JP2011018772A - Susceptor for silicon carbide single crystal film forming device - Google Patents

Susceptor for silicon carbide single crystal film forming device Download PDF

Info

Publication number
JP2011018772A
JP2011018772A JP2009162369A JP2009162369A JP2011018772A JP 2011018772 A JP2011018772 A JP 2011018772A JP 2009162369 A JP2009162369 A JP 2009162369A JP 2009162369 A JP2009162369 A JP 2009162369A JP 2011018772 A JP2011018772 A JP 2011018772A
Authority
JP
Japan
Prior art keywords
single crystal
susceptor
crystal substrate
sic single
counterbore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009162369A
Other languages
Japanese (ja)
Inventor
Takashi Aigo
崇 藍郷
Hiroshi Tsuge
弘志 柘植
Taizo Hoshino
泰三 星野
Tatsuo Fujimoto
辰雄 藤本
Masakazu Katsuno
正和 勝野
Masashi Nakabayashi
正史 中林
Hirokatsu Yashiro
弘克 矢代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2009162369A priority Critical patent/JP2011018772A/en
Publication of JP2011018772A publication Critical patent/JP2011018772A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a susceptor that enables an SiC epitaxial film with uniform characteristics to be formed by preventing a gap from being formed between a bottom surface of a counterbore of SiC deposits on a bottom surface of the counterbore of the susceptor and a backside of an SiC single-crystal substrate in a silicon carbide single crystal film-forming device that forms a thin film of SiC single crystal by epitaxial growth.SOLUTION: The susceptor 7 on which the silicon carbide single crystal substrate is mounted includes the counterbore bottom surface 10a on which the silicon carbide single crystal substrate is mounted, a circumferential sidewall surrounding a circumferential edge of the stored substrate, and a ring-shaped groove 11 dug in a thickness direction of the susceptor along the circumferential sidewall, wherein the susceptor is provided with the counterbore 10 satisfying y+z<x<y+2z and 0 (mm)<z≤4 (mm) for a diameter (x) of the silicon carbide single crystal substrate, a diameter (y) of the counterbore bottom surface, and a groove width (z).

Description

本発明は、炭化珪素単結晶をエピタキシャル成長させて薄膜を作製する炭化珪素単結晶成膜装置に用いられるサセプタに関するものである。   The present invention relates to a susceptor used in a silicon carbide single crystal film forming apparatus for producing a thin film by epitaxially growing a silicon carbide single crystal.

炭化珪素(SiC)は、耐熱性及び機械的強度に優れ、物理的、化学的に安定なことから、耐環境性半導体材料として注目されている。また、近年、高周波高耐圧電子デバイス等の基板としてSiC単結晶基板の需要が高まっている。   Silicon carbide (SiC) has attracted attention as an environmentally resistant semiconductor material because it is excellent in heat resistance and mechanical strength and is physically and chemically stable. In recent years, the demand for SiC single crystal substrates has increased as a substrate for high-frequency, high-voltage electronic devices.

SiC単結晶基板を用いて、電力デバイス、高周波デバイス等を作製する場合には、通常、基板上に熱CVD法(熱化学蒸着法)と呼ばれる方法を用いてSiC薄膜をエピタキシャル成長させたり、イオン注入法により直接ドーパントを打ち込んだりするのが一般的である。後者の場合には、注入後に高温でのアニ−ルが必要となるため、前者のエピタキシャル成長による薄膜形成が多用されている(特許文献1、2参照)。   When manufacturing power devices, high-frequency devices, etc. using a SiC single crystal substrate, a SiC thin film is epitaxially grown on the substrate using a method called thermal CVD (thermochemical vapor deposition) or ion implantation is usually used. In general, a dopant is directly implanted by a method. In the latter case, annealing at a high temperature is required after the implantation, so that the former thin film formation by epitaxial growth is frequently used (see Patent Documents 1 and 2).

近年、エピタキシャル成長の方法としては、ホットウォールCVD法が主流になっているが、その一般的な構成を図1に示す。図1の構成は、石英管1の中に断熱材2を入れ、さらにその中にグラファイト3を入れて、このグラファイトが外側の誘導加熱コイル4によって加熱されるようになっている。SiC単結晶基板5はグラファイト3の上に置かれており、導入された原料ガスが加熱されて分解することにより、SiC単結晶基板5上にSiCがエピタキシャル成長してSiC薄膜が形成されるものである。以前は図1のように、SiC単結晶基板をグラファイト上に置くことが一般的であったが、その場合には、原料ガスが上流(ガス供給側)から消費されてくるため、下流(ガス排出側)になるにしたがってエピタキシャル成長した薄膜の膜厚が小さくなったり、ドーピング値の設定値に対する変動が大きくなったりしていた。そこで、最近では、サセプタにSiC単結晶基板を入れ(特許文献3、4参照)、そのサセプタをグラファイト内に置き、サセプタを回転させて、エピタキシャル成長膜の膜厚やドーピング値等の特性に関して基板面内で均一性を向上させる方法が採用されるようになってきた。その方法を図2に示す。図2は、SiC単結晶基板5、グラファイト3、およびサセプタ7の部分のみの断面図を示している。グラファイト3には窪みが形成されており、その窪みの中にサセプタ7が入るようになっている。図2には回転機構の詳細は示していないが、グラファイト3の窪みの中央に穴を開け、その窪みに回転ロッドを通し、サセプタ7と連結させるものや、サセプタ7の下部から水素ガス等を吹き上げてサセプタ7を回転させる等の方法が一般的に採用されている。しかし、SiC単結晶基板を保持するサセプタ上面付近の構造は、回転機構に関係なくほぼ同様である。サセプタ7の側面図(断面図)と上面図を、それぞれ図3と図4に示す。サセプタ7にはSiC単結晶基板を保持するための座ぐり8が形成されており、座ぐり8の直径は、基板の取り扱いを容易にするために、基板の直径に対し通常2〜3mm程度大きくなっている。図3および図4は、SiC単結晶基板が1枚の場合のサセプタであるが、SiC単結晶基板が複数枚になっても、サセプタが大きくなり、SiC単結晶基板を収納する数が増加する以外に構造は変わらない。   In recent years, the hot wall CVD method has become mainstream as a method of epitaxial growth, and its general configuration is shown in FIG. In the configuration of FIG. 1, a heat insulating material 2 is placed in a quartz tube 1, and further a graphite 3 is placed therein, and this graphite is heated by an outer induction heating coil 4. The SiC single crystal substrate 5 is placed on the graphite 3, and the introduced source gas is heated and decomposed, whereby SiC is epitaxially grown on the SiC single crystal substrate 5 to form a SiC thin film. is there. Previously, it was common to place a SiC single crystal substrate on graphite as shown in FIG. 1, but in this case, since the source gas is consumed from the upstream (gas supply side), the downstream (gas The film thickness of the epitaxially grown thin film becomes smaller or the variation of the doping value with respect to the set value becomes larger as it becomes the (discharge side). Therefore, recently, a SiC single crystal substrate is placed in a susceptor (see Patent Documents 3 and 4), the susceptor is placed in graphite, and the susceptor is rotated to determine the substrate surface with respect to characteristics such as the film thickness and doping value of the epitaxially grown film. A method for improving the uniformity has been adopted. The method is shown in FIG. FIG. 2 shows a sectional view of only the SiC single crystal substrate 5, the graphite 3, and the susceptor 7. A depression is formed in the graphite 3, and a susceptor 7 enters the depression. Although details of the rotation mechanism are not shown in FIG. 2, a hole is formed in the center of the depression of the graphite 3, and a rotation rod is passed through the depression to connect to the susceptor 7. A method of blowing up and rotating the susceptor 7 is generally employed. However, the structure near the upper surface of the susceptor holding the SiC single crystal substrate is almost the same regardless of the rotation mechanism. A side view (sectional view) and a top view of the susceptor 7 are shown in FIGS. 3 and 4, respectively. A counterbore 8 for holding a SiC single crystal substrate is formed on the susceptor 7, and the diameter of the counterbore 8 is usually about 2 to 3 mm larger than the diameter of the substrate for easy handling of the substrate. It has become. 3 and 4 show the susceptor in the case where there is one SiC single crystal substrate. However, even if there are a plurality of SiC single crystal substrates, the susceptor becomes large and the number of SiC single crystal substrates accommodated increases. Other than that, the structure does not change.

