JP2009173503A - Single crystal pulling device and method for manufacturing single crystal - Google Patents

Single crystal pulling device and method for manufacturing single crystal Download PDF

Info

Publication number
JP2009173503A
JP2009173503A JP2008016257A JP2008016257A JP2009173503A JP 2009173503 A JP2009173503 A JP 2009173503A JP 2008016257 A JP2008016257 A JP 2008016257A JP 2008016257 A JP2008016257 A JP 2008016257A JP 2009173503 A JP2009173503 A JP 2009173503A
Authority
JP
Japan
Prior art keywords
single crystal
crucible
radiation shield
melt
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008016257A
Other languages
Japanese (ja)
Other versions
JP4907568B2 (en
Inventor
Toshio Hisaichi
俊雄 久一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Covalent Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Covalent Materials Corp filed Critical Covalent Materials Corp
Priority to JP2008016257A priority Critical patent/JP4907568B2/en
Publication of JP2009173503A publication Critical patent/JP2009173503A/en
Application granted granted Critical
Publication of JP4907568B2 publication Critical patent/JP4907568B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for reducing carbon concentration in a single crystal and preventing occurrence of dislocation even when a single crystal to be grown has a large diameter. <P>SOLUTION: A single crystal pulling device is disclosed, which has a radiation shield 6 disposed above a crucible 3 and shielding a single crystal C against radiation heat, gas supply means 13, 14, 17 supplying an inert gas G from above the radiation shield 6 into the crucible 3, and discharge means 18, 19 discharging the inert gas G passing through the crucible 3 to the outside of a furnace 2. The radiation shield 6 is placed in such a manner that a gap area between the outer circumference of the shield 6 and the inner circumference of the crucible 3 at the nearest portion ranges from 10% to less than 35% of the liquid surface area of a melt M and that a gap dimension between the lower end of the radiation shield 6 and the melt liquid surface is smaller than the width dimension in a radial direction of the lower end face of the radiation shield 6. The inert gas G supplied to the crucible 3 by the gas supply means 13, 14, 17 is discharged by the discharge means 18, 19 via the gap formed by the placement of the radiation shield 6. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、チョクラルスキー法(以下、「CZ法」という)によって単結晶を育成しながら引上げる単結晶引上装置及び単結晶の製造方法に関する。   The present invention relates to a single crystal pulling apparatus and a single crystal manufacturing method for pulling up while growing a single crystal by the Czochralski method (hereinafter referred to as “CZ method”).

シリコン単結晶の育成に関し、CZ法が広く用いられている。この方法は、ルツボ内に収容されたシリコンの溶融液の表面に種結晶を接触させ、ルツボを回転させるとともに、この種結晶を反対方向に回転させながら上方へ引上げることによって、種結晶の下端に単結晶を形成していくものである。   The CZ method is widely used for the growth of silicon single crystals. In this method, the seed crystal is brought into contact with the surface of the silicon melt contained in the crucible, the crucible is rotated, and the seed crystal is pulled upward while rotating in the opposite direction. In this way, a single crystal is formed.

図8に示すように、従来のCZ法を用いた引上げ法は、先ず、石英ガラスルツボ51に原料シリコンを装填し、カーボンヒータ52により加熱してシリコン融液Mとする。しかる後、引上げ用のワイヤ50に取り付けられた種結晶Pをシリコン融液Mに接触させてシリコン結晶Cを引上げる。   As shown in FIG. 8, in the pulling method using the conventional CZ method, first, raw silicon is loaded into a quartz glass crucible 51 and heated by a carbon heater 52 to obtain a silicon melt M. Thereafter, the seed crystal P attached to the pulling wire 50 is brought into contact with the silicon melt M to pull up the silicon crystal C.

一般に、引上げ開始に先立ち、シリコン融液Mの温度が安定した後、図9に示すように、種結晶Pをシリコン融液Mに接触させて種結晶Pの先端部を溶解するネッキングを行う。ネッキングとは、種結晶Pとシリコン融液Mとの接触で発生するサーマルショックによりシリコン単結晶に生じる転位を除去するための不可欠の工程である。このネッキングによりネック部P1が形成される。また、このネック部P1は、一般的に、直径が3〜4mmで、その長さが30〜40mm以上必要とされている。   In general, prior to the start of pulling, after the temperature of the silicon melt M is stabilized, as shown in FIG. 9, necking is performed in which the seed crystal P is brought into contact with the silicon melt M to dissolve the tip of the seed crystal P. Necking is an indispensable process for removing dislocations generated in a silicon single crystal due to thermal shock generated by contact between the seed crystal P and the silicon melt M. The neck portion P1 is formed by this necking. The neck portion P1 is generally required to have a diameter of 3 to 4 mm and a length of 30 to 40 mm or more.

また、引上げ開始後の工程としては、ネッキング終了後、直胴部直径にまで結晶を広げるクラウン工程、製品となる単結晶を育成する直胴工程、直胴工程後の単結晶直径を徐々に小さくするテール工程が行われる。
尚、炉内においては、溶融液Mから発生したSiOガス等を排気するため、ルツボ51の上方から不活性ガスG(例えばArガス)がルツボ内に供給され、溶融液面上を通ってルツボ下方の排気口54から排気されるようになされている。
In addition, as a process after the start of pulling, after necking is completed, a crown process for expanding the crystal to the diameter of the straight body part, a straight body process for growing a single crystal as a product, and a single crystal diameter after the straight body process are gradually reduced. The tail process is performed.
In the furnace, in order to exhaust SiO gas generated from the melt M, an inert gas G (for example, Ar gas) is supplied into the crucible from above the crucible 51 and passes over the melt surface. The air is exhausted from the lower exhaust port 54.

ところで近年においては、単結晶の大口径化によるチャージ量増大に伴いルツボ51等のホットゾーン構造が大型化している。このため、従来行なわれていた10mbar(約7.5torr)程度の炉内圧下での操業から、100〜300mbar(約75〜約225torr)という高めの炉内圧下での操業が主流となっている。
しかしながら、炉内圧が高くなると、溶融中にカーボンヒータ52等から発生したCOガスが溶融液Mに混入して結晶中に取り込まれやすくなり、結晶中のカーボン濃度が高くなるという問題があった。
By the way, in recent years, the hot zone structure such as the crucible 51 has been enlarged with the increase in the charge amount due to the large diameter of the single crystal. For this reason, the operation under the furnace pressure of about 100 to 300 mbar (about 75 to about 225 torr) has been the mainstream from the conventional operation under the furnace pressure of about 10 mbar (about 7.5 torr). .
However, when the furnace pressure increases, the CO gas generated from the carbon heater 52 and the like during melting tends to be mixed into the melt M and taken into the crystal, and the carbon concentration in the crystal increases.

そのような問題を解決するため、特許文献1には、溶融中の炉内圧を5〜60mbar(約3.75〜約40torr)と低く制御することにより溶融液MへのCOガスの混入を防ぎ、シリコン単結晶中のカーボン濃度を低減する方法が開示されている。
この特許文献1の実施例には、直径6インチ(152.4mm)のシリコン単結晶の引き上げにおいて、カーボン濃度による不良率を低減できたことが記載されている。
In order to solve such a problem, Patent Document 1 discloses that the furnace pressure during melting is controlled to be as low as 5 to 60 mbar (about 3.75 to about 40 torr) to prevent CO gas from being mixed into the melt M. A method for reducing the carbon concentration in a silicon single crystal is disclosed.
In the example of Patent Document 1, it is described that the defect rate due to the carbon concentration can be reduced in pulling up a silicon single crystal having a diameter of 6 inches (152.4 mm).

また、近年の半導体デバイスにおける高集積化によって素子の微細化が進み、それに伴い単結晶の結晶成長中に導入されるグローンイン欠陥の問題が重要となっている。このグローンイン欠陥とは、シリコン単結晶を育成する際、結晶引き上げ速度V(mm/min)が比較的高速の場合に、空孔型の点欠陥が集合したボイド起因とされているFPD(Flow Pattern Defect)やCOP(Crystal Originated Particle)等のことであり、それらは結晶径方向全域に高密度に存在する。   In addition, the miniaturization of elements has progressed due to the recent high integration in semiconductor devices, and accordingly, the problem of grow-in defects introduced during crystal growth of single crystals has become important. This grow-in defect is an FPD (Flow Pattern) that is caused by voids in which vacancy-type point defects are gathered when a crystal pulling speed V (mm / min) is relatively high when a silicon single crystal is grown. Defect), COP (Crystal Originated Particle), etc., which are present in high density throughout the crystal diameter direction.

