものの、皮膜の純度が不十分である場合には、 F e汚染が生じてしまうことが判る。 The Fe contamination of the manufactured silicon single crystal wafer was evaluated by the SPV method as in Example 1. The results are shown in FIG. 1 (D). From Fig. 1 (D), it can be seen that forming a film on the flow straightening tube can reduce Fe contamination, but if the purity of the film is insufficient, Fe contamination occurs.
また、 本比較例にてもゥエーハのキャ リ アライフタイムを求め (最大値一最小 値) 最大値を算出したが、 この時の値は 5 0 %を超える値となった。 これは F e汚染により ゥエーハ外縁部付近でのキヤリァライフタイムが低下したことから ゥエーハ面内でのライフタイムにバラツキが出たことにより 5 0 %を上回ったも
のと思われる。 In this comparative example as well, the carrier lifetime of Aeha was calculated (maximum value-minimum value), and the maximum value was calculated. The value at this time exceeded 50%. This was due to the fact that Fe contamination reduced the carrier lifetime near the outer periphery of the eha, and exceeded 50% due to variations in the lifetime within the eha plane. Seems to be.
なお、 本発明は、 上記実施形態に限定されるものではない。 上記実施形態は、 例示であり、 本発明の特許請求の範囲に記載された技術的思想と実質的に同一な 構成を有し、 同様な作用効果を奏するものは、 いかなるものであっても本発明の 技術的範囲に包含される。 Note that the present invention is not limited to the above embodiment. The above embodiment is an exemplification, and has substantially the same configuration as the technical idea described in the claims of the present invention. It is included in the technical scope of the invention.
また、 上記実施形態においては、 直径 8イ ンチのシリ コ ン単結晶を育成する場 合につき例を挙げて説明したが、 本発明はこれには限定されず、 直径 8〜 1 6ィ ンチあるいはそれ以上のシリ コン単結晶にも適用でき、 より有効に作用し得る。 また、 本発明は、 シリ コ ン融液に水平磁場、 縦磁場、 カスプ磁場等を印加する いわゆる M C Z法にも適用できることはいうまでもない。
Further, in the above embodiment, the case of growing a silicon single crystal having a diameter of 8 inches has been described by way of example. However, the present invention is not limited to this, and a diameter of 8 to 16 inches or It can be applied to even larger silicon single crystals and can work more effectively. Further, it is needless to say that the present invention can also be applied to a so-called MCS method in which a horizontal magnetic field, a vertical magnetic field, a cusp magnetic field, or the like is applied to a silicon melt.
Claims
1 . cz法により育成されたシリ コン単結晶より製造されたシリ コン単結晶ゥェ ーハであって、 該シリ コン単結晶ゥェ一ハの F e濃度が 1 X I 0 1 0 a t o m s c m 3以下であることを特徴とするシリ コン単結晶ゥエーハ。 1. A silicon single crystal wafer produced from a silicon single crystal grown by the cz method, wherein the Fe concentration of the silicon single crystal wafer is 1 XI 0 10 atoms cm 3 or less. A silicon single crystal wafer.
2. C Z法により育成されたシリ コン単結晶より製造されたシリ コン単結晶ゥェ ーハであって、 該シリ コン単結晶ゥエーハの全面におけるキャリアライフタイム の変動幅を (最大値一最小値) Z最大値で表わした時に、 該変動幅が 5 0 %以下 であることを特徴とするシ リ コ ン単結晶ゥエーハ。 2. A silicon single crystal wafer produced from a silicon single crystal grown by the CZ method, wherein the carrier lifetime variation width over the entire surface of the silicon single crystal wafer is (maximum value / minimum value). A silicon single crystal wafer, wherein the fluctuation range when expressed by the Z maximum value is 50% or less.
3 . C Z法により育成されたシリ コン単結晶より製造されたシリ コン単結晶ゥェ ーハであって、 該シリ コン単結晶ゥェ一ハの周辺 1 0 %のF e濃度が 1 X 1 0 1 0 a t o m s / c m 3以下であることを特徴とするシリ コン単結晶ゥエーハ。 3. A silicon single crystal wafer produced from a silicon single crystal grown by the CZ method, wherein a 10% Fe concentration around the silicon single crystal wafer is 1 X 1 0 1 0 atoms / cm 3 silicon single crystal Ueha, wherein less.
4. 直径 2 0 0 mm以上であることを特徴とする請求項 1ないし請求項 3のいず れか 1項に記載のシリ コン単結晶ゥエーハ。 4. The silicon single crystal wafer according to any one of claims 1 to 3, having a diameter of 200 mm or more.