特開2008−270682号公報JP 2008-270682 A 特開2005−223143号公報JP-A-2005-223143 特開2007−173467号公報JP 2007-173467 A 特開2005−109408号公報JP 2005-109408 A 特開2006−351865号公報Japanese Unexamined Patent Publication No. 2006-351865 特開平10−87394号公報JP-A-10-87394 特開2002-9002号公報Japanese Patent Laid-Open No. 2002-9002

上述のようなサセプタを用いてエピタキシャル成長を行った場合、座ぐり8の直径がSiC単結晶基板の直径より大きいため、基板で覆われなかった座ぐりの底面にSiCがリング状に堆積することになる。通常、1回のエピタキシャル成長では10〜20μm程度の成長を行うため、凹部の座ぐり底面上にも同じ厚さだけ堆積されることになり、数回の成長を繰り返した後では50〜100μm程度の堆積物が残ることになる。一方、SiC単結晶基板を座ぐり8にセットする際に、常に堆積物の無い部分に置く事は困難であり、たとえ堆積物の無い部分に置く事ができたとしても、サセプタ回転中の遠心力や加熱時の膨張等で基板が動き、堆積物の上に基板の一端が乗り上げてしまう状況が発生する。図5に、座ぐり8の底面上にリング状に堆積したSiC堆積物9の上にSiC単結晶基板が乗り上げた模式図を示す。図5のような状態は、SiC単結晶基板5の一部が乗った状態で基板がセットされた場合、あるいは、SiC単結晶基板5が動いてその一端が堆積物9の上に乗り上げてしまった場合などに起こる。堆積物9の高さが100μmである場合、SiC単結晶基板中央における座ぐりの底の表面と基板裏面との間に約50μmの隙間が生じることになる。このような隙間がある状況が発生すると、SiC単結晶基板面内の温度不均一性が大きくなり、成長温度に敏感な、エピタキシャル成長膜の膜厚やドーピング値も、基板面内で大きくばらつくことになる。具体的には、例えば、2インチのSiC単結晶基板を用いた場合、これらのばらつきを標準偏差/平均値(σ/mean)で表すと、膜厚では5〜10%、ドーピング値では10〜15%になる。デバイスの歩留まりを実用的なものにするためには、このばらつきは、膜厚で5%以下、ドーピング値では5〜10%程度にすることが求められている。一方、上記問題の解決策の一つとして、エピタキシャル成長終了毎に、座ぐりの底面上の堆積物9を除去することが考えられるが、SiCの場合堆積物の付着力が強いため、完全に除去することは困難であり、また生産性にも影響を及ぼすことになる。   When epitaxial growth is performed using the susceptor as described above, the diameter of the spot facing 8 is larger than the diameter of the SiC single crystal substrate, so that SiC is deposited in a ring shape on the bottom face of the spot facing that is not covered with the substrate. . Usually, since the growth of about 10 to 20 μm is performed in one epitaxial growth, the same thickness is also deposited on the bottom face of the recess, and after about several times of growth, the thickness is about 50 to 100 μm. Deposits will remain. On the other hand, when setting the SiC single crystal substrate on the counterbore 8, it is difficult to always place it on the part without deposits, even if it can be placed on the part without deposits, A situation occurs where the substrate moves due to force or expansion during heating, and one end of the substrate rides on the deposit. FIG. 5 shows a schematic diagram in which a SiC single crystal substrate rides on a SiC deposit 9 deposited in a ring shape on the bottom surface of the spot facing 8. In the state as shown in FIG. 5, when the substrate is set with a part of the SiC single crystal substrate 5 on board, or the SiC single crystal substrate 5 moves and one end thereof rides on the deposit 9. It happens when it happens. When the height of the deposit 9 is 100 μm, a gap of about 50 μm is generated between the front surface of the counterbore at the center of the SiC single crystal substrate and the back surface of the substrate. If such a gap occurs, the temperature non-uniformity in the SiC single crystal substrate surface will increase, and the epitaxial growth film thickness and doping values that are sensitive to the growth temperature will also vary widely in the substrate surface. Become. Specifically, for example, when a 2 inch SiC single crystal substrate is used, these variations are expressed by standard deviation / average value (σ / mean), and the film thickness is 5 to 10%, and the doping value is 10 to 10. 15%. In order to make the device yield practical, this variation is required to be 5% or less in terms of film thickness and about 5 to 10% in terms of doping value. On the other hand, as one of the solutions to the above problem, it is conceivable to remove the deposit 9 on the bottom face of the spot facing each time the epitaxial growth is completed. However, in the case of SiC, the deposit adheres strongly, so it is completely removed. This is difficult and also affects productivity.

したがって、今後デバイスへの応用が期待されるSiCエピタキシャル成長基板であるが、現状のサセプタを使用している限りでは、エピタキシャル膜厚やドーピング値といった基本的特性の面内分布がばらついたエピタキシャル基板を使用することになる。したがってこのようなエピタキシャル基板を用いて作製されるデバイスの特性もばらついたものになり、その歩留まりが低下することになる。   Therefore, it is a SiC epitaxial growth substrate that is expected to be applied to devices in the future. However, as long as the current susceptor is used, an epitaxial substrate with in-plane distribution of basic characteristics such as epitaxial film thickness and doping value is used. Will do. Therefore, the characteristics of a device manufactured using such an epitaxial substrate also vary, and the yield decreases.

本発明は、上述の問題点に鑑みてなされたものであり、SiC単結晶をエピタキシャル成長させて薄膜を作製する炭化珪素単結晶成膜装置において、サセプタの座ぐりの底部表面に堆積するSiC堆積物によって、座ぐり底面とSiC単結晶基板裏面との間に隙間が生じ、形成されるSiCエピタキシャル膜の特性の均一性低下を防止できる炭化珪素単結晶成膜装置サセプタを提供することを目的とする。   The present invention has been made in view of the above-described problems, and in a silicon carbide single crystal film forming apparatus for producing a thin film by epitaxially growing a SiC single crystal, the SiC deposits deposited on the bottom surface of the counterbore of the susceptor are used. Another object of the present invention is to provide a silicon carbide single crystal film forming apparatus susceptor in which a gap is generated between the bottom face of the counterbore and the back surface of the SiC single crystal substrate, thereby preventing deterioration in uniformity of characteristics of the formed SiC epitaxial film.

本発明は、SiC単結晶基板を保持するためにサセプタに形成されている凹状の座ぐりにおいて、座ぐりの周囲側壁に沿って座ぐり底面に溝を有するサセプタ構造とすることにより、上記課題を解決できることを見出し、完成したものである。   The present invention solves the above-mentioned problem by adopting a susceptor structure having a groove on the bottom face of the counterbore formed along the peripheral side wall of the counterbore in the concave counterbore formed on the susceptor to hold the SiC single crystal substrate. It was found and completed.

即ち、本発明は、
(1) 炭化珪素単結晶をエピタキシャル成長させて薄膜を作製する炭化珪素単結晶成膜装置に使用され、炭化珪素単結晶基板を載置するサセプタであって、該サセプタは、炭化珪素単結晶基板を収容する円形凹状の座ぐりを有し、前記座ぐりは、炭化珪素単結晶基板を載置する座ぐり底面と、収容した基板の周縁を取り囲む周囲側壁と、周囲側壁に沿ってサセプタの厚み方向に掘り込まれたリング状の溝とを備え、前記炭化珪素単結晶基板の直径x、前記座ぐり底面の直径y、及び前記溝幅zとの関係が、
y+z < x < y+2z
であって、かつ、
0(mm)< z ≦ 4(mm)
を満たすことを特徴とする炭化珪素単結晶成膜装置用サセプタ、
(2) 前記溝の底部表面から前記座ぐり底面までの距離Sが、
0(μm)< S <600(μm)
であることを特徴とする上記(1)記載の炭化珪素単結晶成膜装置用サセプタ、及び
(3) 前記座ぐり底面からサセプタ上面までの距離Lが、収容する炭化珪素単結晶基板の厚さに対して±50μmの範囲内である上記(1)又は(2)に記載の炭化珪素単結晶成膜装置用サセプタ、
である。
That is, the present invention
(1) A susceptor used for a silicon carbide single crystal film forming apparatus for epitaxially growing a silicon carbide single crystal to produce a thin film and mounting a silicon carbide single crystal substrate, the susceptor comprising a silicon carbide single crystal substrate A counterbore having a circular concave shape to be accommodated, the counterbore having a counterbore bottom surface on which the silicon carbide single crystal substrate is placed, a peripheral side wall surrounding the periphery of the stored substrate, and a thickness direction of the susceptor along the peripheral side wall A ring-shaped groove dug, and the relationship between the diameter x of the silicon carbide single crystal substrate, the diameter y of the counterbore bottom surface, and the groove width z,
y + z <x <y + 2z
And
0 (mm) <z ≤ 4 (mm)
A susceptor for a silicon carbide single crystal film forming apparatus,
(2) The distance S from the bottom surface of the groove to the counterbore bottom is:
0 (μm) <S <600 (μm)
A susceptor for a silicon carbide single crystal film forming apparatus according to (1) above, and
(3) The silicon carbide single-piece according to (1) or (2), wherein a distance L from the counterbore bottom to the susceptor top is within a range of ± 50 μm with respect to the thickness of the silicon carbide single-crystal substrate to be accommodated. A susceptor for a crystal deposition apparatus,
It is.

本発明によれば、SiC単結晶をエピタキシャル成長させて炭化珪素単結晶膜を繰り返し製造しても、炭化珪素単結晶基板に成長できなかった余分な堆積物が基板の周縁に設けられた溝に溜まり、座ぐり底面を常に平坦に保つことができるため、エピタキシャル成長膜の膜厚やドーピング値に関して面内分布の均一性に優れた高品質なSiC単結晶薄膜を歩留まりよく製造できる。   According to the present invention, even if a SiC single crystal is epitaxially grown to repeatedly produce a silicon carbide single crystal film, excess deposits that could not be grown on the silicon carbide single crystal substrate are accumulated in grooves provided on the periphery of the substrate. Since the bottom face of the counterbore can always be kept flat, a high-quality SiC single crystal thin film with excellent uniformity of in-plane distribution with respect to the film thickness and doping value of the epitaxially grown film can be manufactured with high yield.