前記グローンイン欠陥を低減し、所望の欠陥領域あるいは所望の無欠陥領域を有する高品質のシリコン単結晶を育成するため、特許文献2には、引き上げ速度をV(mm/min)、固液界面近傍のシリコンの融点から1400℃の間の引き上げ軸方向の結晶温度勾配をG(℃/mm)とすると、V/G(mm2/℃・min)の値を所定範囲内に制御する単結晶製造方法が開示されている。 In order to reduce the grown-in defect and grow a high-quality silicon single crystal having a desired defect region or a desired defect-free region, Patent Document 2 discloses that the pulling rate is V (mm / min), and the vicinity of the solid-liquid interface. Single crystal production that controls the value of V / G (mm 2 / ° C./min) within a predetermined range, where G (° C./mm) is the crystal temperature gradient in the pulling axis direction between the melting point of silicon and 1400 ° C. A method is disclosed.

近年、前記V/G値の制御は一般的に行われているが、結晶温度勾配Gはホットゾーンの構造により一義的に決まるものとされていたため、V/G値の制御は、引上速度Vを調整することにより行われてきた。
しかしながら、結晶温度勾配Gは、単結晶の成長が進行するにつれ低下するため、V/G値を所定範囲内に保つには、引上速度Vを低下させねばならず、その結果、単結晶の直胴部育成にかかる時間が長くなり、生産性が低下するという問題があった。
そのような技術的課題に対し、特許文献3には、輻射シールドと溶融液面との距離を大きく制御することにより結晶温度勾配Gの変化を小さくし、引上速度Vを低下させずに単結晶を短時間で効率的に製造する方法が開示されている。
特許第2635456号公報 特開平11−147786号公報 特開2005−15312号公報
In recent years, the control of the V / G value is generally performed. However, since the crystal temperature gradient G is uniquely determined by the structure of the hot zone, the V / G value is controlled by the pulling speed. This has been done by adjusting V.
However, since the crystal temperature gradient G decreases as the growth of the single crystal proceeds, in order to keep the V / G value within the predetermined range, the pulling speed V must be decreased. There was a problem that the time required for straight body part growth became longer and productivity was lowered.
In response to such a technical problem, Patent Document 3 discloses that the change in the crystal temperature gradient G is reduced by largely controlling the distance between the radiation shield and the melt surface, and the pulling speed V is not lowered. A method for efficiently producing crystals in a short time is disclosed.
Japanese Patent No. 2635456 JP-A-11-147786 JP 2005-15312 A

前記のように特許文献1に開示の方法によれば、その実施例に記載の通り、直径6インチ(152.4mm)程度の単結晶育成に対してはカーボン濃度を低減することができる。
しかしながら、特許文献1に開示の方法にあっては、より大口径の単結晶を育成する場合、炉内圧が低い状態で大量の原料シリコンを溶融するには、カーボンヒータ52による加熱力を増大させねばならず、その結果、炉体内にはカーボンヒータ52等のカーボン部材からCOガスが大量に発生し、単結晶のカーボン濃度に影響を及ぼすという問題があった。
As described above, according to the method disclosed in Patent Document 1, the carbon concentration can be reduced for single crystal growth having a diameter of about 6 inches (152.4 mm) as described in the examples.
However, in the method disclosed in Patent Document 1, when growing a single crystal having a larger diameter, in order to melt a large amount of raw material silicon in a state where the furnace pressure is low, the heating power by the carbon heater 52 is increased. As a result, there is a problem that a large amount of CO gas is generated from the carbon member such as the carbon heater 52 in the furnace body, which affects the carbon concentration of the single crystal.

また、育成する単結晶が大口径であれば、原料シリコン溶融から単結晶引上げまでの操業時間が長くなる。このため、溶融液Mは長時間COガスに曝されることになり、炉内圧が低く制御されても、COガスが溶融液に混入し、結果的に育成した単結晶中のカーボン濃度が高くなるという課題があった。
特に、ルツボ内のガス流路形成においては、従来は図8に示すように不活性ガスGの乱流が発生しやすく、炉内で発生したCOガスが、乱流に巻き込まれて溶融液面上で滞り、COガスが溶融液により混入し易くなるという技術的課題があった。
Further, if the single crystal to be grown has a large diameter, the operation time from the melting of the raw material silicon to the pulling of the single crystal becomes long. Therefore, the melt M is exposed to CO gas for a long time, and even if the furnace pressure is controlled to be low, the CO gas is mixed into the melt, resulting in a high carbon concentration in the grown single crystal. There was a problem of becoming.
In particular, in the formation of a gas flow path in the crucible, conventionally, as shown in FIG. 8, turbulent flow of the inert gas G is likely to occur, and the CO gas generated in the furnace is caught in the turbulent flow and melted surface. There was a technical problem that the CO gas was apt to be mixed in by the molten liquid.

また、大口径で高品質の単結晶育成においては、前記したようにV/G値の制御が重要であるが、特許文献3に記載の製造方法にように、輻射シールド55と溶融液面との間隔を大きく空けると、温度勾配Gの変化は小さく抑えられる一方で、ルツボ内の不活性ガスGの流速を十分に確保することができなかった。
即ち、ルツボ内の不活性ガスGの流速が遅いことにより、COガスを効率的にルツボ外に排出できず、また、ルツボ内面からの乖離物が育成中の単結晶に到達し、有転移化が生じ易いという課題があった。
Further, as described above, in the large-diameter and high-quality single crystal growth, it is important to control the V / G value. However, as in the manufacturing method described in Patent Document 3, the radiation shield 55, the melt surface, If the interval of is large, the change in the temperature gradient G can be kept small, but the flow rate of the inert gas G in the crucible cannot be sufficiently secured.
That is, since the flow rate of the inert gas G in the crucible is slow, the CO gas cannot be efficiently discharged out of the crucible, and the dissociation from the inner surface of the crucible reaches the growing single crystal and is transformed. There is a problem that is likely to occur.

本発明は、前記したような事情の下になされたものであり、チョクラルスキー法によってルツボからシリコン単結晶を引上げる単結晶引上装置において、育成する単結晶が大口径であっても、単結晶中のカーボン濃度を低減し、有転移化を防ぐことのできる単結晶引上装置及び単結晶の製造方法を提供することを目的とする。   The present invention has been made under the circumstances as described above, and in a single crystal pulling apparatus that pulls a silicon single crystal from a crucible by the Czochralski method, even if the single crystal to be grown has a large diameter, An object of the present invention is to provide a single crystal pulling apparatus and a single crystal manufacturing method capable of reducing the carbon concentration in the single crystal and preventing transition.

前記した課題を解決するために、本発明に係る単結晶引上装置は、炉体内のルツボで原料シリコンの溶融液を生成し、チョクラルスキー法によって前記ルツボから単結晶を引上げる単結晶引上装置において、前記ルツボの上方に設けられ、前記単結晶の周囲を包囲して上部と下部が開口形成され、前記単結晶に対する輻射熱を遮蔽する輻射シールドと、前記輻射シールドの上方から前記ルツボ内に不活性ガスを供給するガス供給手段と、前記ルツボ内を通過した前記不活性ガスを前記炉体外に排気する排気手段とを備え、前記輻射シールドは、該輻射シールドの外周面と前記ルツボの内周面との最近接部での隙間面積が前記溶融液の液面面積の10%以上35%未満であって、且つ、該輻射シールド下端と前記溶融液面との隙間寸法が該輻射シールドの下端面の径方向の幅寸法よりも短くなるよう配置され、前記ガス供給手段により前記ルツボ内に供給された前記不活性ガスは、前記輻射シールドの配置によって形成される前記隙間を経由して前記排気手段により排気されることに特徴を有する。
尚、単結晶引上工程において、前記ガス供給手段と前記排気手段とにより、前記輻射シールド下端と前記溶融液面との隙間における不活性ガスの平均流速が、前記輻射シールドと前記単結晶との最近接部での隙間における不活性ガスの平均流速よりも低い状態に制御されることが望ましい。
In order to solve the above-described problems, a single crystal pulling apparatus according to the present invention generates a raw silicon melt with a crucible in a furnace and pulls the single crystal from the crucible by the Czochralski method. In the upper apparatus, a radiation shield provided above the crucible, surrounding the periphery of the single crystal and having an upper portion and a lower portion formed to shield radiation heat to the single crystal, and from above the radiation shield to the inside of the crucible Gas supply means for supplying an inert gas to the crucible, and exhaust means for exhausting the inert gas that has passed through the crucible out of the furnace body, wherein the radiation shield includes an outer peripheral surface of the radiation shield and a crucible of the crucible. The gap area at the closest part to the inner peripheral surface is 10% or more and less than 35% of the liquid surface area of the melt, and the gap dimension between the lower end of the radiation shield and the melt surface is the radiation. The inert gas, which is arranged so as to be shorter than the radial width dimension of the lower end surface of the mold, is supplied into the crucible by the gas supply means via the gap formed by the arrangement of the radiation shield. The exhaust means is characterized by being exhausted.
In the single crystal pulling step, the gas supply means and the exhaust means cause the average flow rate of the inert gas in the gap between the lower end of the radiation shield and the melt surface to be between the radiation shield and the single crystal. It is desirable to control the state so as to be lower than the average flow rate of the inert gas in the gap at the closest part.