5. 前記シ リ コ ン単結晶ゥェ一ハは、 C Z法において整流筒を用いて育成された シリ コン単結晶より製造されたシリ コン単結晶ゥエーハであることを特徴とする 請求項 1ないし請求項 4のいずれか 1項に記載のシ リ コン単結晶ゥエーハ。 5. The silicon single crystal wafer, wherein the silicon single crystal wafer is a silicon single crystal wafer manufactured from a silicon single crystal grown using a rectifying tube in a CZ method. The silicon single crystal wafer according to claim 4.
6 . C Z法においてシリ コン単結晶の周囲を整流筒で囲繞しつつシリ コン単結晶 を育成するシリ コン単結晶の製造方法において、 表面に F e濃度が 0 . 0 5 p p m以下の皮膜が形成された整流筒を用いてシリ コン単結晶を育成することを特徴 とするシリ コン単結晶の製造方法。 6. In the silicon single crystal manufacturing method in which the silicon single crystal is grown while surrounding the silicon single crystal with a rectifying cylinder in the CZ method, a film with an Fe concentration of 0.05 ppm or less is formed on the surface. A method for producing a silicon single crystal, comprising growing a silicon single crystal using the rectifying cylinder thus obtained.
7. 前記皮膜は熱分解炭素または炭化珪素から成ることを特徴とする請求項 6に 記載のシリ コン単結晶の製造方法。
7. The method according to claim 6, wherein the film is made of pyrolytic carbon or silicon carbide.
8 . 前記皮膜の厚さは 3 0 μ m以上であることを特徴とする請求項 6または請求 項 7に記載のシリ コン単結晶の製造方法。 8. The method for producing a silicon single crystal according to claim 6, wherein the thickness of the film is 30 μm or more.
9 . 請求項 6ないし請求項 8のいずれか 1項に記載の製造方法により製造された シリ コン単結晶からシリ コン単結晶ゥエーハを製造することを特徴とするシリ コ ン単結晶ゥエーハの製造方法。 9. A method for manufacturing a silicon single crystal wafer, comprising manufacturing a silicon single crystal wafer from a silicon single crystal manufactured by the manufacturing method according to any one of claims 6 to 8. .
1 0 . C Z法において育成するシリ コ ン単結晶を囲繞するように配置され、 C Z 装置のチヤンバー上部から導入される不活性ガスの流れを整える整流筒であって、 表面に F e濃度が 0 . 0 5 p p m以下の皮膜が形成されていることを特徴とする 整流筒。 10. A rectifying cylinder arranged to surround the silicon single crystal grown in the CZ method to regulate the flow of the inert gas introduced from above the chamber of the CZ device. Rectifier cylinder characterized by having a coating of 0.5 ppm or less.
1 1 . 前記皮膜は熱分解炭素または炭化珪素から成ることを特徴とする請求項 1 0に記載の整流筒。 11. The rectifying cylinder according to claim 10, wherein the coating is made of pyrolytic carbon or silicon carbide.
1 2 . 前記皮膜の厚さは 3 0 /z m以上であることを特徴とする請求項 1 0または 請求項 1 1に記載の整流筒。 12. The rectifying cylinder according to claim 10 or 11, wherein the thickness of the coating is 30 / zm or more.
1 3 . 請求項 1 0ないし請求項 1 2のいずれか 1項に記載の整流筒を具備するこ とを特徴とするシリ コン単結晶製造装置。
13. An apparatus for producing a silicon single crystal, comprising the rectifying cylinder according to any one of claims 10 to 12.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001578727A JP4096557B2 (en) | 2000-04-25 | 2001-04-18 | Silicon single crystal wafer, silicon single crystal manufacturing method, and silicon single crystal wafer manufacturing method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000-124597 | 2000-04-25 | ||
JP2000124597 | 2000-04-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2001081661A1 true WO2001081661A1 (en) | 2001-11-01 |
Family
ID=18634704
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2001/003317 WO2001081661A1 (en) | 2000-04-25 | 2001-04-18 | Silicon single-crystal wafer, method for producing silicon single crystal, and method for fabricating silicon single-crystal wafer |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP4096557B2 (en) |
WO (1) | WO2001081661A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004521056A (en) * | 2000-12-26 | 2004-07-15 | エムイーエムシー・エレクトロニック・マテリアルズ・インコーポレイテッド | Method and apparatus for producing single crystal silicon having a low iron concentration substantially free of aggregated intrinsic point defects |
WO2005019506A1 (en) * | 2003-08-20 | 2005-03-03 | Shin-Etsu Handotai Co., Ltd. | Process for producing single crystal and silicon single crystal wafer |
WO2005073439A1 (en) * | 2004-02-02 | 2005-08-11 | Shin-Etsu Handotai Co., Ltd. | Silicon single crystal, silicon wafer, production apparatus therefor and process for producing the same |
DE102006002682A1 (en) * | 2006-01-19 | 2007-08-02 | Siltronic Ag | Apparatus and method for producing a single crystal, single crystal and semiconductor wafer |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0380913A (en) * | 1989-08-23 | 1991-04-05 | Mitsubishi Electric Corp | Control box |