一般的なホットウォールCVD法の構成を示す断面図。Sectional drawing which shows the structure of the general hot wall CVD method. 一般的なホットウォールCVD法における、ホットウォール部(グラファイト)とサセプタの関係を示す断面図。Sectional drawing which shows the relationship between a hot wall part (graphite) and a susceptor in the general hot wall CVD method. ホットウォールCVD法に用いられる従来のサセプタの断面図。Sectional drawing of the conventional susceptor used for a hot wall CVD method. ホットウォールCVD法に用いられる従来のサセプタの上面図。The top view of the conventional susceptor used for a hot wall CVD method. 従来のサセプタを用いた場合の、サセプタ上にリング状に堆積したSiC堆積物の上に、SiC単結晶基板の一部が乗った状態を示す断面図。Sectional drawing which shows the state in which a part of SiC single-crystal substrate got on the SiC deposit deposited in the ring shape on the susceptor at the time of using the conventional susceptor. (a)は本発明のサセプタの上面図、(b)はA-A’断面図。(A) is a top view of the susceptor of this invention, (b) is A-A 'sectional drawing. 本発明のサセプタにおける座ぐりの形状を示す説明図。Explanatory drawing which shows the shape of the spot facing in the susceptor of this invention. 本発明のサセプタ上にSiC単結晶基板を乗せた場合の一例を説明する図。The figure explaining an example at the time of putting a SiC single crystal substrate on the susceptor of this invention. 本発明のサセプタ上にSiC単結晶基板を乗せた場合の他の例を説明する図。The figure explaining the other example at the time of putting a SiC single crystal substrate on the susceptor of this invention. 本発明を2インチ基板用サセプタに適用した場合の、座ぐり内のSiC単結晶基板を支持する座ぐり底面の直径yと溝の幅zとの関係を示すグラフ。The graph which shows the relationship between the diameter y of the counterbore bottom and the groove width z which support the SiC single crystal substrate in a counterbore when the present invention is applied to a susceptor for a 2-inch substrate. 本発明のサセプタを用いて成膜した2インチSiC単結晶エピタキシャル膜の膜厚の面内分布を示す図。The figure which shows in-plane distribution of the film thickness of the 2-inch SiC single crystal epitaxial film formed into a film using the susceptor of this invention. 本発明のサセプタを用いて成膜した2インチSiC単結晶エピタキシャル膜のドーピング密度の面内分布を示す図。The figure which shows the in-plane distribution of the doping density of the 2-inch SiC single crystal epitaxial film formed into a film using the susceptor of this invention. 本発明のサセプタを用いて成膜した3インチSiC単結晶エピタキシャル膜の膜厚の面内分布を示す図。The figure which shows in-plane distribution of the film thickness of the 3-inch SiC single crystal epitaxial film formed into a film using the susceptor of this invention. 本発明のサセプタを用いて成膜した3インチSiC単結晶エピタキシャル膜のドーピング密度の面内分布を示す図。The figure which shows the in-plane distribution of the doping density of the 3-inch SiC single-crystal epitaxial film formed into a film using the susceptor of this invention. 従来のサセプタを用いて成膜した2インチSiC単結晶エピタキシャル膜の膜厚の面内分布を示す図。The figure which shows the in-plane distribution of the film thickness of the 2-inch SiC single crystal epitaxial film formed into a film using the conventional susceptor. 従来のサセプタを用いて成膜した2インチSiC単結晶エピタキシャル膜のドーピング密度の面内分布を示す図。The figure which shows the in-plane distribution of the doping density of the 2-inch SiC single crystal epitaxial film formed into a film using the conventional susceptor.

本発明の具体的な内容について述べる。
まず、SiC単結晶基板上へSiC単結晶をエピタキシャル成長させてSiC単結晶薄膜を製造する方法について述べる。一般的な方法としては、サセプタ7にSiC単結晶基板5をセットし(図2)、このサセプタ7を成長炉6内(図1)にある誘導加熱されるグラファイト3内に入れる(図1、2)。成長炉内を真空排気した後、水素ガスを導入して圧力を1×104〜3×104Paに調整する。その後、圧力を一定に保ちながらグラファイト3の温度を上げ、1400〜1500℃程度で10〜30分間、水素中あるいは塩化水素を導入して塩化水素中でのSiC単結晶基板のエッチングを行う。この操作は、研磨等に伴うSiC単結晶基板表面の変質層を取り除き、清浄な表面を出すためのものである。その後、温度をSiC成長温度である1500〜1600℃に上げ、原料ガスであるSiH4とC2H4を導入してSiCの成長を開始する。SiH4ガス流量は40〜50cm3/min、C2H4ガス流量は30〜40cm3/minである。この場合、SiC成長速度(膜厚の増加速度)は6〜7μm/hrである。この成長速度は、通常必要とされるSiCエピタキシャル成長膜の膜厚が10〜20μm程度であるため、生産性を考慮して決定されたものである。所定時間SiCを成長させ、所望の膜厚が得られた時点でSiH4とC2H4ガスの導入を止め、水素ガスのみ流した状態で温度を下げる。温度が常温まで下がった後、水素ガスの導入を止める。次に、成長炉6内を真空排気し、不活性ガスを成長炉6内に導入して(成長室内を不活性ガスで置換して)、成長炉6内を大気圧に戻してから、サセプタ7を取り出す。取り出したサセプタ7には、SiC単結晶基板5が収納されており、SiC単結晶基板5の表面にはSiC単結晶がエピタキシャル成長した膜が成膜されている。
The specific contents of the present invention will be described.
First, a method for producing a SiC single crystal thin film by epitaxially growing a SiC single crystal on a SiC single crystal substrate will be described. As a general method, an SiC single crystal substrate 5 is set on a susceptor 7 (FIG. 2), and this susceptor 7 is placed in a graphite 3 to be induction-heated in a growth furnace 6 (FIG. 1) (FIG. 1, 2). After the inside of the growth furnace is evacuated, hydrogen gas is introduced to adjust the pressure to 1 × 10 4 to 3 × 10 4 Pa. Thereafter, the temperature of the graphite 3 is increased while keeping the pressure constant, and the SiC single crystal substrate is etched in hydrogen chloride by introducing hydrogen or hydrogen chloride at about 1400 to 1500 ° C. for 10 to 30 minutes. This operation is for removing a deteriorated layer on the surface of the SiC single crystal substrate due to polishing or the like to obtain a clean surface. Thereafter, the temperature is raised to 1500 to 1600 ° C. which is a SiC growth temperature, and SiH 4 and C 2 H 4 which are raw material gases are introduced to start the growth of SiC. The SiH 4 gas flow rate is 40-50 cm 3 / min, and the C 2 H 4 gas flow rate is 30-40 cm 3 / min. In this case, the SiC growth rate (thickness increase rate) is 6 to 7 μm / hr. This growth rate is determined in consideration of productivity because the normally required SiC epitaxial growth film has a thickness of about 10 to 20 μm. SiC is grown for a predetermined time, and when a desired film thickness is obtained, the introduction of SiH 4 and C 2 H 4 gas is stopped, and the temperature is lowered while only hydrogen gas is allowed to flow. After the temperature falls to room temperature, the introduction of hydrogen gas is stopped. Next, the inside of the growth furnace 6 is evacuated, an inert gas is introduced into the growth furnace 6 (replacement of the growth chamber with an inert gas), the inside of the growth furnace 6 is returned to atmospheric pressure, and then the susceptor 7 is taken out. The extracted susceptor 7 accommodates the SiC single crystal substrate 5, and a film in which the SiC single crystal is epitaxially grown is formed on the surface of the SiC single crystal substrate 5.

次に、上述のようなSiC単結晶をエピタキシャル成長させて薄膜を作製するSiC単結晶成膜装置に用いられる、本発明のサセプタの上面図を図6(a)に示す。また、図6(a)のサセプタA-A'における断面図を図6(b)に示す。本発明のサセプタは2つの凹部を有している。即ち、SiC単結晶基板を保持するための座ぐり10と、座ぐりの内周囲側壁に沿って形成され、その底部表面が座ぐり底面10aより低くなるようにしたリング状の溝11との2つ凹部である。   Next, FIG. 6A shows a top view of the susceptor of the present invention used in the SiC single crystal film forming apparatus for producing a thin film by epitaxially growing the SiC single crystal as described above. FIG. 6B shows a cross-sectional view of the susceptor AA ′ in FIG. The susceptor of the present invention has two recesses. That is, two of a counterbore 10 for holding the SiC single crystal substrate and a ring-shaped groove 11 formed along the inner peripheral side wall of the counterbore and having a bottom surface lower than the counterbore bottom surface 10a. It is a recess.