このように輻射シールドの外周面とルツボの内周面との隙間寸法を設定することにより、ルツボを通過するガス流が整流され、ルツボ内の乱流発生が抑制され、ルツボ上方からルツボ内に入り込んだCOガスを滞らせることなくルツボから排気することができる。
さらには、溶融液面までの隙間距離が輻射シールドの下端面の径方向の幅寸法よりも短い状態に制御されるため、外径方向への不活性ガスの流速が速くなり、ルツボの乖離物が単結晶に到達し難い状況を形成することができ、有転移化を防止することができる。
したがって、有転移化の虞が格段に低減され、大口径であってもカーボン濃度が低く高品質のシリコン単結晶を安定して得ることができる。
Thus, by setting the clearance dimension between the outer peripheral surface of the radiation shield and the inner peripheral surface of the crucible, the gas flow passing through the crucible is rectified, and the generation of turbulent flow in the crucible is suppressed. The CO gas that has entered can be exhausted from the crucible without stagnation.
Furthermore, since the gap distance to the melt surface is controlled to be shorter than the radial width dimension of the lower end surface of the radiation shield, the flow rate of the inert gas in the outer diameter direction is increased, and the crucible is separated. It is possible to form a situation where it is difficult to reach a single crystal and to prevent transition.
Therefore, the risk of transition is remarkably reduced, and a high-quality silicon single crystal with a low carbon concentration can be stably obtained even with a large diameter.

また、前記輻射シールドの下端面は、前記溶融液面に対し、最大9度の傾斜角を有するよう下方に向けて縮径するテーパ状に形成されていることが望ましい。
このようにすることにより、ヒータからの輻射熱をより遮蔽することができ、育成中のシリコン単結晶によりよい熱履歴を与えることができる。
In addition, it is desirable that the lower end surface of the radiation shield is formed in a tapered shape that is reduced in diameter toward the lower side so as to have an inclination angle of 9 degrees at the maximum with respect to the melt surface.
By doing in this way, the radiant heat from a heater can be shielded more and a better thermal history can be given to the silicon single crystal under growth.

また、前記した課題を解決するために、本発明に係る単結晶の製造方法は前記単結晶引上装置を用い、前記ルツボから単結晶を引上げる単結晶の製造方法であって、炉内圧を10torr以上80torr以下とし、かつ炉体内に100L/min以上200L/min以下の流量で不活性ガスを導入し、前記原料シリコンを溶融するステップと、炉内圧を30torr以上190torr以下とし、かつ炉体内に50L/min以上150L/min以下の流量で不活性ガスを導入し、単結晶を引上げるステップとを実行することに特徴を有する。
このような炉内圧と不活性ガスとの制御を行うことにより前記単結晶引上装置による高品質の効果を安定して得ることができる。
In order to solve the above-described problem, a method for producing a single crystal according to the present invention is a method for producing a single crystal by using the single crystal pulling apparatus and pulling the single crystal from the crucible, wherein the furnace pressure is reduced. A step of introducing an inert gas at a flow rate of 10 L / min to 200 L / min by setting the pressure in the furnace to 10 to 80 torr, melting the raw silicon, setting the pressure in the furnace to 30 to 190 torr, and It is characterized in that an inert gas is introduced at a flow rate of 50 L / min or more and 150 L / min or less and a step of pulling up the single crystal is performed.
By controlling the pressure in the furnace and the inert gas, a high quality effect by the single crystal pulling apparatus can be stably obtained.

本発明によれば、チョクラルスキー法によってルツボからシリコン単結晶を引上げる単結晶引上装置において、育成する単結晶が大口径であっても、単結晶中のカーボン濃度を低減し、有転移化を防ぐことのできる単結晶引上装置及び単結晶の製造方法を得ることができる。   According to the present invention, in a single crystal pulling apparatus that pulls a silicon single crystal from a crucible by the Czochralski method, even if the single crystal to be grown has a large diameter, the carbon concentration in the single crystal is reduced, A single crystal pulling apparatus and a method for manufacturing a single crystal can be obtained.

以下、本発明に係る単結晶引上装置の実施の形態について図面に基づき説明する。図1は本発明に係る単結晶引上装置1の全体構成を示すブロック図である。
この単結晶引上装置1は、円筒形状のメインチャンバ2aの上にプルチャンバ2bを重ねて形成された炉体2と、炉体2内に設けられたルツボ3と、ルツボ3に装填された半導体原料(原料シリコン)Mを溶融するカーボンヒータ4とを有している。尚、ルツボ3は二重構造であり、内側が石英ガラスルツボ3a、外側が黒鉛ルツボ3bで構成されている。
また、炉体2内において、ヒータ4の周囲には、断熱部材7が設けられている。
Embodiments of a single crystal pulling apparatus according to the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing the overall configuration of a single crystal pulling apparatus 1 according to the present invention.
This single crystal pulling apparatus 1 includes a furnace body 2 formed by superposing a pull chamber 2b on a cylindrical main chamber 2a, a crucible 3 provided in the furnace body 2, and a semiconductor loaded in the crucible 3. And a carbon heater 4 for melting a raw material (raw material silicon) M. The crucible 3 has a double structure, and the inner side is constituted by a quartz glass crucible 3a and the outer side is constituted by a graphite crucible 3b.
Further, in the furnace body 2, a heat insulating member 7 is provided around the heater 4.

また、炉体2の上方には、単結晶Cを引上げる引上げ機構5が設けられ、この引上げ機構5は、モータ駆動される巻取り機構5aと、この巻取り機構5aに巻き上げられる引上げワイヤ5bとにより構成される。そして、ワイヤ5bの先端に種結晶Pが取り付けられ、単結晶Cを育成しながら引上げるようになされている。   Further, a pulling mechanism 5 for pulling up the single crystal C is provided above the furnace body 2. The pulling mechanism 5 includes a winding mechanism 5a driven by a motor and a pulling wire 5b wound on the winding mechanism 5a. It consists of. A seed crystal P is attached to the tip of the wire 5b and pulled up while growing the single crystal C.

また、図1に示すようにプルチャンバ2bの上部には、不活性ガスであるArガスGを炉体2内に供給するためのガス供給口13が設けられている。
このガス供給口13には、バルブ14を介してArガス供給源17が接続されており、バルブ14が開かれるとArガスGがプルチャンバ2b上部からルツボ3内に供給されるようになされている。即ち、ガス供給口13とバルブ14とArガス源17とによりガス供給手段が構成されている。
As shown in FIG. 1, a gas supply port 13 for supplying Ar gas G, which is an inert gas, into the furnace body 2 is provided in the upper portion of the pull chamber 2b.
An Ar gas supply source 17 is connected to the gas supply port 13 via a valve 14. When the valve 14 is opened, Ar gas G is supplied from the upper part of the pull chamber 2 b into the crucible 3. . In other words, the gas supply port 13, the valve 14, and the Ar gas source 17 constitute a gas supply means.

また、メインチャンバ2aの底面には、複数の排気口18が設けられ、この排気口18には排気手段としての排気ポンプ19が接続されている。即ち、排気口18と排気ポンプ19とにより排気手段が構成されている。
この構成において、排気ポンプ19が駆動し、前記バルブ14が開かれることにより、ガス供給口13からArガスGが炉体2内に供給され、ガス流を形成して排気口18から排気されるようになされている。
尚、ガス供給口13からのガス流量の調整は、バルブ14の開閉度及び排気ポンプ19の吸引強度を制御することによってなされる。
A plurality of exhaust ports 18 are provided on the bottom surface of the main chamber 2a, and an exhaust pump 19 serving as an exhaust unit is connected to the exhaust ports 18. In other words, the exhaust port 18 and the exhaust pump 19 constitute exhaust means.
In this configuration, when the exhaust pump 19 is driven and the valve 14 is opened, Ar gas G is supplied into the furnace body 2 from the gas supply port 13, forms a gas flow, and is exhausted from the exhaust port 18. It is made like that.
The gas flow rate from the gas supply port 13 is adjusted by controlling the degree of opening and closing of the valve 14 and the suction strength of the exhaust pump 19.

また、メインチャンバ2a内において、ルツボ3の上方且つ近傍には、単結晶Cの周囲を包囲するよう上部と下部が開口形成され、育成中の単結晶Cにカーボンヒータ4等からの余計な輻射熱を与えないようにするための輻射シールド6が設けられている。
この輻射シールド6が設けられることにより、上方からルツボ3a内に供給されたArガスGは、図2に矢印で示す流路に沿って(即ち、輻射シールド6の配置によって形成された隙間を通って)ルツボ外に排気されるようになされている。また、このようにArガスGの流れが形成されることによって、カーボンヒータ4から発生したCOガスのルツボ3内への流れ込みが防止される。
In the main chamber 2a, an upper portion and a lower portion are formed so as to surround the periphery of the single crystal C above and in the vicinity of the crucible 3, and extra radiant heat from the carbon heater 4 and the like is formed on the growing single crystal C. A radiation shield 6 is provided so as not to give the noise.
By providing this radiation shield 6, Ar gas G supplied into the crucible 3a from above passes along the flow path indicated by the arrow in FIG. 2 (that is, through the gap formed by the arrangement of the radiation shield 6). E) The air is exhausted outside the crucible. In addition, since the flow of Ar gas G is formed in this way, the CO gas generated from the carbon heater 4 is prevented from flowing into the crucible 3.

輻射シールド6は、図3に示すように、その周囲の断熱部材7の上端部に係止する係止部6aと、係止部6aから垂直下方に延設された円筒部6bと、円筒部6b下端から下方に向けてテーパ状に縮径するテーパ部6cと、テーパ部6c下端から内径方向に(溶融液面に略平行に)延設された下端部6dとを有する。
前記下端部6dは、その下端面が、好ましくは図4に示すように溶融液面に対し最大+9度の傾斜角閘を有するよう、下方に向けて縮径するテーパ状に形成される。これにより、ヒータ4からの輻射熱をより遮蔽することができ、シリコン単結晶Cによりよい熱履歴を与えることができる。
尚、輻射シールド6下端と溶融液面との隙間寸法D2は、15mm以上となるよう制御される。
As shown in FIG. 3, the radiation shield 6 includes an engaging portion 6a that engages with the upper end portion of the surrounding heat insulating member 7, a cylindrical portion 6b that extends vertically downward from the engaging portion 6a, and a cylindrical portion. 6b has a taper portion 6c that tapers downward from the lower end, and a lower end portion 6d that extends from the lower end of the taper portion 6c in the inner diameter direction (substantially parallel to the melt surface).
The lower end portion 6d is formed in a tapered shape whose diameter is reduced downward so that the lower end surface preferably has an inclination angle 閘 of a maximum of +9 degrees with respect to the melt surface as shown in FIG. Thereby, the radiant heat from the heater 4 can be shielded more, and a better thermal history can be given to the silicon single crystal C.
The gap dimension D2 between the lower end of the radiation shield 6 and the melt surface is controlled to be 15 mm or more.

また、下端部6dにおける下端面の溶融液面に対する傾斜角閘の下限は、輻射シールド6下端と溶融液面との距離寸法が少なくとも15mmを確保できるならば、溶融液面に対して負の値(例えば−10度)となってもよい。即ち、その場合には下端部6dの下端面は図5に示すように、上方に向けて縮径するテーパ状となる(図5では輻射シールド6下端と溶融液面との隙間D4が15mm以上とされる)。   Further, the lower limit of the inclination angle 閘 with respect to the melt surface of the lower end surface in the lower end portion 6d is a negative value with respect to the melt surface if the distance dimension between the lower end of the radiation shield 6 and the melt surface can be secured at least 15 mm. (For example, −10 degrees). That is, in this case, the lower end surface of the lower end portion 6d has a tapered shape with a diameter decreasing upward as shown in FIG. 5 (in FIG. 5, the gap D4 between the lower end of the radiation shield 6 and the melt surface is 15 mm or more). ).

尚、輻射シールド6下端と溶融液面との隙間が狭いほど、外径方向へのArガスGの流速が速くなり、ルツボ3の乖離物の単結晶Cへの到達を防ぐことができるが、輻射シールド6下端と溶融液面との隙間寸法を少なくとも15mmとするのは、その隙間が15mmより小さい場合には輻射シールド6と溶融液面との接触が生じる虞があるためである。   In addition, the narrower the gap between the lower end of the radiation shield 6 and the melt surface, the faster the flow rate of the Ar gas G in the outer diameter direction, and it is possible to prevent the deviation of the crucible 3 from reaching the single crystal C. The reason why the clearance between the lower end of the radiation shield 6 and the melt surface is at least 15 mm is that contact between the radiation shield 6 and the melt surface may occur if the clearance is smaller than 15 mm.

また、図1に示すように単結晶引上装置1は、シリコン融液Mの温度を制御するヒータ4の供給電力量を制御するヒータ制御部9と、石英ガラスルツボ3を回転させるモータ10と、モータ10の回転数を制御するモータ制御部10aとを備えている。さらには、石英ガラスルツボ3の高さを制御する昇降装置11と、昇降装置11を制御する昇降装置制御部11aと、成長結晶の引上げ速度と回転数を制御するワイヤリール回転装置制御部12とを備えている。これら各制御部9、10a、11a、12と前記バルブ14及び排気ポンプ19はコンピュータ8の演算制御装置8bに接続されている。   As shown in FIG. 1, the single crystal pulling apparatus 1 includes a heater control unit 9 that controls the amount of power supplied to the heater 4 that controls the temperature of the silicon melt M, and a motor 10 that rotates the quartz glass crucible 3. And a motor control unit 10a for controlling the rotational speed of the motor 10. Furthermore, a lifting device 11 for controlling the height of the quartz glass crucible 3, a lifting device control unit 11a for controlling the lifting device 11, a wire reel rotating device control unit 12 for controlling the pulling speed and the number of rotations of the grown crystal, It has. These control units 9, 10a, 11a, 12 and the valve 14 and the exhaust pump 19 are connected to an arithmetic control device 8b of the computer 8.

続いて、このような単結晶引上装置1を用いた単結晶C(例えば直径300mm)の製造方法について説明する。
原料シリコンの溶融工程においては、最初にルツボ3に原料シリコン(例えば350kg)が装填されると共に、演算制御装置8bの指令によりバルブ14が開かれ、排気ポンプ16が駆動されて、炉体2内にArガスGの流路が形成される。
Then, the manufacturing method of the single crystal C (for example, diameter 300mm) using such a single crystal pulling apparatus 1 is demonstrated.
In the raw material silicon melting step, first, raw material silicon (for example, 350 kg) is loaded into the crucible 3, and the valve 14 is opened by the command of the arithmetic control device 8b, and the exhaust pump 16 is driven. In addition, a flow path of Ar gas G is formed.

ここで、原料シリコン溶融時における炉内圧は、10torr以上80torr以下とされ、炉内に導入されるArガスの流量が100L/min以上200L/min以下となされる。
溶融中の炉内圧は、低いほど溶融液MへのCOガスの混入が抑制されるため、単結晶中のカーボン濃度を低くできるが、炉内圧が低すぎると石英ガラスルツボ3a内面の荒れが大きくなり、単結晶が有転位化し易くなる。一方、炉内圧が高すぎると、シリコン単結晶中のカーボン濃度が高くなる。このため、シリコン溶融中におけるカーボン濃度の上昇を抑制し、無転位を維持するには10torr以上80torr以下の炉内圧が適切である。
また、溶融中のArガスの流量は、多いほど整流性が向上し、カーボン濃度を低下させるが、コストが嵩むという問題がある。このため、シリコン溶融中におけるArガスの流量は100L/min以上200L/min以下が適切である。
Here, the pressure in the furnace when the raw material silicon is melted is set to 10 to 80 torr, and the flow rate of Ar gas introduced into the furnace is set to 100 L / min or more and 200 L / min or less.
The lower the furnace pressure during melting, the lower the concentration of carbon in the single crystal because the mixing of the CO gas into the melt M is suppressed. However, if the furnace pressure is too low, the inner surface of the quartz glass crucible 3a becomes very rough. Thus, the single crystal is easily converted into dislocations. On the other hand, when the furnace pressure is too high, the carbon concentration in the silicon single crystal increases. For this reason, a furnace pressure of 10 to 80 torr is appropriate for suppressing an increase in carbon concentration during silicon melting and maintaining no dislocation.
In addition, as the flow rate of Ar gas during melting increases, the rectification improves and the carbon concentration decreases, but there is a problem that the cost increases. For this reason, the flow rate of Ar gas during silicon melting is suitably 100 L / min or more and 200 L / min or less.

次いで、コンピュータ8の記憶装置8aに記憶されたプログラムに基づき、先ず、演算制御装置8bの指令によりヒータ制御部9を作動させてヒータ4を加熱し、ルツボ3の原料シリコンの溶融作業が開始される。   Next, based on the program stored in the storage device 8a of the computer 8, first, the heater control unit 9 is operated by the command of the arithmetic control device 8b to heat the heater 4, and the melting operation of the raw silicon of the crucible 3 is started. The

シリコン溶融液Mが生成されると、単結晶引上げ作業が開始される。ここで炉内圧は30torr以上190torr以下とされ、炉内に導入されるArガスの流量が50L/min以上150L/min以下となされる。
シリコン単結晶育成中における炉内圧が30torr以上190torr以下となされるのは、それが単結晶中の酸素濃度を制御するのに適した範囲であるためである。また、単結晶育成中のArガス流量が50L/min以上150L/min以下となされるのは、コストの増嵩を抑えながらもカーボン濃度低下に効果が期待できるためである。
When the silicon melt M is generated, the single crystal pulling operation is started. Here, the furnace pressure is set to 30 to 190 torr, and the flow rate of Ar gas introduced into the furnace is set to 50 to 150 L / min.
The reason why the furnace pressure during silicon single crystal growth is 30 to 190 torr is that it is in a range suitable for controlling the oxygen concentration in the single crystal. The reason why the Ar gas flow rate during single crystal growth is 50 L / min or more and 150 L / min or less is that an effect can be expected to lower the carbon concentration while suppressing an increase in cost.

前記のように炉内圧及びArガスGの流路が形成されると、演算制御装置8bの指令によりモータ制御部10aと、昇降装置制御部11aと、ワイヤリール回転装置制御部12とが作動し、石英ガラスルツボ3が回転すると共に、巻取り機構5aが作動してワイヤ5bが降ろされる。そして、ワイヤ5bに取付けられた種結晶Pがシリコン融液Mに接触され、種結晶Pの先端部を溶解するネッキングが行われてネック部P1が形成される。   When the furnace pressure and the Ar gas G flow path are formed as described above, the motor control unit 10a, the lifting device control unit 11a, and the wire reel rotation device control unit 12 are activated by a command from the arithmetic control device 8b. As the quartz glass crucible 3 rotates, the winding mechanism 5a operates to lower the wire 5b. Then, the seed crystal P attached to the wire 5b is brought into contact with the silicon melt M, and necking for melting the tip of the seed crystal P is performed to form the neck portion P1.

しかる後、演算制御装置8bの指令によりヒータ4への供給電力や、単結晶引上げ速度(通常、毎分数ミリの速度)などをパラメータとして引上げ条件が調整され、クラウン工程、直胴工程、テール部工程等の単結晶引上工程が順に行われる。   Thereafter, the pulling conditions are adjusted by parameters of the power supplied to the heater 4 and the single crystal pulling speed (usually a speed of several millimeters per minute) according to the command of the arithmetic control device 8b, and the crown process, the straight body process, the tail part A single crystal pulling step such as a step is sequentially performed.

ここで、前記単結晶引上工程におけるArガスGの流路は、図2に示すように形成される。即ち、ガス供給口13から導入されたArガスGは炉内で発生したCOガスと共に輻射シールド6の上方からルツボ3内に導入されてシリコン溶融液Mの液面上(輻射シールド6下端との隙間)を通過し、その後、溶融液Mから発生するSiOガスを伴い、輻射シールド6の外周面とルツボ3内周面との間に形成された隙間を通ってルツボ3外へ導出される。ルツボ3外に導出されたArガスG等のガスは、ルツボ3底部に設けられた排気口18から排気される。   Here, the flow path of the Ar gas G in the single crystal pulling step is formed as shown in FIG. That is, the Ar gas G introduced from the gas supply port 13 is introduced into the crucible 3 from above the radiation shield 6 together with the CO gas generated in the furnace, and on the liquid surface of the silicon melt M (with the lower end of the radiation shield 6). Then, the SiO gas generated from the melt M is introduced to the outside of the crucible 3 through the gap formed between the outer peripheral surface of the radiation shield 6 and the inner peripheral surface of the crucible 3. A gas such as Ar gas G led out of the crucible 3 is exhausted from an exhaust port 18 provided at the bottom of the crucible 3.

また、この単結晶引上工程において、シリコン単結晶育成中における石英ルツボ3と輻射シールド6との最近接部での隙間面積(隙間寸法D1により決まる隙間面積)の寸法は、溶融液Mの液面面積の10%以上35%以下となるよう設定される。この隙間D1によって、ルツボ3を通過するガス流が整流されて、ルツボ3内の乱流発生が抑制され、ルツボ3上方からルツボ内に入り込んだCOガスが滞ることなくルツボ3から排気されるようになされる。   Further, in this single crystal pulling step, the dimension of the gap area (gap area determined by the gap dimension D1) at the closest portion between the quartz crucible 3 and the radiation shield 6 during the growth of the silicon single crystal is the liquid of the melt M. It is set to be 10% to 35% of the surface area. The gas flow passing through the crucible 3 is rectified by the gap D1, so that the generation of turbulent flow in the crucible 3 is suppressed, and the CO gas entering the crucible from above the crucible 3 is exhausted from the crucible 3 without stagnation. To be made.

また、輻射シールド6の下部先端(下端)と溶融液面との隙間D2を通過するArガスGの平均流速が、輻射シールド6と単結晶Cとの最近接部での隙間D3を通過するArガスGの平均流速よりも遅くなるよう制御される。具体的には、輻射シールド6の下端と溶融液面との隙間D2を通過するArガスGの平均流速は、1.0m/sec以上5.0m/sec以下に制御される。   Further, the average flow velocity of Ar gas G passing through the gap D2 between the lower end (lower end) of the radiation shield 6 and the melt surface is Ar passing through the gap D3 at the closest portion between the radiation shield 6 and the single crystal C. The gas G is controlled to be slower than the average flow velocity. Specifically, the average flow velocity of Ar gas G passing through the gap D2 between the lower end of the radiation shield 6 and the melt surface is controlled to be 1.0 m / sec or more and 5.0 m / sec or less.

さらには、輻射シールド6下端と溶融液面との隙間D2が、シールド下端部6bの下端面における(溶融液面と平行な)径方向の幅寸法L1よりも短い状態となるよう、石英ガラスルツボ3の高さが昇降装置11の動作により制御される。
これにより、外径方向へのArガスGの流速が速くなり、ルツボ3の乖離物が単結晶Cに到達し難い状況が形成されて高い確率で有転移化が抑制され、カーボン濃度が低く高品質のシリコン単結晶が製造される。
Further, the quartz glass crucible is set so that the gap D2 between the lower end of the radiation shield 6 and the molten liquid surface is shorter than the radial width dimension L1 (parallel to the molten liquid surface) at the lower end surface of the shield lower end portion 6b. 3 is controlled by the operation of the lifting device 11.
As a result, the flow rate of the Ar gas G in the outer diameter direction is increased, a situation in which the dissociation of the crucible 3 is difficult to reach the single crystal C is formed, and the transition is suppressed with a high probability, and the carbon concentration is low and high. Quality silicon single crystals are produced.

以上のように本発明に係る実施の形態によれば、シリコン単結晶の引き上げ工程における石英ルツボ3及び溶融液面に対する輻射シールド6の配置が制御される。
これにより、ルツボ3を通過するガス流が整流され、ルツボ3内の乱流発生が抑制され、ルツボ3上方からルツボ内に入り込んだCOガスを滞らせることなくルツボ3から排気することができる。
さらに、シールド下端部6bの下端面が溶融液面と略平行に形成され、その径方向の幅寸法L1と、溶融液面に対する隙間寸法D2との関係が制御されることにより、外径方向へのArガスGの流速が速くなり、ルツボ3の乖離物が単結晶Cに到達し難い状況を形成することができ、有転移化を防止することができる。
したがって、本発明の単結晶引上装置及び単結晶の製造方法によれば、有転移化の虞が格段に低減され、大口径であってもカーボン濃度が低く高品質のシリコン単結晶を安定して得ることができる。
As described above, according to the embodiment of the present invention, the arrangement of the radiation crucible 3 with respect to the quartz crucible 3 and the melt surface in the pulling process of the silicon single crystal is controlled.
As a result, the gas flow passing through the crucible 3 is rectified, the generation of turbulent flow in the crucible 3 is suppressed, and the CO gas that has entered the crucible from above the crucible 3 can be exhausted from the crucible 3 without stagnation.
Further, the lower end surface of the shield lower end portion 6b is formed substantially parallel to the melt surface, and the relationship between the radial width dimension L1 and the gap dimension D2 with respect to the melt surface is controlled, so that the outer diameter direction is increased. The flow rate of the Ar gas G is increased, and the dissociation of the crucible 3 can hardly reach the single crystal C, thereby preventing transition.
Therefore, according to the single crystal pulling apparatus and the method for producing a single crystal of the present invention, the risk of transition is remarkably reduced, and even with a large diameter, a high-quality silicon single crystal is stabilized with a low carbon concentration. Can be obtained.

続いて、本発明に係る単結晶引上装置及び単結晶の製造方法について、実施例に基づきさらに説明する。本実施例では、前記実施の形態に示した構成の単結晶引上装置を用い、実際に実験を行うことにより、その効果を検証した。
〔実施例1〕
実施例1では、直径32インチの石英ガラスルツボに350kgの原料シリコンを充填し、直径300mmの単結晶の引上げを行ない、固化率90%位置での結晶中のカーボン濃度を測定した。
輻射シールドの下端面は、図4に示したように外周が下方にテーパ状に縮径するように形成し、その外周面が、溶融液面に対し9度となる傾斜を有する状態で設けた。
Subsequently, the single crystal pulling apparatus and the single crystal manufacturing method according to the present invention will be further described based on examples. In this example, the effect was verified by actually performing an experiment using the single crystal pulling apparatus having the configuration described in the above embodiment.
[Example 1]
In Example 1, 350 kg of raw silicon was filled in a quartz glass crucible having a diameter of 32 inches, a single crystal having a diameter of 300 mm was pulled, and the carbon concentration in the crystal at a solidification rate of 90% was measured.
As shown in FIG. 4, the lower end surface of the radiation shield is formed so that the outer circumference is tapered downward, and the outer circumferential surface is provided with an inclination of 9 degrees with respect to the melt surface. .

また、図4に示したシリコン単結晶育成中における石英ルツボと輻射シールドとの間の最近接部の隙間面積(隙間寸法D1により決まる隙間面積)は、溶融液Mの液面面積の10%、30%、50%、70%の各条件を設定した。
また、輻射シールドと溶融液面との隙間D2は、石英ルツボと輻射シールドとの間の最近接部の隙間面積(隙間寸法D1により決まる隙間面積)が30%の場合で、120mm、40mm、60mmの条件とし、輻射シールド下先端とシリコン単結晶Cとの隙間D3は、20mmとした。さらに、輻射シールド下端部の下端面の溶融液面と平行な径方向の幅寸法L1の条件は、20mm、40mm、80mmとした。
Further, the gap area (gap area determined by the gap dimension D1) between the quartz crucible and the radiation shield during the growth of the silicon single crystal shown in FIG. Each condition of 30%, 50% and 70% was set.
Further, the gap D2 between the radiation shield and the melt surface is 120 mm, 40 mm, and 60 mm when the gap area (gap area determined by the gap dimension D1) between the quartz crucible and the radiation shield is 30%. The gap D3 between the lower tip of the radiation shield and the silicon single crystal C was 20 mm. Furthermore, the conditions of the radial width L1 parallel to the melt surface of the lower end surface of the radiation shield lower end were 20 mm, 40 mm, and 80 mm.

また、原料シリコン溶融時における炉内圧は、10torr以上80torr以下に制御し、炉内に導入するArガスの流量を100L/min以上200L/min以下に制御した。
一方、単結晶引上げ時においては、炉内圧を30torr以上190torr以下に制御し、炉内に導入するArガスの流量を50L/min以上150L/min以下に制御した。
Further, the furnace pressure during melting of the raw material silicon was controlled to 10 to 80 torr, and the flow rate of Ar gas introduced into the furnace was controlled to 100 L / min to 200 L / min.
On the other hand, when pulling the single crystal, the furnace pressure was controlled to 30 to 190 torr, and the flow rate of Ar gas introduced into the furnace was controlled to 50 L / min to 150 L / min.

この実施例1の結果として、図6のグラフに単結晶育成結果を示し、図7のグラフに固化率90%での単結晶中のカーボン濃度を示す。
尚、図6のグラフにおいて、横軸は輻射シールド下端と溶融液面との隙間D2(mm)とし、縦軸は輻射シールドの下端面の溶融液面と平行な径方向の幅寸法L1(mm)とする。また、図中、○は単結晶育成が成功したケース、△は有転位化したが再溶融後に単結晶育成が成功したケース、×は単結晶育成に失敗したケースを示している。
As a result of Example 1, the graph of FIG. 6 shows the single crystal growth result, and the graph of FIG. 7 shows the carbon concentration in the single crystal at a solidification rate of 90%.
In the graph of FIG. 6, the horizontal axis is the gap D2 (mm) between the lower end of the radiation shield and the melt surface, and the vertical axis is the radial width dimension L1 (mm) parallel to the melt surface of the lower end surface of the radiation shield. ). Further, in the figure, ◯ indicates a case where the single crystal growth is successful, Δ indicates a case where dislocation has occurred but single crystal growth has succeeded after remelting, and x indicates a case where single crystal growth has failed.

また、図7のグラフにおいて、横軸は、石英ルツボと輻射シールドとの間の最近接部の隙間面積(隙間寸法D1により決まる隙間面積)の溶融液Mの液面面積に対する割合(%)とし、縦軸は、固化率90%でのカーボン濃度(1016atoms/cm3)とする。 In the graph of FIG. 7, the horizontal axis represents the ratio (%) of the gap area (gap area determined by the gap dimension D1) of the closest part between the quartz crucible and the radiation shield to the liquid surface area of the melt M. The vertical axis represents the carbon concentration (10 16 atoms / cm 3 ) at a solidification rate of 90%.

この実験の結果、図6のグラフに示すように、輻射シールド下端と溶融液面との隙間D2が、輻射シールド下端面の径方向の幅寸法L1より短い場合に、単結晶育成の成功率が高くなるという結果が得られた。
また、図7のグラフに示すように、固化率90%でのカーボン濃度は、隙間寸法D1により決まる隙間面積の割合が溶融液面面積の10%、30%の場合、0.2×1016atoms/cm3となり、低い値が得られた。また、35%の場合においても炭素濃度が0.25×1016atoms/cm3と充分に低い値に抑えられることがわかった。
一方、隙間寸法D1により決まる隙間面積の割合が50%の場合、0.4×1016atoms/cm3となり、70%の場合、0.7×1016atoms/cm3となり、高めのカーボン濃度となった。
As a result of this experiment, as shown in the graph of FIG. 6, when the gap D2 between the lower end surface of the radiation shield and the melt surface is shorter than the radial width dimension L1 of the lower end surface of the radiation shield, the success rate of single crystal growth is The result was higher.
Further, as shown in the graph of FIG. 7, the carbon concentration at the solidification rate of 90% is 0.2 × 10 16 when the ratio of the gap area determined by the gap dimension D1 is 10% or 30% of the melt surface area. Atoms / cm 3 , which is a low value. It was also found that the carbon concentration was suppressed to a sufficiently low value of 0.25 × 10 16 atoms / cm 3 even at 35%.
On the other hand, when the ratio of the gap area determined by the gap dimension D1 is 50%, it becomes 0.4 × 10 16 atoms / cm 3 , and when it is 70%, it becomes 0.7 × 10 16 atoms / cm 3 , which is a high carbon concentration. It became.

また、操業面では、隙間寸法D1により決まる隙間面積の溶融液面面積の10%、30%の場合、シリコン単結晶の有転位化が発生せず、良好であった。前記隙間面積の割合が50%、70%では、夫々シリコン単結晶育成中に1回の有転位化が生じたが、その後、結晶を溶融液に戻し、再溶融すると有転位化せずに引上げることができた。
〔比較例1〕
比較例1では、石英ガラスルツボに250〜350kgの原料シリコンを充填し、直胴部直径300mmの単結晶の引上げを行ない、固化率90%位置での結晶中のカーボン濃度を測定した。
尚、輻射シールドとして、すり鉢型の従来の型のものを使用した。この輻射シールドとルツボ内周面との間の最近接部の隙間寸法は、溶融液面面積の50〜70%であった。
Further, in terms of operation, in the case of 10% and 30% of the melt surface area of the gap area determined by the gap dimension D1, dislocation of the silicon single crystal did not occur, which was good. When the ratio of the gap area was 50% and 70%, one dislocation occurred during the growth of the silicon single crystal, but after that, the crystal was returned to the melt and remelted without being dislocated. I was able to raise it.
[Comparative Example 1]
In Comparative Example 1, a silica glass crucible was filled with 250 to 350 kg of raw silicon, a single crystal having a straight body diameter of 300 mm was pulled up, and the carbon concentration in the crystal at a solidification rate of 90% was measured.
A conventional mortar type was used as the radiation shield. The clearance dimension of the closest part between this radiation shield and the inner peripheral surface of the crucible was 50 to 70% of the melt surface area.

また、輻射シールド下端部の下端面の径方向の幅寸法は約20mm、輻射シールド先端とシリコン単結晶との隙間寸法は約20mmとした。
また、輻射シールド下端と溶融液面との隙間は20mm、40mmの各条件で夫々複数回の引き上げを行った。
また、原料シリコン溶融時においては、炉内圧を10〜60torrとし、単結晶引上げ時においては、炉内圧を75torr以上に設定した。
Further, the width dimension in the radial direction of the lower end surface of the lower end portion of the radiation shield was about 20 mm, and the gap dimension between the front end of the radiation shield and the silicon single crystal was about 20 mm.
Further, the gap between the lower end of the radiation shield and the melt surface was pulled several times under the respective conditions of 20 mm and 40 mm.
Further, the furnace pressure was set to 10 to 60 torr when the raw material silicon was melted, and the furnace pressure was set to 75 torr or more when the single crystal was pulled.

この比較例1の結果、固化率90%での結晶中のカーボン濃度は、0.7〜2.0×1016atoms/cm3となり、高いカーボン濃度となった。
また、輻射シールド下端と溶融液面との隙間が20mmの場合、単結晶育成率は高かったが、グローンイン欠陥が多く見られた。
一方、輻射シールド下端と溶融液面との隙間が40mmの場合、育成された単結晶の欠陥率は低かったが、有転移化するケースが多かった。
As a result of Comparative Example 1, the carbon concentration in the crystal at a solidification rate of 90% was 0.7 to 2.0 × 10 16 atoms / cm 3 , which was a high carbon concentration.
When the gap between the lower end of the radiation shield and the melt surface was 20 mm, the single crystal growth rate was high, but many grown-in defects were observed.
On the other hand, when the gap between the lower end of the radiation shield and the molten liquid surface was 40 mm, the defect rate of the grown single crystal was low, but there were many cases of transition.

以上の実施例の実験結果から、本発明の単結晶引上装置及び単結晶の製造方法を用いることにより、育成する単結晶が大口径であっても、単結晶中のカーボン濃度を低減し、有転移化を防ぐことができることを確認した。   From the experimental results of the above examples, by using the single crystal pulling apparatus and the single crystal manufacturing method of the present invention, even if the single crystal to be grown has a large diameter, the carbon concentration in the single crystal is reduced, It was confirmed that metastasis could be prevented.

本発明は、チョクラルスキー法によって単結晶を引上げる単結晶引上装置及び単結晶の製造方法に関するものであり、半導体製造業界等において好適に用いられる。   The present invention relates to a single crystal pulling apparatus and a single crystal manufacturing method for pulling a single crystal by the Czochralski method, and is suitably used in the semiconductor manufacturing industry and the like.

図1は、本発明に係る単結晶引上装置の構成を模式的に示すブロック図である。FIG. 1 is a block diagram schematically showing the configuration of a single crystal pulling apparatus according to the present invention. 図2は、図1の単結晶引上装置の炉体内の不活性ガスのガス流を示す図である。FIG. 2 is a view showing a gas flow of an inert gas in the furnace of the single crystal pulling apparatus of FIG. 図3は、図1の単結晶引上装置が備える輻射シールドの一部拡大図である。FIG. 3 is a partially enlarged view of a radiation shield provided in the single crystal pulling apparatus of FIG. 図4は、図1の単結晶引上装置が備える輻射シールドの変形例を示す図である。FIG. 4 is a view showing a modification of the radiation shield provided in the single crystal pulling apparatus of FIG. 図5は、図1の単結晶引上装置が備える輻射シールドの他の変形例を示す図である。FIG. 5 is a view showing another modification of the radiation shield provided in the single crystal pulling apparatus of FIG. 図6は、実施例の結果を示す図である。FIG. 6 is a diagram showing the results of the example. 図7は、実施例の結果を示す他の図である。FIG. 7 is another diagram showing the results of the example. 図8は、従来のCZ法を用いた引上げ法を説明するための図である。FIG. 8 is a diagram for explaining a pulling method using the conventional CZ method. 図9は、従来のCZ法を用いた引上げ法においてネック部の形成を説明するための図である。FIG. 9 is a diagram for explaining formation of a neck portion in a pulling method using a conventional CZ method.

符号の説明Explanation of symbols

1 単結晶引上装置
2 炉体
2a メインチャンバ
2b プルチャンバ
3 ルツボ
4 ヒータ
5 引上げ機構
6 輻射シールド
6a 係止部
6b 円筒部
6c テーパ部
6d 下端部
7 断熱部材
8 コンピュータ
8a 記憶装置
8b 演算記憶装置
13 ガス供給口(ガス供給手段)
14 バルブ(ガス供給手段)
17 Arガス供給源(ガス供給手段)
18 排気口(排気手段)
19 排気ポンプ(排気手段)
C 単結晶
G Arガス(不活性ガス)
M 原料シリコン、シリコン融液
P 種結晶
P1 ネック部
DESCRIPTION OF SYMBOLS 1 Single crystal pulling apparatus 2 Furnace body 2a Main chamber 2b Pull chamber 3 Crucible 4 Heater 5 Pulling mechanism 6 Radiation shield 6a Locking part 6b Cylindrical part 6c Taper part 6d Lower end part 7 Heat insulation member 8 Computer 8a Storage apparatus 8b Arithmetic storage apparatus 13 Gas supply port (gas supply means)
14 Valve (gas supply means)
17 Ar gas supply source (gas supply means)
18 Exhaust port (exhaust means)
19 Exhaust pump (exhaust means)
C single crystal G Ar gas (inert gas)
M Raw material silicon, Silicon melt P Seed crystal P1 Neck

Claims (4)

炉体内のルツボで原料シリコンの溶融液を生成し、チョクラルスキー法によって前記ルツボから単結晶を引上げる単結晶引上装置において、
前記ルツボの上方に設けられ、前記単結晶の周囲を包囲して上部と下部が開口形成され、前記単結晶に対する輻射熱を遮蔽する輻射シールドと、前記輻射シールドの上方から前記ルツボ内に不活性ガスを供給するガス供給手段と、前記ルツボ内を通過した前記不活性ガスを前記炉体外に排気する排気手段とを備え、
前記輻射シールドは、該輻射シールドの外周面と前記ルツボの内周面との最近接部での隙間面積が前記溶融液の液面面積の10%以上35%未満であって、
且つ、該輻射シールド下端と前記溶融液面との隙間寸法が該輻射シールドの下端面の径方向の幅寸法よりも短くなるよう配置され、
前記ガス供給手段により前記ルツボ内に供給された前記不活性ガスは、前記輻射シールドの配置によって形成される前記隙間を経由して前記排気手段により排気されることを特徴とする単結晶引上装置。
In a single crystal pulling apparatus that generates a raw material silicon melt with a crucible in the furnace and pulls the single crystal from the crucible by the Czochralski method.
A radiation shield which is provided above the crucible, surrounds the periphery of the single crystal and has an upper portion and a lower portion to shield radiation heat to the single crystal; and an inert gas in the crucible from above the radiation shield. Gas supply means for supplying the exhaust gas, and exhaust means for exhausting the inert gas that has passed through the crucible out of the furnace body,
In the radiation shield, a gap area at the closest portion between the outer peripheral surface of the radiation shield and the inner peripheral surface of the crucible is 10% or more and less than 35% of the liquid surface area of the melt,
And the gap dimension between the lower end surface of the radiation shield and the melt surface is arranged to be shorter than the width dimension in the radial direction of the lower end surface of the radiation shield,
The single crystal pulling apparatus, wherein the inert gas supplied into the crucible by the gas supply means is exhausted by the exhaust means through the gap formed by the arrangement of the radiation shield. .
単結晶引上工程において、前記ガス供給手段と前記排気手段とにより、前記輻射シールド下端と前記溶融液面との隙間における不活性ガスの平均流速が、前記輻射シールドと前記単結晶との最近接部での隙間における不活性ガスの平均流速よりも低い状態に制御されることを特徴とする請求項1に記載された単結晶引上装置。   In the single crystal pulling step, the gas supply means and the exhaust means cause the average flow velocity of the inert gas in the gap between the lower end of the radiation shield and the melt surface to be the closest distance between the radiation shield and the single crystal. 2. The single crystal pulling apparatus according to claim 1, wherein the single crystal pulling apparatus is controlled to be lower than an average flow rate of the inert gas in the gap in the section. 前記輻射シールドの下端面は、前記溶融液面に対し、最大9度の傾斜角を有するよう下方に向けて縮径するテーパ状に形成されていることを特徴とする請求項1または請求項2に記載された単結晶引上装置。   The lower end surface of the radiation shield is formed in a taper shape with a diameter decreasing downward so as to have an inclination angle of 9 degrees at the maximum with respect to the melt surface. The single crystal pulling apparatus described in 1. 前記請求項1乃至請求項3のいずれかに記載の単結晶引上装置を用い、前記ルツボから単結晶を引上げる単結晶の製造方法であって、
炉内圧を10torr以上80torr以下とし、かつ炉体内に100L/min以上200L/min以下の流量で不活性ガスを導入し、前記原料シリコンを溶融するステップと、
炉内圧を30torr以上190torr以下とし、かつ炉体内に50L/min以上150L/min以下の流量で不活性ガスを導入し、単結晶を引上げるステップとを実行することを特徴とする単結晶を製造方法。
A method for producing a single crystal, wherein the single crystal pulling apparatus according to any one of claims 1 to 3 is used to pull the single crystal from the crucible,
A step of melting the raw material silicon by introducing an inert gas at a flow rate of 100 L / min or more and 200 L / min or less to a furnace pressure of 10 to 80 torr and a furnace pressure;
Producing a single crystal characterized by performing a step of pulling the single crystal by introducing an inert gas at a flow rate of 50 L / min to 150 L / min at a flow rate of 50 L / min to 150 L / min. Method.
JP2008016257A 2008-01-28 2008-01-28 Single crystal pulling apparatus and single crystal manufacturing method Active JP4907568B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008016257A JP4907568B2 (en) 2008-01-28 2008-01-28 Single crystal pulling apparatus and single crystal manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008016257A JP4907568B2 (en) 2008-01-28 2008-01-28 Single crystal pulling apparatus and single crystal manufacturing method

Publications (2)

Publication Number Publication Date
JP2009173503A true JP2009173503A (en) 2009-08-06
JP4907568B2 JP4907568B2 (en) 2012-03-28

Family

ID=41029034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008016257A Active JP4907568B2 (en) 2008-01-28 2008-01-28 Single crystal pulling apparatus and single crystal manufacturing method

Country Status (1)

Country Link
JP (1) JP4907568B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011201757A (en) * 2010-03-03 2011-10-13 Covalent Materials Corp Method for producing silicon single crystal
JP2019031415A (en) * 2017-08-07 2019-02-28 株式会社Sumco Production method of silicon single crystal

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH059097A (en) * 1991-06-28 1993-01-19 Shin Etsu Handotai Co Ltd Method for pulling up silicon single crystal
JPH0543381A (en) * 1991-03-27 1993-02-23 Sumitomo Metal Ind Ltd Apparatus for growing single crystal by molten layer process and method for controlling oxygen concentration in single crystal using the apparatus
JP2006219366A (en) * 2005-02-10 2006-08-24 Siltronic Ag Manufacturing process of silicon single crystal with controlled carbon content
JP2007031235A (en) * 2005-07-28 2007-02-08 Toshiba Ceramics Co Ltd Apparatus for manufacturing single crystal
JP2008087996A (en) * 2006-09-29 2008-04-17 Covalent Materials Corp Single crystal pulling apparatus and single crystal manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0543381A (en) * 1991-03-27 1993-02-23 Sumitomo Metal Ind Ltd Apparatus for growing single crystal by molten layer process and method for controlling oxygen concentration in single crystal using the apparatus
JPH059097A (en) * 1991-06-28 1993-01-19 Shin Etsu Handotai Co Ltd Method for pulling up silicon single crystal
JP2006219366A (en) * 2005-02-10 2006-08-24 Siltronic Ag Manufacturing process of silicon single crystal with controlled carbon content
JP2007031235A (en) * 2005-07-28 2007-02-08 Toshiba Ceramics Co Ltd Apparatus for manufacturing single crystal
JP2008087996A (en) * 2006-09-29 2008-04-17 Covalent Materials Corp Single crystal pulling apparatus and single crystal manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011201757A (en) * 2010-03-03 2011-10-13 Covalent Materials Corp Method for producing silicon single crystal
JP2019031415A (en) * 2017-08-07 2019-02-28 株式会社Sumco Production method of silicon single crystal

Also Published As

Publication number Publication date
JP4907568B2 (en) 2012-03-28

Similar Documents

Publication Publication Date Title
JP4919343B2 (en) Single crystal pulling device
JP4829176B2 (en) Single crystal manufacturing method
US10494734B2 (en) Method for producing silicon single crystals
JP2009114054A (en) Method for producing semiconductor single crystal having improved oxygen concentration characteristics
JP2008019125A (en) Method of melting semiconductor wafer base material and method of growing semiconductor wafer crystal
JP4785765B2 (en) Single crystal pulling method
JP4716331B2 (en) Single crystal manufacturing method
JP2008162809A (en) Single crystal pulling apparatus and method for manufacturing single crystal
JPH10297994A (en) Growth of silicon single crystal
JP2010018446A (en) Method for producing single crystal and single crystal pulling apparatus
JP5782323B2 (en) Single crystal pulling method
JP2007191353A (en) Radiation shield and single crystal pulling apparatus equipped with the same
JP4907568B2 (en) Single crystal pulling apparatus and single crystal manufacturing method
JP2007254165A (en) Single crystal pulling device
WO2023051616A1 (en) Crystal pulling furnace for pulling monocrystalline silicon rod
TWI784314B (en) Manufacturing method of single crystal silicon
JP2007204305A (en) Single crystal pulling apparatus
JP2007254200A (en) Method for manufacturing single crystal
JP2008189523A (en) Method for manufacturing single crystal
JP2011219300A (en) Method of manufacturing silicon single crystal, and apparatus for pulling silicon single crystal for use for the method
JP4702266B2 (en) Single crystal pulling method
JP4785764B2 (en) Single crystal manufacturing method
JP2007210820A (en) Method of manufacturing silicon single crystal
WO2022254885A1 (en) Method for producing silicon monocrystal
JP4341379B2 (en) Single crystal manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101008

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4907568

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250