JPH0397688A (en) * | 1989-09-09 | 1991-04-23 | Shin Etsu Handotai Co Ltd | Distribution cylinder for single crystal pulling up device |
JPH06219886A (en) * | 1993-01-28 | 1994-08-09 | Mitsubishi Materials Shilicon Corp | Device for pulling up single crystal |
JPH07257987A (en) * | 1994-03-16 | 1995-10-09 | Sumitomo Sitix Corp | Graphite member for semiconductor single crystal pulling up device and semiconductor single crystal pulling up device |
JPH09202686A (en) * | 1996-01-24 | 1997-08-05 | Sumitomo Sitix Corp | Apparatus for producing single crystal and production of single crystal |
JPH11116392A (en) * | 1997-10-20 | 1999-04-27 | Mitsubishi Materials Silicon Corp | Apparatus for pulling silicon single crystal |
JP2000327485A (en) * | 1999-05-26 | 2000-11-28 | Mitsubishi Materials Silicon Corp | Silicon single crystal ingot and silicon wafer made of the same |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61101408A (en) * | 1984-10-19 | 1986-05-20 | Hitachi Chem Co Ltd | Purification of graphite and apparatus therefor |
JPH0380193A (en) * | 1989-08-23 | 1991-04-04 | Shin Etsu Handotai Co Ltd | Silicon semiconductor single crystal |
JPH08337493A (en) * | 1995-06-15 | 1996-12-24 | Sumitomo Metal Ind Ltd | High-purity graphite member for pulling up single crystal and its production |
JP4514846B2 (en) * | 1999-02-24 | 2010-07-28 | 東洋炭素株式会社 | High purity carbon fiber reinforced carbon composite material and method for producing the same |
JP3410380B2 (en) * | 1999-03-05 | 2003-05-26 | 東洋炭素株式会社 | Single crystal pulling equipment and high purity graphite material |
-
2001
- 2001-04-18 JP JP2001578727A patent/JP4096557B2/en not_active Expired - Fee Related
- 2001-04-18 WO PCT/JP2001/003317 patent/WO2001081661A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0380913A (en) * | 1989-08-23 | 1991-04-05 | Mitsubishi Electric Corp | Control box |
JPH0397688A (en) * | 1989-09-09 | 1991-04-23 | Shin Etsu Handotai Co Ltd | Distribution cylinder for single crystal pulling up device |
JPH06219886A (en) * | 1993-01-28 | 1994-08-09 | Mitsubishi Materials Shilicon Corp | Device for pulling up single crystal |
JPH07257987A (en) * | 1994-03-16 | 1995-10-09 | Sumitomo Sitix Corp | Graphite member for semiconductor single crystal pulling up device and semiconductor single crystal pulling up device |
JPH09202686A (en) * | 1996-01-24 | 1997-08-05 | Sumitomo Sitix Corp | Apparatus for producing single crystal and production of single crystal |
JPH11116392A (en) * | 1997-10-20 | 1999-04-27 | Mitsubishi Materials Silicon Corp | Apparatus for pulling silicon single crystal |
JP2000327485A (en) * | 1999-05-26 | 2000-11-28 | Mitsubishi Materials Silicon Corp | Silicon single crystal ingot and silicon wafer made of the same |
Non-Patent Citations (1)
Title |
---|
A.L.P. ROTONDARO ET AL.: "Impact of Fe and Cu contamination on the minority carrier lifetime of silicon substrates", JOURNAL OF THE ELECTROCHEMICAL SOCIETY, vol. 143, no. 9, September 1996 (1996-09-01), pages 3014 - 3019, XP002941568 * |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004521056A (en) * | 2000-12-26 | 2004-07-15 | エムイーエムシー・エレクトロニック・マテリアルズ・インコーポレイテッド | Method and apparatus for producing single crystal silicon having a low iron concentration substantially free of aggregated intrinsic point defects |
WO2005019506A1 (en) * | 2003-08-20 | 2005-03-03 | Shin-Etsu Handotai Co., Ltd. | Process for producing single crystal and silicon single crystal wafer |
EP1662024A1 (en) * | 2003-08-20 | 2006-05-31 | Shin-Etsu Handotai Co., Ltd | Process for producing single crystal and silicon single crystal wafer |
US7326395B2 (en) | 2003-08-20 | 2008-02-05 | Shin-Etsu Handotai Co., Ltd. | Method for producing a single crystal and silicon single crystal wafer |
EP1662024A4 (en) * | 2003-08-20 | 2008-10-15 | Shinetsu Handotai Kk | Process for producing single crystal and silicon single crystal wafer |
KR101120615B1 (en) * | 2003-08-20 | 2012-03-16 | 신에쯔 한도타이 가부시키가이샤 | Process For Producing Single Crystal And Silicon Single Crystal Wafer |