特許文献5や特許文献6には、特に、シリコン単結晶基板(シリコンウエーハ)に気相成長する場合であるが、上記と類似して、サセプタの凹状座ぐりの内周部に溝が形成されている。このうち、特許文献6の図2に示された溝8は、座ぐりの周囲側壁が基板側に迫り出した突出部6を有した特殊な座ぐり部にシリコンウエーハを装着しやすくするために施されたものである。また、特許文献5の図1に示された溝5は、半導体集積回路を気相成長で製造する際に、シリコンウエーハが座ぐり部側壁と固着するのを防止するために施されたものであるが、座ぐり内部のシリコンウエーハ支持台(座ぐり底面)がシリコンウエーハよりも大きくなっている。したがって、特許文献5や特許文献6の溝では、本発明の目的は達成できない。本発明では、座ぐりの周囲側壁が基板側に迫り出すことはなく、後述するような溝によって炭化珪素単結晶基板に成長できなかった余分な堆積物を効率的に溜めることができ、本発明の作用効果が得られるものである。   In Patent Document 5 and Patent Document 6, particularly, a case where vapor phase growth is performed on a silicon single crystal substrate (silicon wafer), similar to the above, a groove is formed in the inner peripheral portion of the concave counterbore of the susceptor. Yes. Of these, the groove 8 shown in FIG. 2 of Patent Document 6 is provided to make it easier to attach the silicon wafer to a special counterbore portion having a protruding portion 6 in which the peripheral side wall of the counterbore protrudes toward the substrate side. It has been done. Further, the groove 5 shown in FIG. 1 of Patent Document 5 is provided to prevent the silicon wafer from sticking to the counterbore side wall when the semiconductor integrated circuit is manufactured by vapor phase growth. However, the silicon wafer support (the counterbore bottom surface) inside the counterbore is larger than the silicon wafer. Therefore, the object of the present invention cannot be achieved with the grooves of Patent Document 5 and Patent Document 6. In the present invention, the peripheral side wall of the spot facing does not protrude toward the substrate side, and excess deposits that could not be grown on the silicon carbide single crystal substrate by a groove as described later can be efficiently stored. A working effect can be obtained.

また、特許文献7には、半導体基板にシリコン層を成長させるCVD炉等の薄膜形成装置に使用されるサセプタに関し、半導体基板のオリエンテーションフラット部で一部露出する座ぐり部内に不要なシリコンが堆積して半導体基板と座ぐり部主面との密着性が悪くなるのを防止するために、座ぐり部内の外周縁に沿う溝を設けることが開示されている。しかしながら、前記サセプタでは、半導体基板表面がサセプタ外周上面より低く設置されているので、成長温度の低いシリコン層を形成させる場合には問題にならないが、シリコンより成長温度が遥かに高くなるSiC単結晶のエピタキシャル成長させる場合には、サセプタの座ぐり部側壁の角部にSiCが析出することになり、前記SiC析出物によってSiC単結晶基板がサセプタに固着したり、前記SiC析出物が邪魔になってSiC単結晶基板が取り出せなくなったりする。また、シリコンの成膜では再蒸発することはないが、前記SiC析出物が最蒸発してSiC析出物よりも下にあるSiC単結晶基板上に付着して表面欠陥を引き起こすことになる。   Further, Patent Document 7 relates to a susceptor used in a thin film forming apparatus such as a CVD furnace for growing a silicon layer on a semiconductor substrate. Unnecessary silicon is deposited in a spot facing portion partially exposed at the orientation flat portion of the semiconductor substrate. In order to prevent the adhesion between the semiconductor substrate and the counterbore part main surface from being deteriorated, it is disclosed to provide a groove along the outer peripheral edge in the counterbore part. However, in the susceptor, since the surface of the semiconductor substrate is set lower than the upper surface of the outer periphery of the susceptor, there is no problem when a silicon layer having a low growth temperature is formed, but a SiC single crystal whose growth temperature is much higher than that of silicon. In the case of epitaxial growth, SiC is deposited at the corners of the side wall of the susceptor counterbore, and the SiC single crystal substrate is fixed to the susceptor by the SiC precipitate, or the SiC precipitate becomes an obstacle. The SiC single crystal substrate cannot be taken out. Further, although the silicon film is not re-evaporated in the film formation of silicon, the SiC precipitates are most evaporated and adhere to the SiC single crystal substrate below the SiC precipitates to cause surface defects.

よって、本発明では、サセプタ上面12と座ぐり10内のSiC単結晶基板を支持する座ぐり底面10aとの距離(座ぐりの深さ)Lは、用いられるSiC単結晶基板の厚さ程度である。即ち、Lは、SiC単結晶基板の厚さと同じ、又はSiC単結晶基板の厚さ±50μmの範囲が好ましい。通常、Lは、400μm程度である。   Therefore, in the present invention, the distance (depth of the counterbore) L between the susceptor upper surface 12 and the counterbore bottom surface 10a that supports the SiC single crystal substrate in the counterbore 10 is about the thickness of the SiC single crystal substrate used. . That is, L is preferably the same as the thickness of the SiC single crystal substrate or the range of the thickness of the SiC single crystal substrate ± 50 μm. Usually, L is about 400 μm.

図8に本発明のサセプタ上にSiC単結晶基板を乗せた場合の断面図を示す。図8より明らかなように、SiC単結晶基板5の直径が座ぐり10内のSiC単結晶基板を支持する座ぐり底面10aの直径yよりも大きく、さらにSiC単結晶基板5の外周には、溝11があるため、SiC堆積物13は溝11の上に堆積され、SiC単結晶基板5とSiC単結晶基板を支持する座ぐり底面10aとの密着性は常に良好に保たれている。その結果、SiC単結晶基板の平面内で温度の均一性が良好になる。しかし、実際には、サセプタ回転中の遠心力等によりSiC単結晶基板5が動き、図9のようにSiC単結晶基板中心とサセプタの座ぐり中心とが一致しなくなるのが一般的である。SiC単結晶基板5が、図9のように移動した場合に、もし、座ぐり10内のSiC単結晶基板を支持する座ぐり底面10aが露出するようになると、その露出部にSiCが堆積する。即ち、上述のように、その後の成膜において、設置するSiC単結晶基板が前記SiC堆積物によって支持面10aとの間に隙間ができる。そこで、本発明では、図9のように、SiC単結晶基板5が移動した状態でも、SiC堆積物13が溝11の上のみに堆積されるためには、SiC単結晶基板5の直径をx、座ぐり10内のSiC単結晶基板を支持する座ぐり底面10aの直径をy、溝11の幅をzとすると、
y+z < x < y+2z ・・・[1]
である必要がある。xがy+z以下であると、上述のようにSiC単結晶基板5が移動した場合に、SiC単結晶基板を支持する座ぐり底面10aが露出することになる。一方、xが、特許文献7と同様にy+2zと同じであると、SiC単結晶をエピタキシャル成長させる場合には、SiC単結晶基板と座ぐり部側面や上面との間をSiCが堆積して接着させることになる。xが、y+2zを超えると、SiC単結晶基板5がサセプタの座ぐり10に入らなくなる。よって、xとy+2zとの間には、適度な隙間画ある方が好ましく、具体的には、(y+2z)−xが、SiC単結晶のエピタキシャル成長膜の膜厚以上であるのがより好ましい。
FIG. 8 shows a cross-sectional view when a SiC single crystal substrate is placed on the susceptor of the present invention. As is clear from FIG. 8, the diameter of the SiC single crystal substrate 5 is larger than the diameter y of the counterbore bottom surface 10a supporting the SiC single crystal substrate in the counterbore 10, and the outer periphery of the SiC single crystal substrate 5 is Since there is the groove 11, the SiC deposit 13 is deposited on the groove 11, and the adhesion between the SiC single crystal substrate 5 and the counterbore bottom surface 10a supporting the SiC single crystal substrate is always kept good. As a result, the temperature uniformity is improved in the plane of the SiC single crystal substrate. However, in practice, the SiC single crystal substrate 5 is moved by centrifugal force or the like while the susceptor is rotating, and the center of the SiC single crystal substrate and the counterbore center of the susceptor generally do not coincide as shown in FIG. When the SiC single crystal substrate 5 moves as shown in FIG. 9, if the counterbore bottom 10a supporting the SiC single crystal substrate in the counterbore 10 is exposed, SiC is deposited on the exposed portion. . That is, as described above, in the subsequent film formation, a gap is formed between the SiC single crystal substrate to be installed and the support surface 10a due to the SiC deposit. Therefore, in the present invention, as shown in FIG. 9, even if the SiC single crystal substrate 5 is moved, in order for the SiC deposit 13 to be deposited only on the groove 11, the diameter of the SiC single crystal substrate 5 is set to x. When the diameter of the bottom face 10a of the counterbore supporting the SiC single crystal substrate in the spot face 10 is y and the width of the groove 11 is z,
y + z <x <y + 2z [1]
Need to be. When x is equal to or less than y + z, when the SiC single crystal substrate 5 moves as described above, the counterbore bottom surface 10a that supports the SiC single crystal substrate is exposed. On the other hand, if x is the same as y + 2z as in Patent Document 7, when epitaxially growing a SiC single crystal, SiC is deposited and adhered between the SiC single crystal substrate and the side face or upper surface of the counterbore part. It will be. When x exceeds y + 2z, the SiC single crystal substrate 5 does not enter the counterbore 10 of the susceptor. Therefore, it is preferable that there is an appropriate gap between x and y + 2z. Specifically, it is more preferable that (y + 2z) −x be equal to or greater than the film thickness of the SiC single crystal epitaxial growth film.

更に、溝11の幅zに関し、
0(mm) < z ≦ 4(mm) ・・・[2]
の範囲である必要がある。溝11の幅zの値を大きくして4mmを越えると、溝11の上にあるSiC単結晶基板の領域が増えるため(座ぐり底面10aと接していないSiC単結晶基板5の突き出し部分が増えるため)、その部分での基板温度が大きく下がり、基板温度に関して基板面内の均一性が低下する。溝11の幅zのより好ましい範囲は、
1(mm) ≦ z ≦ 4(mm) ・・・[3]
である。溝幅zの値を1mm未満に小さくすると、溝11の開口部が減少するため、SiC堆積物が溝11の底まで入りにくくなる場合がある。その場合、溝11の側壁にSiCが堆積されるようになり、成膜を繰り返すに伴い、zの値が更に小さくなり、SiC単結晶基板のセットが難しくなる場合がある。即ち、繰り返しの成膜できる回数が少なくなる。よって、生産性を考慮すると、溝幅は1mm以上であることがより好ましい。
Furthermore, regarding the width z of the groove 11,
0 (mm) <z ≤ 4 (mm) ... [2]
Must be in the range. If the value of the width z of the groove 11 is increased to exceed 4 mm, the area of the SiC single crystal substrate on the groove 11 increases (the protruding portion of the SiC single crystal substrate 5 not in contact with the counterbore bottom 10a increases). Therefore, the substrate temperature at that portion is greatly lowered, and the uniformity within the substrate surface is lowered with respect to the substrate temperature. A more preferable range of the width z of the groove 11 is
1 (mm) ≤ z ≤ 4 (mm) ... [3]
It is. If the value of the groove width z is reduced to less than 1 mm, the opening of the groove 11 is reduced, and it may be difficult for the SiC deposit to enter the bottom of the groove 11. In that case, SiC is deposited on the side wall of the groove 11, and as the film formation is repeated, the value of z is further reduced, which may make it difficult to set the SiC single crystal substrate. That is, the number of repeated film formations is reduced. Therefore, in consideration of productivity, the groove width is more preferably 1 mm or more.

2インチ基板(x=50.8mm)の場合を例にして、y、zの関係を図10に示す。上記式[1]の関係から、
(x−y)/2 < z < x−y ・・・[4]
に表せることができ、かつ上記式[2]を満足するものあることから、図10のz=50.8−y、z=(50.8−y)/2、z=4の3本の直線で囲まれた三角形の内部が、本発明の効果が得られるyとzの組み合わせになる。
Taking the case of a 2-inch substrate (x = 50.8 mm) as an example, the relationship between y and z is shown in FIG. From the relationship of the above formula [1],
(xy) / 2 <z <xy ... [4]
10 and satisfying the above equation [2], the three of z = 50.8−y, z = (50.8−y) / 2, and z = 4 in FIG. The inside of the triangle surrounded by a straight line is a combination of y and z that provides the effects of the present invention.

溝11の底部表面と座ぐり10内のSiC単結晶基板を支持する座ぐり底面10aとの距離S(図7)は、
0(μm) < S < 600(μm)
の範囲であるのが、より好ましい。成膜を繰り返し行い、その回数を重ねると、SiC堆積物13の高さが増し、座ぐり10のSiC単結晶基板を支持する座ぐり底面10aよりも高くSiCが堆積され、SiC単結晶基板5がSiC堆積物13の上に乗った状態でサセプタに載置される。このようになると、SiC単結晶基板5と座ぐり10の座ぐり底面10aとの密着性が悪くなり、SiC単結晶基板5の表面における温度分布の均一性が低下する。この不都合を避けるためには、上記距離S(段差)を大きくすれば良い。但し、距離Sが600μmを超えると、その部分からの放熱が多くなり、SiC単結晶基板5の表面における温度分布の均一性が低下する場合がある。生産性を考慮すると、更に好ましくは、
400(μm) ≦ S ≦ 500(μm)
である。
The distance S (FIG. 7) between the bottom surface of the groove 11 and the counterbore bottom surface 10a that supports the SiC single crystal substrate in the counterbore 10 is
0 (μm) <S <600 (μm)
It is more preferable that it is in the range. When the film formation is repeated and repeated, the height of the SiC deposit 13 is increased, and SiC is deposited higher than the counterbore bottom surface 10a that supports the SiC single crystal substrate of the counterbore 10, and the SiC single crystal substrate 5 Is placed on the susceptor while on the SiC deposit 13. If it becomes like this, the adhesiveness of the SiC single crystal substrate 5 and the spot face 10a of the spot facing 10 will worsen, and the uniformity of the temperature distribution in the surface of the SiC single crystal substrate 5 will fall. In order to avoid this inconvenience, the distance S (step) may be increased. However, when the distance S exceeds 600 μm, heat radiation from the portion increases, and the uniformity of the temperature distribution on the surface of the SiC single crystal substrate 5 may decrease. Considering productivity, more preferably,
400 (μm) ≦ S ≦ 500 (μm)
It is.

サセプタの材質は、通常、黒鉛(グラファイト)等の炭素材料であるが、高融点材料、黒鉛コート高融点材料、高融点材料コート黒鉛等の黒鉛以外の材料を部分的に使用してもよい。例えば、水素中でのグラファイト加熱による炭化水素の発生を避けるため、グラファイトの上にTaCをコーティングしたサセプタも用いられる。   The material of the susceptor is usually a carbon material such as graphite (graphite), but a material other than graphite such as a high melting point material, a graphite coated high melting point material, or a high melting point material coated graphite may be partially used. For example, in order to avoid generation of hydrocarbons due to graphite heating in hydrogen, a susceptor in which TaC is coated on graphite is also used.

(実施例1)
2インチ(50.8mm)ウェーハ用SiC単結晶インゴットから、スライスし、粗削りとダイヤモンド砥粒による通常研磨を実施し、400μmの厚さの4H型のポリタイプを有するSiC単結晶基板を作製した。前記SiC単結晶基板のSi面に、SiC単結晶をエピタキシャル成長させて薄膜を作製した。SiC単結晶基板のオフ角は8°である。用いたサセプタの構造は、図8に示したyが48mm、zが2mmであり、また、図7に示した溝の底部表面と座ぐり内のSiC単結晶基板を支持する座ぐり底面との距離Sが450μm、サセプタ上面12と座ぐり底面10aとの距離Lが400μmである。なお、このサセプタは、新品の状態から下記と同条件で20回成長を行った後のものを用いており、その間にサセプタ上のSiC堆積物の除去は行っていない。
(Example 1)
From a SiC single crystal ingot for a 2 inch (50.8 mm) wafer, it was sliced and subjected to rough grinding and normal polishing with diamond abrasive grains to produce a SiC single crystal substrate having a 4H type polytype with a thickness of 400 μm. A SiC single crystal was epitaxially grown on the Si surface of the SiC single crystal substrate to produce a thin film. The off-angle of the SiC single crystal substrate is 8 °. The structure of the susceptor used is that y shown in FIG. 8 is 48 mm and z is 2 mm, and the bottom surface of the groove shown in FIG. 7 and the bottom face of the counterbore that supports the SiC single crystal substrate in the counterbore are shown. The distance S is 450 μm, and the distance L between the susceptor upper surface 12 and the counterbore bottom surface 10a is 400 μm. Note that this susceptor is used after it has been grown 20 times from the new condition under the same conditions as described below, and during this time, the SiC deposit on the susceptor is not removed.

成膜の手順としては、このサセプタに前記SiC単結晶基板を入れて成長炉内にセットし、成長炉内を真空排気した後、水素ガスを150000cm3/minで導入しながら圧力を1.0×104Paに調整した。その後、サセプタを回転し、圧力を一定に保ちながら成長炉の温度を上げ、1550℃に到達した後、塩化水素を1000cm3/min流し、20分間基板のエッチングを行った。エッチング後、温度を1600℃まで上げ、SiH4流量を40cm3/min、C2H4流量を30cm3/min(C/Siモル比=1.5)、ドーピングのためのN2流量を10cm3/min流し、SiC単結晶のエピタキシャル薄膜を10μmの膜厚に成長させた。この時の成長速度は7μm/hr程度であった。 As a film forming procedure, the SiC single crystal substrate was placed in this susceptor, set in a growth furnace, the inside of the growth furnace was evacuated, and a pressure of 1.0 was applied while introducing hydrogen gas at 150,000 cm 3 / min. Adjusted to × 10 4 Pa. Thereafter, the susceptor was rotated, the temperature of the growth furnace was raised while keeping the pressure constant, and after reaching 1550 ° C., hydrogen chloride was flowed at 1000 cm 3 / min and the substrate was etched for 20 minutes. After etching, the temperature was raised to 1600 ° C., SiH 4 flow rate of 40cm 3 / min, C 2 H 4 flow rate 30 cm 3 / min (C / Si molar ratio = 1.5), 10 cm a N 2 flow for doping 3 / The SiC single crystal epitaxial thin film was grown to a thickness of 10 μm. The growth rate at this time was about 7 μm / hr.

このようにして、SiC単結晶をエピタキシャル成長させて成膜した基板の、膜厚の面内分布を図11に、ドーピングの面内分布を図12に示す。σ/meanで表した膜厚の面内分布ばらつきは2.3%、ドーピングの面内分布ばらつきは4.0%と良好であった。特に、SiC単結晶基板の端部におけるデータのばらつきが小さくなっていることから、本発明のサセプタにおいては、SiC単結晶薄膜の成膜を繰り返し行うことによって生じるSiC堆積物が起因となるSiC単結晶基板の表面温度の不均一性が抑制されてことがわかる。   FIG. 11 shows the in-plane distribution of the film thickness and FIG. 12 shows the in-plane distribution of the doping of the substrate formed by epitaxially growing the SiC single crystal in this way. The variation in the in-plane distribution of the film thickness expressed in σ / mean was 2.3%, and the variation in the in-plane distribution of doping was 4.0%, which was good. In particular, since the variation in data at the edge of the SiC single crystal substrate is small, in the susceptor of the present invention, the SiC single crystal caused by the SiC deposit caused by repeated deposition of the SiC single crystal thin film is caused. It can be seen that the surface temperature non-uniformity of the crystal substrate is suppressed.

(実施例2)
実施例1と同様にスライス、粗削り、通常研磨を行った、4H型のポリタイプを有する3インチ(76mm)のSiC単結晶基板(厚さ400μm)のSi面に、SiC単結晶をエピタキシャル成長させて薄膜を作製した。SiC単結晶基板のオフ角は8°である。成膜手順、温度等の成膜条件は、実施例1と同様である。用いたサセプタの構造は、図8に示したyが72.5mm、zが3mmであり、また、図7に示した溝の底部表面と座ぐり内のSiC単結晶基板を支持する座ぐり底面との距離Sが450μmであり、サセプタ上面12と座ぐり底面10aとの距離Lが375μmである。なお、このサセプタは、新品の状態から下記と同条件で10回成長を行った後のものを用いており、その間にサセプタ上のSiC堆積物の除去は行っていない。
(Example 2)
The SiC single crystal was epitaxially grown on the Si surface of a 3 inch (76 mm) SiC single crystal substrate (thickness 400 μm) having a 4H type polytype that had been sliced, roughened, and normally polished as in Example 1. A thin film was prepared. The off-angle of the SiC single crystal substrate is 8 °. The film forming conditions such as the film forming procedure and temperature are the same as those in the first embodiment. The structure of the susceptor used is that y shown in FIG. 8 is 72.5 mm, z is 3 mm, and the bottom surface of the groove shown in FIG. 7 and the bottom face of the counterbore that supports the SiC single crystal substrate in the counterbore The distance S between the susceptor upper surface 12 and the counterbore bottom surface 10a is 375 μm. Note that this susceptor is used after it has been grown 10 times under the same conditions as described below from a new state, and during that time, SiC deposits on the susceptor are not removed.

成膜後のSiC単結晶のエピタキシャル成長膜について、膜厚の面内分布を図13に、ドーピングの面内分布を図14に示す。σ/meanで表した膜厚の面内分布ばらつきは4.4%、ドーピングの面内分布ばらつきは6.6%であり、この場合もSiC単結晶基板の端部におけるデータのばらつきが小さくなっていた。   FIG. 13 shows the in-plane distribution of the film thickness and FIG. 14 shows the in-plane distribution of the doping of the SiC single crystal epitaxially grown film after film formation. The in-plane distribution variation of the film thickness expressed in σ / mean is 4.4%, and the in-plane distribution variation of doping is 6.6%. In this case as well, the data variation at the edge of the SiC single crystal substrate is reduced. It was.

(実施例3〜7)
実施例1と同様にスライス、粗削り、通常研磨を行った、4H型のポリタイプを有する2インチ(50.8mm)のSiC単結晶基板(厚さ400μm)のSi面に、SiC単結晶をエピタキシャル成長させて薄膜を作製した。SiC単結晶基板のオフ角は8°である。成膜手順、温度等の成膜条件は、実施例1と同様である。なお、サセプタは、新品の状態から実施例1と同条件で10回成長を行った後のものを用いており、その間にサセプタ上のSiC堆積物の除去は行っていない。用いたサセプタの構造と、成膜後のSiC単結晶のエピタキシャル成長膜についてσ/meanで表した膜厚の面内分布とドーピングの面内分布ばらつきを、表1にまとめて示す。表1中のx、y、z、S及びLの定義は実施例1の場合と同様である。
(Examples 3 to 7)
The SiC single crystal was epitaxially grown on the Si surface of a 2 inch (50.8 mm) SiC single crystal substrate (thickness 400 μm) having a 4H type polytype that had been sliced, roughened, and normally polished as in Example 1. A thin film was prepared. The off-angle of the SiC single crystal substrate is 8 °. The film forming conditions such as the film forming procedure and temperature are the same as those in Example 1. In addition, the susceptor is used after it has been grown 10 times under the same conditions as in Example 1 from a new state, and during that time, the SiC deposit on the susceptor is not removed. Table 1 summarizes the structure of the susceptor used, the in-plane distribution of the film thickness expressed in σ / mean, and the in-plane distribution of doping in the SiC single crystal epitaxially grown film after film formation. The definitions of x, y, z, S and L in Table 1 are the same as those in the first embodiment.

実施例3より、溝の底部表面と座ぐり内のSiC単結晶基板を支持する座ぐり底面との距離Sが大きくなると、その部分からの放熱によりSiC単結晶基板の表面温度の不均一性が増し、本発明の作用効果の得られる許容範囲であるが、ドーピングの面内分布のばらつきが大きくなる傾向がある。また、実施例5では、膜厚の面内分布とドーピングの面内分布は、良好であった。但し、Sが100μmと浅いため、更に成膜回数を増やすと、SiC堆積物の上面がSiC単結晶基板を支持する座ぐり底面よりも高くなり始め、SiC単結晶基板と座ぐり底面との密着性が悪くなり、膜厚の面内分布やドーピングの面内分布ばらつきが大きくなる。したがって、Sに関しては、膜厚の面内分布とドーピングの面内分布、及び、成膜効率から、特に、400〜500μmがより好ましい。   From Example 3, when the distance S between the bottom surface of the groove and the bottom surface of the counterbore that supports the SiC single crystal substrate in the counterbore increases, the surface temperature of the SiC single crystal substrate becomes non-uniform due to heat radiation from that portion. In addition, the variation in the in-plane distribution of doping tends to be large, although it is an allowable range in which the effects of the present invention can be obtained. Further, in Example 5, the in-plane distribution of film thickness and the in-plane distribution of doping were good. However, since S is as shallow as 100 μm, if the number of depositions is further increased, the top surface of the SiC deposit begins to be higher than the bottom face of the counterbore that supports the SiC single crystal substrate, and the SiC single crystal substrate and the bottom face of the counterbore are closely attached. As a result, the in-plane distribution of the film thickness and the in-plane distribution variation of the doping increase. Therefore, with respect to S, 400 to 500 μm is more preferable, particularly from the in-plane distribution of the film thickness, the in-plane distribution of doping, and the film formation efficiency.

実施例6については、膜厚の面内分布とドーピングの面内分布は、良好であった。但し、本発明の範囲内であるが、zが小さいため、溝の側壁に付着したSiC堆積物によって、SiC単結晶基板がサセプタ内に収納し難くなるという傾向が見られた。特に、更に成膜回数を増やすと、前記傾向が著しくなった。実施例7は、実施例6よりもzが大きくなっているため、実施例6で見られたSiC単結晶基板のサセプタ内への収納に手間がかかるということはこの時点では生じていない。したがって、zに関しては、1〜4mmがより好ましい。   For Example 6, the in-plane distribution of film thickness and the in-plane distribution of doping were good. However, within the scope of the present invention, since z was small, there was a tendency that the SiC single crystal substrate was difficult to be accommodated in the susceptor due to SiC deposits adhering to the sidewalls of the grooves. In particular, when the number of film formations was further increased, the above tendency became remarkable. In Example 7, z is larger than that in Example 6, so that it does not take time to store the SiC single crystal substrate in Example 6 in the susceptor. Therefore, regarding z, 1-4 mm is more preferable.

また、Lに関して、400μm厚みの基板に対して、±50μmであれば、良好なSiC単結晶のエピタキシャル成長膜が得られている。例えば、実施例7と同じ条件で、Lを325μmにした場合には、基板がサセプタ上面から浮き上がり過ぎて、膜厚のばらつきが大きくなる等良好な膜が得られなかった。一方、Lを475μmにした場合には、基板がサセプタ上面から下になり過ぎて、サセプタの座ぐり部側壁の角部にSiCが析出し、その再蒸発によって得られた膜に欠陥が生じた。   When L is ± 50 μm with respect to a 400 μm thick substrate, a good SiC single crystal epitaxially grown film is obtained. For example, when L was set to 325 μm under the same conditions as in Example 7, a good film could not be obtained, for example, the substrate was too lifted from the upper surface of the susceptor, resulting in large variations in film thickness. On the other hand, when L was 475 μm, the substrate was too low from the upper surface of the susceptor, SiC was deposited on the corners of the side wall of the susceptor, and defects were generated in the film obtained by the re-evaporation. .

Figure 2011018772
Figure 2011018772

(比較例1)
比較例として、実施例1と同様にスライス、粗削り、通常研磨を行った、4H型のポリタイプを有する2インチ(50.8mm)のSiC単結晶基板(厚さ400μm)のSi面に、SiC単結晶をエピタキシャル成長させて薄膜を作製した。SiC単結晶基板のオフ角は8°である。成膜手順、温度等の成膜条件は、実施例1と同様であるが、使用したサセプタは座ぐり底面に溝11のない従来型(x=50.8mm、y=51mm、z=0mm、S=0μm、L=400μm)であり、新品の状態から20回成長を行った後のものを用い、その間にSiC堆積物の除去は行っていない。成膜後のSiC単結晶のエピタキシャル成長膜について、膜厚の面内分布を図15に、ドーピングの面内分布を図16に示す。σ/meanで表した膜厚の面内分布ばらつきは6.0%、ドーピングの面内分布ばらつきは11.8%と、実施例1に比べて悪化している。特に、図12と図16の比較から、図16ではSiC単結晶基板の端部での値が大きく変動していることが分かる。これは、SiC単結晶基板のこの部分の温度が下がっていることを示しており、20回成長を行ったことによるSiC堆積物の上に、SiC単結晶基板が乗っているために生じたものである。
(Comparative Example 1)
As a comparative example, on the Si surface of a 2 inch (50.8 mm) SiC single crystal substrate (thickness 400 μm) having a 4H-type polytype that was sliced, roughly ground, and normally polished in the same manner as in Example 1, SiC single Crystals were epitaxially grown to produce a thin film. The off-angle of the SiC single crystal substrate is 8 °. The film forming conditions such as the film forming procedure and temperature are the same as in Example 1, but the susceptor used is a conventional type (x = 50.8 mm, y = 51 mm, z = 0 mm, S) with no groove 11 on the bottom face. = 0 µm, L = 400 µm), and after the growth was performed 20 times from a new state, SiC deposits were not removed during that time. FIG. 15 shows the in-plane distribution of the film thickness and FIG. 16 shows the in-plane distribution of the doping of the SiC single crystal epitaxially grown film after film formation. The in-plane distribution variation of the film thickness expressed by σ / mean is 6.0%, and the in-plane distribution variation of doping is 11.8%, which is worse than that of Example 1. In particular, from the comparison between FIG. 12 and FIG. 16, it can be seen that the value at the end of the SiC single crystal substrate varies greatly in FIG. This indicates that the temperature of this part of the SiC single crystal substrate has decreased, and this occurred because the SiC single crystal substrate is on top of the SiC deposit resulting from the 20th growth. It is.

(比較例2〜5)
実施例1と同様にスライス、粗削り、通常研磨を行った、4H型のポリタイプを有する2インチ(50.8mm)のSiC単結晶基板(厚さ400μm)のSi面に、SiC単結晶をエピタキシャル成長させて薄膜を作製した。SiC単結晶基板のオフ角は8°である。成膜手順、温度等の成膜条件は、実施例1と同様である。なお、サセプタは、新品の状態から実施例1と同条件で20回成長を行った後のものを用いており、その間にサセプタ上のSiC堆積物の除去は行っていない。用いたサセプタの構造と、成膜後のSiC単結晶のエピタキシャル成長膜についてσ/meanで表した膜厚の面内分布とドーピングの面内分布のばらつきを、表2にまとめて示す。
(Comparative Examples 2 to 5)
A SiC single crystal is epitaxially grown on a Si surface of a 2 inch (50.8 mm) SiC single crystal substrate (thickness 400 μm) having a 4H type polytype that has been sliced, roughed, and normally polished as in Example 1. A thin film was prepared. The off-angle of the SiC single crystal substrate is 8 °. The film forming conditions such as the film forming procedure and temperature are the same as those in Example 1. In addition, the susceptor is used after it has been grown 20 times under the same conditions as in Example 1 from a new state, and during that time, the SiC deposit on the susceptor is not removed. Table 2 summarizes the structure of the susceptor used and the variations in the in-plane distribution of the film thickness and the in-plane distribution of the doping expressed in σ / mean for the epitaxially grown SiC single crystal film.

比較例2は、zが本発明の上限値を超えた場合の例であり、座ぐり底部の溝幅が大きすぎ、その部分からの熱放散が大きいため、膜厚の面内分布とドーピングの面内分布のばらつきが大きくなっている。また、比較例3はy+z=xの場合、比較例4及び5はy+z>xの場合であり、既に20回の成長を行った後のサセプタを使用しているため、その間にSiC単結晶基板を支持する座ぐり底面の端、あるいは底面上に付着したSiC堆積物のため、SiC単結晶基板と座ぐり底面の密着性が悪くなり、SiC単結晶基板の表面温度の不均一性が増して、ばらつきが大きくなっている。特に、比較例5は、単結晶基板よりも座ぐり底面の方が大きい場合であり、特許文献5と同様の構成になるものである。   Comparative Example 2 is an example in which z exceeds the upper limit of the present invention. Since the groove width of the counterbore bottom is too large and the heat dissipation from that part is large, the in-plane distribution of film thickness and doping The variation in in-plane distribution is large. In addition, Comparative Example 3 is a case where y + z = x, and Comparative Examples 4 and 5 are a case where y + z> x. Since a susceptor after 20 growths has already been performed, a SiC single crystal substrate is used during that time. Because of SiC deposits attached to the edge or the bottom of the counterbore that supports the substrate, the adhesion between the SiC single crystal substrate and the bottom surface of the counterbore deteriorates, and the surface temperature non-uniformity of the SiC single crystal substrate increases. The variation is large. In particular, Comparative Example 5 is a case where the counterbore bottom is larger than the single crystal substrate, and has the same configuration as Patent Document 5.

Figure 2011018772
Figure 2011018772

本発明によれば、SiC単結晶基板上へのSiC単結晶をエピタキシャル成長させて成膜するSiC単結晶成膜装置において、SiC単結晶のエピタキシャル成長させた薄膜に関し、膜厚やドーピング値の基板面内での分布が均一で、高品質なSiC単結晶エピタキシャル膜を有するSiC単結晶基板を提供することが可能である。そのため、このようなSiC単結晶基板上に電子デバイスを形成すれば、デバイスの特性及び歩留まりが向上する。本実施例においては、SiC単結晶基板を1枚のみセットした場合の結果を示しているが、サセプタを大きくし、SiC単結晶基板の枚数を増やした場合でも、その効果は同様である。   According to the present invention, in a SiC single crystal film forming apparatus for epitaxially growing a SiC single crystal on a SiC single crystal substrate, the present invention relates to a thin film obtained by epitaxial growth of a SiC single crystal, with respect to the film thickness and doping value within the substrate surface. It is possible to provide a SiC single crystal substrate having a uniform SiC distribution and having a high quality SiC single crystal epitaxial film. Therefore, if an electronic device is formed on such a SiC single crystal substrate, device characteristics and yield are improved. In the present embodiment, the result when only one SiC single crystal substrate is set is shown, but the effect is the same even when the susceptor is increased and the number of SiC single crystal substrates is increased.

1 石英管
2 断熱材
3 グラファイト
4 誘導加熱コイル
5 SiC単結晶基板
6 成長室
7 サセプタ
7a サセプタ上面
8 座ぐり
9 SiC堆積物
10 座ぐり
10a 座ぐり内のSiC単結晶を支持する座ぐり底面
11 溝
12 サセプタ上面
13 SiC堆積物
DESCRIPTION OF SYMBOLS 1 Quartz tube 2 Thermal insulation material 3 Graphite 4 Induction heating coil 5 SiC single crystal substrate 6 Growth chamber 7 Susceptor 7a Upper surface of susceptor 8 Counterbore 9 SiC deposit 10 Counterbore 10a Counterbore bottom surface 11 supporting the SiC single crystal in the pocket Groove 12 Upper surface of susceptor 13 SiC deposit

Claims (3)

炭化珪素単結晶をエピタキシャル成長させて薄膜を作製する炭化珪素単結晶成膜装置に使用され、炭化珪素単結晶基板を載置するサセプタであって、該サセプタは、炭化珪素単結晶基板を収容する円形凹状の座ぐりを有し、前記座ぐりは、炭化珪素単結晶基板を載置する座ぐり底面と、収容した基板の周縁を取り囲む周囲側壁と、周囲側壁に沿ってサセプタの厚み方向に掘り込まれたリング状の溝とを備え、前記炭化珪素単結晶基板の直径x、前記座ぐり底面の直径y、及び前記溝幅zとの関係が、
y+z < x < y+2z
であって、かつ、
0(mm)< z ≦ 4(mm)
を満たすことを特徴とする炭化珪素単結晶成膜装置用サセプタ。
A susceptor used for a silicon carbide single crystal film forming apparatus for epitaxially growing a silicon carbide single crystal to form a thin film and mounting a silicon carbide single crystal substrate, the susceptor being a circular shape that accommodates the silicon carbide single crystal substrate The counterbore has a concave counterbore, and the counterbore is dug in the thickness direction of the susceptor along the counterbore bottom surface on which the silicon carbide single crystal substrate is placed, the peripheral side wall surrounding the periphery of the accommodated substrate, and the peripheral side wall. A ring-shaped groove, and the relationship between the diameter x of the silicon carbide single crystal substrate, the diameter y of the counterbore bottom, and the groove width z is
y + z <x <y + 2z
And
0 (mm) <z ≤ 4 (mm)
A susceptor for a silicon carbide single crystal film-forming apparatus, characterized in that:
前記溝の底部表面から前記座ぐり底面までの距離Sが、
0(μm)< S <600(μm)
であることを特徴とする請求項1記載の炭化珪素単結晶成膜装置用サセプタ。
The distance S from the bottom surface of the groove to the counterbore bottom is:
0 (μm) <S <600 (μm)
The susceptor for a silicon carbide single crystal film forming apparatus according to claim 1.
前記座ぐり底面からサセプタ上面までの距離Lが、収容する炭化珪素単結晶基板の厚さに対して±50μmの範囲内である請求項1又は2に記載の炭化珪素単結晶成膜装置用サセプタ。   3. The susceptor for a silicon carbide single crystal film forming apparatus according to claim 1, wherein a distance L from the counterbore bottom surface to the susceptor upper surface is within a range of ± 50 μm with respect to a thickness of the silicon carbide single crystal substrate to be accommodated. .
JP2009162369A 2009-07-09 2009-07-09 Susceptor for silicon carbide single crystal film forming device Pending JP2011018772A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009162369A JP2011018772A (en) 2009-07-09 2009-07-09 Susceptor for silicon carbide single crystal film forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009162369A JP2011018772A (en) 2009-07-09 2009-07-09 Susceptor for silicon carbide single crystal film forming device

Publications (1)

Publication Number Publication Date
JP2011018772A true JP2011018772A (en) 2011-01-27

Family

ID=43596343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009162369A Pending JP2011018772A (en) 2009-07-09 2009-07-09 Susceptor for silicon carbide single crystal film forming device

Country Status (1)

Country Link
JP (1) JP2011018772A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103374713A (en) * 2012-04-19 2013-10-30 东京毅力科创株式会社 Substrate processing apparatus
JP2015103692A (en) * 2013-11-26 2015-06-04 株式会社デンソー Semiconductor manufacturing apparatus
WO2017043165A1 (en) * 2015-09-11 2017-03-16 住友電気工業株式会社 Silicon carbide epitaxial substrate, and method for manufacturing silicon carbide semiconductor device
JP2017109900A (en) * 2015-12-16 2017-06-22 富士電機株式会社 Epitaxial growth system, epitaxial growth method, and production method of semiconductor element
WO2019049469A1 (en) * 2017-09-07 2019-03-14 昭和電工株式会社 Susceptor, cvd device, and method for manufacturing epitaxial wafer
WO2020115962A1 (en) * 2018-12-03 2020-06-11 株式会社アルバック Film forming apparatus and film forming method
JP2020524892A (en) * 2017-06-23 2020-08-20 ジュソン エンジニアリング カンパニー リミテッド Substrate support device
CN111863665A (en) * 2020-07-31 2020-10-30 西安奕斯伟硅片技术有限公司 Silicon wafer heating device
CN112626477A (en) * 2019-12-19 2021-04-09 鑫天虹(厦门)科技有限公司 Carrying platform assembly

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01291421A (en) * 1988-05-19 1989-11-24 Toshiba Corp Vapor growth apparatus
JP2002343727A (en) * 2001-05-21 2002-11-29 Hitachi Ltd Method and device for growing crystal and method for manufacturing semiconductor device
JP2005142529A (en) * 2003-10-16 2005-06-02 Tokyo Electron Ltd Deposition apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01291421A (en) * 1988-05-19 1989-11-24 Toshiba Corp Vapor growth apparatus
JP2002343727A (en) * 2001-05-21 2002-11-29 Hitachi Ltd Method and device for growing crystal and method for manufacturing semiconductor device
JP2005142529A (en) * 2003-10-16 2005-06-02 Tokyo Electron Ltd Deposition apparatus

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101572309B1 (en) 2012-04-19 2015-11-26 도쿄엘렉트론가부시키가이샤 Substrate processing apparatus
CN103374713A (en) * 2012-04-19 2013-10-30 东京毅力科创株式会社 Substrate processing apparatus
JP2015103692A (en) * 2013-11-26 2015-06-04 株式会社デンソー Semiconductor manufacturing apparatus
WO2017043165A1 (en) * 2015-09-11 2017-03-16 住友電気工業株式会社 Silicon carbide epitaxial substrate, and method for manufacturing silicon carbide semiconductor device
JPWO2017043165A1 (en) * 2015-09-11 2017-09-07 住友電気工業株式会社 Silicon carbide epitaxial substrate and method for manufacturing silicon carbide semiconductor device
JP2017109900A (en) * 2015-12-16 2017-06-22 富士電機株式会社 Epitaxial growth system, epitaxial growth method, and production method of semiconductor element
JP2020524892A (en) * 2017-06-23 2020-08-20 ジュソン エンジニアリング カンパニー リミテッド Substrate support device
WO2019049469A1 (en) * 2017-09-07 2019-03-14 昭和電工株式会社 Susceptor, cvd device, and method for manufacturing epitaxial wafer
JP2019047085A (en) * 2017-09-07 2019-03-22 昭和電工株式会社 Susceptor, cvd apparatus and method for manufacturing epitaxial wafer
WO2020115962A1 (en) * 2018-12-03 2020-06-11 株式会社アルバック Film forming apparatus and film forming method
KR20210011443A (en) * 2018-12-03 2021-02-01 가부시키가이샤 아루박 Film formation apparatus and film formation method
CN112334595A (en) * 2018-12-03 2021-02-05 株式会社爱发科 Film forming apparatus and film forming method
JPWO2020115962A1 (en) * 2018-12-03 2021-09-02 株式会社アルバック Film formation equipment and film formation method
JP7093850B2 (en) 2018-12-03 2022-06-30 株式会社アルバック Film forming equipment and film forming method
TWI773926B (en) * 2018-12-03 2022-08-11 日商愛發科股份有限公司 Deposition apparatus and deposition method
KR102461306B1 (en) * 2018-12-03 2022-10-31 가부시키가이샤 아루박 Film forming apparatus and film forming method
CN112626477A (en) * 2019-12-19 2021-04-09 鑫天虹(厦门)科技有限公司 Carrying platform assembly
CN111863665A (en) * 2020-07-31 2020-10-30 西安奕斯伟硅片技术有限公司 Silicon wafer heating device
CN111863665B (en) * 2020-07-31 2024-03-15 西安奕斯伟材料科技股份有限公司 Silicon wafer heating device

Similar Documents

Publication Publication Date Title
JP2011018772A (en) Susceptor for silicon carbide single crystal film forming device
JP4719314B2 (en) Epitaxial silicon carbide single crystal substrate and manufacturing method thereof
JP4880052B2 (en) Epitaxial silicon carbide single crystal substrate and manufacturing method thereof
CN107709635B (en) Method for producing epitaxial silicon carbide single crystal wafer
JP4987792B2 (en) Epitaxial silicon carbide single crystal substrate manufacturing method
JP4954654B2 (en) Epitaxial silicon carbide single crystal substrate and manufacturing method thereof
JP5304713B2 (en) Silicon carbide single crystal substrate, silicon carbide epitaxial wafer, and thin film epitaxial wafer
JP6742477B2 (en) Epitaxial silicon carbide single crystal wafer manufacturing method and epitaxial silicon carbide single crystal wafer
JPWO2016010126A1 (en) Method for manufacturing epitaxial silicon carbide wafer
JP6601956B2 (en) Wafer support, SiC epitaxial wafer manufacturing apparatus and method including the same
JP5786759B2 (en) Method for manufacturing epitaxial silicon carbide wafer
JP5161748B2 (en) Vapor growth susceptor, vapor growth apparatus, and epitaxial wafer manufacturing method
JP5664534B2 (en) Method for manufacturing epitaxial silicon carbide wafer
JP2014024703A (en) Method of producing silicon carbide single crystal
JP5040333B2 (en) Vapor growth susceptor, vapor growth apparatus and vapor growth method
JP2022020995A (en) Manufacturing method of silicon carbide epitaxial wafer
JP2015198213A (en) Method of manufacturing epitaxial silicon carbide wafer, and holde for silicon carbide single cristal substrate used for the same
JP2005314167A (en) Seed crystal for use in silicon carbide single crystal growth, manufacturing method thereof, and method for growing crystal using it
JP7255473B2 (en) Method for manufacturing polycrystalline silicon carbide substrate
JP2021113136A (en) MEMBER FOR MANUFACTURING SEMICONDUCTOR HAVING SiC COATING FILM AND METHOD FOR PRODUCING MEMBER THEREFOR, AND METHOD FOR REMOVING POLYSILICON CARBIDE DEPOSITED ON MEMBER THEREFOR
JP2017017084A (en) Method for manufacturing silicon carbide epitaxial substrate and epitaxial growth apparatus
JP2012121749A (en) SiC SEMICONDUCTOR SELF-SUPPORTING SUBSTRATE AND SiC SEMICONDUCTOR ELECTRONIC DEVICE
JP6628581B2 (en) Manufacturing method of epitaxial silicon carbide single crystal wafer
JP6628673B2 (en) Manufacturing method of epitaxial silicon carbide single crystal wafer
JP2017065968A (en) Graphite crucible for producing silicon carbide single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120828

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130305