WO2005073439A1 (en) * | 2004-02-02 | 2005-08-11 | Shin-Etsu Handotai Co., Ltd. | Silicon single crystal, silicon wafer, production apparatus therefor and process for producing the same |
JP2008247737A (en) * | 2004-02-02 | 2008-10-16 | Shin Etsu Handotai Co Ltd | Apparatus and method for producing silicon single crystal, and silicon wafer |
JP4650520B2 (en) * | 2004-02-02 | 2011-03-16 | 信越半導体株式会社 | Silicon single crystal manufacturing apparatus and manufacturing method |
DE102006002682A1 (en) * | 2006-01-19 | 2007-08-02 | Siltronic Ag | Apparatus and method for producing a single crystal, single crystal and semiconductor wafer |
CN100572614C (en) * | 2006-01-19 | 2009-12-23 | 硅电子股份公司 | Be used to make the equipment and the method for monocrystalline |
Also Published As
Publication number | Publication date |
---|---|
JP4096557B2 (en) | 2008-06-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5304713B2 (en) | Silicon carbide single crystal substrate, silicon carbide epitaxial wafer, and thin film epitaxial wafer | |
TWI424476B (en) | Epitaxierte siliciumscheibe und verfahren zur herstellung von epitaxierten siliciumscheiben | |
JP4733485B2 (en) | Method for producing seed crystal for silicon carbide single crystal growth, seed crystal for silicon carbide single crystal growth, method for producing silicon carbide single crystal, and silicon carbide single crystal | |
KR100637915B1 (en) | Silicon electrode plate | |
WO2023093460A1 (en) | Drawing method for monocrystalline silicon rod, and monocrystalline silicon rod | |
JP2011018772A (en) | Susceptor for silicon carbide single crystal film forming device | |
JP5602093B2 (en) | Single crystal manufacturing method and manufacturing apparatus | |
JP2021015896A (en) | Silicon carbide epitaxial growth system and manufacturing method of silicon carbide epitaxial wafer | |
TWI624568B (en) | Silicon member for semiconductor apparatus and method of producing the same | |
JP3788836B2 (en) | Vapor growth susceptor and manufacturing method thereof | |
WO2001081661A1 (en) | Silicon single-crystal wafer, method for producing silicon single crystal, and method for fabricating silicon single-crystal wafer | |
EP1662024B1 (en) | Method for producing a single crystal and silicon single crystal wafer | |
JP4345585B2 (en) | Silicon single crystal manufacturing method, viewing window glass used therefor, crystal observation window glass, silicon single crystal manufacturing apparatus | |
JP2003137694A (en) | Seed crystal for growing silicon carbide single crystal, silicon carbide single crystal ingot and method of producing the same | |
KR100622331B1 (en) | Process and apparatus for preparation of silicon crystals with reduced metal content | |
WO2002036861A1 (en) | Silicon semiconductor single crystal manufacturing apparatus and manufacturing method | |
US20070074653A1 (en) | Apparatus for preparation of silicon crystals with reduced metal content | |
JP2004521056A (en) | Method and apparatus for producing single crystal silicon having a low iron concentration substantially free of aggregated intrinsic point defects | |
JP7276190B2 (en) | Manufacturing method of silicon single crystal | |
US20240352620A1 (en) | Method of producing an epitaxially coated semiconductor wafer of monocrystalline silicon | |
JP2012121749A (en) | SiC SEMICONDUCTOR SELF-SUPPORTING SUBSTRATE AND SiC SEMICONDUCTOR ELECTRONIC DEVICE | |
JPH11292685A (en) | Apparatus for extending life of graphite susceptor for growing silicon single crystal by coating with silicon nitride and extending method | |
JP4501507B2 (en) | Silicon single crystal growth method | |
CN118610157A (en) | Epitaxial layer growth method of surface porous structure | |
JP2024016637A (en) | SiC film formation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP KR SG US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR |
|
ENP | Entry into the national phase |
Ref country code: JP Ref document number: 2001 578727 Kind code of ref document: A Format of ref document f/p: F |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase |