JP5782323B2 - Single crystal pulling method - Google Patents

Single crystal pulling method Download PDF

Info

Publication number
JP5782323B2
JP5782323B2 JP2011160431A JP2011160431A JP5782323B2 JP 5782323 B2 JP5782323 B2 JP 5782323B2 JP 2011160431 A JP2011160431 A JP 2011160431A JP 2011160431 A JP2011160431 A JP 2011160431A JP 5782323 B2 JP5782323 B2 JP 5782323B2
Authority
JP
Japan
Prior art keywords
single crystal
magnetic field
crucible
pulling
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011160431A
Other languages
Japanese (ja)
Other versions
JP2013023415A (en
Inventor
阿部 直
直 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GlobalWafers Japan Co Ltd
Original Assignee
GlobalWafers Japan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GlobalWafers Japan Co Ltd filed Critical GlobalWafers Japan Co Ltd
Priority to JP2011160431A priority Critical patent/JP5782323B2/en
Publication of JP2013023415A publication Critical patent/JP2013023415A/en
Application granted granted Critical
Publication of JP5782323B2 publication Critical patent/JP5782323B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、チョクラルスキー法(以下、「CZ法」という)によりシリコン単結晶を引き上げる単結晶引上方法に関する。   The present invention relates to a single crystal pulling method for pulling a silicon single crystal by the Czochralski method (hereinafter referred to as “CZ method”).

シリコン単結晶の育成に関し、CZ法が広く用いられている。この方法は、図4に示すように、炉体55内においてヒータ52の加熱によりルツボ50内にシリコン溶融液Mを形成し、その液面M1に種結晶Pを接触させ、ルツボ50を回転させるとともに、この種結晶Pを前記ルツボ50と反対方向に回転させながら上方へ引上げることによって、種結晶Pの下端に単結晶Cを形成していくものである。
尚、図4に示すように、ルツボ50の上方には、単結晶Cの引上領域を囲むように輻射シールド51が設けられる。輻射シールド51は、育成する単結晶Cの外周面への輻射熱を効果的に遮断するものであって、これにより引き上げ中の単結晶Cの凝固を促進し、単結晶Cを速やかに冷却することができる。
The CZ method is widely used for the growth of silicon single crystals. In this method, as shown in FIG. 4, the silicon melt M is formed in the crucible 50 by heating the heater 52 in the furnace body 55, the seed crystal P is brought into contact with the liquid surface M1, and the crucible 50 is rotated. At the same time, the single crystal C is formed at the lower end of the seed crystal P by pulling the seed crystal P upward while rotating the seed crystal P in the direction opposite to the crucible 50.
As shown in FIG. 4, a radiation shield 51 is provided above the crucible 50 so as to surround the pulling region of the single crystal C. The radiation shield 51 effectively cuts off the radiant heat to the outer peripheral surface of the single crystal C to be grown, thereby promoting the solidification of the single crystal C being pulled and quickly cooling the single crystal C. Can do.

ところで近年では、デバイスの歩留まり向上のためにウエハの大口径化が進んでいる。そのため、シリコン単結晶Cが大型化し、そのような単結晶を引き上げる際には、大口径のルツボ50内に大量のシリコン溶融液Mを形成する必要がある。
しかしながら、ルツボ50内の溶融液量が増加すると、溶融液内の対流が複雑化し、酸素濃度等の所望の結晶特性や無転位結晶を得ることが難しくなる。
In recent years, the diameter of wafers has been increasing in order to improve device yield. For this reason, when the silicon single crystal C is enlarged and such a single crystal is pulled up, it is necessary to form a large amount of the silicon melt M in the crucible 50 having a large diameter.
However, when the amount of the melt in the crucible 50 increases, convection in the melt becomes complicated, and it becomes difficult to obtain desired crystal characteristics such as oxygen concentration and dislocation-free crystals.

前記課題を解決するために、溶融液Mにカスプ磁場を印加して溶融液Mの対流を制御するカスプ磁場印加方式が採用されている。
例えば、特許文献1には、カスプ磁場強度を300〜600G(ガウス)とし、雰囲気圧力を50torr以上に制御することにより、結晶成長方向の酸素濃度分布および結晶面内の酸素濃度分布を均一に制御すると共に、有転位化を防止できる方法が提案されている。
In order to solve the above-described problem, a cusp magnetic field application method is adopted in which a cusp magnetic field is applied to the melt M to control convection of the melt M.
For example, in Patent Document 1, the cusp magnetic field strength is set to 300 to 600 G (Gauss), and the atmospheric pressure is controlled to 50 torr or more to uniformly control the oxygen concentration distribution in the crystal growth direction and the oxygen concentration distribution in the crystal plane. In addition, a method that can prevent dislocations has been proposed.

特開2000−239096号公報JP 2000-239096 A

しかしながら、特許文献1に開示された方法は、溶融液中の酸素、及びルツボ内から溶け出した酸素がシリコン単結晶(固液界面)に到達するのが難しく、酸素濃度が1.3×1018atoms/cmを越えるような高濃度酸素を有するシリコン単結晶の育成が困難という課題があった。
なお、このような高酸素濃度のシリコン単結晶を得るためには、炉内圧力を高い値で設定することで、シリコン溶融液からの酸素の蒸発を抑制して、シリコン溶融液中の酸素濃度を高めることができる。しかしながらこの場合は、溶融液表面から蒸発するシリコンと酸素の化合物(オキサイド)が炉外に排出されにくくなり、このオキサイドが炉内で固化して溶融液に落下し、これが結晶に取り込まれて有転位化する虞があった。
However, in the method disclosed in Patent Document 1, it is difficult for oxygen in the melt and oxygen dissolved from the crucible to reach the silicon single crystal (solid-liquid interface), and the oxygen concentration is 1.3 × 10. There was a problem that it was difficult to grow a silicon single crystal having a high concentration oxygen exceeding 18 atoms / cm 3 .
In order to obtain a silicon single crystal having such a high oxygen concentration, the oxygen pressure in the silicon melt is suppressed by setting the furnace pressure at a high value to suppress the evaporation of oxygen from the silicon melt. Can be increased. However, in this case, the silicon and oxygen compound (oxide) that evaporates from the melt surface becomes difficult to be discharged outside the furnace, and this oxide solidifies in the furnace and falls into the melt, which is taken into the crystal. There was a risk of dislocation.

本発明は、前記したような事情の下になされたものであり、チョクラルスキー法によってルツボからシリコン単結晶を引上げる単結晶引上方法であって、ウエハの大口径化に伴ってルツボ内の溶融液量が増加した場合でも、1.3×1018atoms/cm以上の高酸素濃度を有する単結晶を有転位化させることなく育成することができる単結晶引上方法を提供することを目的とする。 The present invention has been made under the circumstances as described above, and is a single crystal pulling method for pulling a silicon single crystal from a crucible by the Czochralski method. To provide a single crystal pulling method capable of growing a single crystal having a high oxygen concentration of 1.3 × 10 18 atoms / cm 3 or more without causing dislocation even when the amount of the melt is increased. With the goal.

前記課題を解決するためになされた本発明に係る単結晶引上方法は、ヒータの加熱によりルツボ内にシリコン溶融液を形成し、前記ルツボの周囲に配置された上下一対の電磁コイルにより、前記シリコン溶融液に対してカスプ磁場を印加すると共に、チョクラルスキー法により前記ルツボから1.3×1018atoms/cm(old−ASTM)以上の酸素濃度を有するシリコン単結晶を引き上げる単結晶引上方法であって、前記シリコン単結晶を引き上げる際の炉内圧力を40〜80torr、ルツボ回転数を3〜8rpmの間で制御すると共に、前記上下一対の電磁コイルにより印加される上部磁場と下部磁場の磁場強度比(上部磁場/下部磁場)を0.80〜0.90の間で制御し、かつ、前記シリコン溶融液の液面を0(mm)位置とし、前記液面に対して垂直である鉛直方向における前記液面から上方向を正の方向、前記液面から下方向を負の方向としたとき、前記シリコン単結晶の中心軸上の前記鉛直方向における磁場強度が0(ガウス)となる0磁場水平位置を−10〜+100mmの間に制御することを特徴とする。 The single crystal pulling method according to the present invention made to solve the above-mentioned problem is that a silicon melt is formed in a crucible by heating of a heater, and the above-mentioned pair of upper and lower electromagnetic coils arranged around the crucible, A single crystal pulling method for applying a cusp magnetic field to a silicon melt and pulling up a silicon single crystal having an oxygen concentration of 1.3 × 10 18 atoms / cm 3 (old-ASTM) or more from the crucible by the Czochralski method. In the above method, the furnace pressure when pulling up the silicon single crystal is controlled between 40 to 80 torr and the crucible rotation speed between 3 and 8 rpm, and the upper magnetic field and the lower applied by the pair of upper and lower electromagnetic coils field strength ratio of the magnetic field (the top field / bottom field) is controlled between 0.80 to 0.90, and the liquid level of the silicon melt 0 (m ) Position, and when the upper direction from the liquid level in the vertical direction perpendicular to the liquid level is a positive direction and the lower direction from the liquid level is a negative direction, it is on the central axis of the silicon single crystal. The zero magnetic field horizontal position where the magnetic field intensity in the vertical direction is 0 (Gauss) is controlled between -10 and +100 mm.

このように前記単結晶を引き上げる際の炉内圧力を40〜80torrの間で制御することにより、溶融液中に溶け出した酸素の蒸発を抑制して、溶融液中の酸素を結晶中に取り込みやすくなり、かつ、溶融液表面から蒸発するオキサイドを炉外に排出させやすい状態を形成することができる。
また、ルツボ回転数を3〜8rpmの間で制御することにより、溶融液とルツボとの摩擦によって、ルツボが含む酸素を溶融液に多く溶け込ませることができる。
また、上下一対の電磁コイルにより印加される磁場強度比(上部磁場/下部磁場)を0.80〜0.90の間で制御することにより、ルツボの底部から結晶直下(固液界面)に湧き上がって自由液面側に向かう溶融液対流が優位に形成され、ルツボ底部から溶融液に溶け込む酸素が、この対流に乗って結晶に取り込まれやすくなり、高酸素濃度結晶を得ることができる。
また、0磁場水平位置を−10〜+100mmの間で制御することにより、ルツボの回転方向に流れる電流(電子)と鉛直方向の磁束密度とによってローレンツ力が形成され、結晶直下(固液界面)から溶融液の自由液面を通ってルツボ壁側に向かう溶融液対流を形成することができる。
これにより、前記磁場強度比の効果と重畳して結晶直下からルツボ壁に向かう強い対流が形成され、液面に浮遊する異物(例えば、オキサイドが炉内で固化して溶融液に落下した異物)を結晶(固液界面)から遠ざけ、結晶の有転位化を防止することができる。
したがって、本発明によれば、ルツボ内のシリコン溶融液量に拘わらず(ルツボ内の溶融液量が増加した場合でも)、1.3×1018atoms/cm以上の高酸素濃度を有する単結晶を有転位化させることなく育成することができる。
Thus, by controlling the pressure in the furnace when pulling up the single crystal between 40 to 80 torr, the evaporation of oxygen dissolved in the melt is suppressed, and the oxygen in the melt is taken into the crystal. This makes it easy to form a state in which oxide evaporated from the surface of the melt is easily discharged out of the furnace.
Further, by controlling the number of revolutions of the crucible between 3 and 8 rpm, a large amount of oxygen contained in the crucible can be dissolved in the melt by friction between the melt and the crucible.
In addition, by controlling the magnetic field strength ratio (upper magnetic field / lower magnetic field) applied by a pair of upper and lower electromagnetic coils between 0.80 and 0.90 , it springs from the bottom of the crucible directly below the crystal (solid-liquid interface). The molten liquid convection that rises toward the free liquid surface side is formed predominantly, and oxygen dissolved in the molten liquid from the bottom of the crucible is easily taken into the crystal by riding on this convection, and a high oxygen concentration crystal can be obtained.
Also, by controlling the horizontal position of the zero magnetic field between −10 and +100 mm, a Lorentz force is formed by the current (electrons) flowing in the crucible rotation direction and the magnetic flux density in the vertical direction, and directly below the crystal (solid-liquid interface). From the free liquid surface of the melt, the melt convection toward the crucible wall side can be formed.
As a result, a strong convection heading from directly below the crystal to the crucible wall is formed, overlapping with the effect of the magnetic field strength ratio, and foreign matter floating on the liquid surface (for example, foreign matter that solidifies in the furnace and falls into the melt) Can be kept away from the crystal (solid-liquid interface) to prevent dislocation of the crystal.
Therefore, according to the present invention, regardless of the amount of silicon melt in the crucible (even when the amount of melt in the crucible increases), the single oxygen having a high oxygen concentration of 1.3 × 10 18 atoms / cm 3 or more. The crystal can be grown without causing dislocation.

本発明によれば、チョクラルスキー法によってルツボからシリコン単結晶を引上げる単結晶引上方法において、ウエハの大口径化に伴ってルツボ内の溶融液量が増加した場合でも、1.3×1018atoms/cm以上の高酸素濃度を有する単結晶を有転位化させることなく育成することができる。 According to the present invention, in the single crystal pulling method in which the silicon single crystal is pulled from the crucible by the Czochralski method, even when the amount of the melt in the crucible increases with an increase in the diameter of the wafer, 1.3 × A single crystal having a high oxygen concentration of 10 18 atoms / cm 3 or more can be grown without causing dislocation.

図1は、本発明に係る単結晶引上方法が実施される単結晶引上装置の構成を示す断面図である。FIG. 1 is a cross-sectional view showing the configuration of a single crystal pulling apparatus in which a single crystal pulling method according to the present invention is carried out. 図2は、図1の単結晶引上装置の一部拡大断面図である。FIG. 2 is a partially enlarged cross-sectional view of the single crystal pulling apparatus of FIG. 図3は、本発明に係る単結晶引上方法の流れを示すフローである。FIG. 3 is a flow showing the flow of the single crystal pulling method according to the present invention. 図4は、従来の単結晶引上方法を説明するための断面図である。FIG. 4 is a cross-sectional view for explaining a conventional single crystal pulling method.

以下、本発明に係る単結晶引上方法の実施の形態について図面に基づき説明する。図1は本発明に係る単結晶引上方法が実施される単結晶引上装置の構成を示す断面図である。図2は、図1の単結晶引上装置の一部拡大断面図である。
この単結晶引上装置1は、円筒形状のメインチャンバ2aの上にプルチャンバ2bを重ねて形成された炉体2と、炉体2内に設けられたルツボ3と、ルツボ3に装填された半導体原料(原料ポリシリコン)を溶融してシリコン溶融液Mとする抵抗加熱ヒータ4(以下、単にヒータと呼ぶ)と、育成される単結晶Cを引上げる引上げ機構5とを有している。
Hereinafter, embodiments of a single crystal pulling method according to the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view showing the configuration of a single crystal pulling apparatus in which a single crystal pulling method according to the present invention is carried out. FIG. 2 is a partially enlarged cross-sectional view of the single crystal pulling apparatus of FIG.
This single crystal pulling apparatus 1 includes a furnace body 2 formed by superposing a pull chamber 2b on a cylindrical main chamber 2a, a crucible 3 provided in the furnace body 2, and a semiconductor loaded in the crucible 3. It has a resistance heater 4 (hereinafter simply referred to as a heater) that melts a raw material (raw material polysilicon) to form a silicon melt M, and a pulling mechanism 5 that pulls up a single crystal C to be grown.

前記ヒータ4には、ルツボ3を囲むように円筒状のスリット部4aが発熱部として設けられている。
また、ルツボ3は二重構造であり、内側が石英ガラスルツボ3a、外側が黒鉛ルツボ3bで構成されている。
また、引上げ機構5は、モータ駆動される巻取り機構5aと、この巻取り機構5aに巻き上げられる引上げワイヤ5bを有し、このワイヤ5bの先端に種結晶Pが取り付けられている。
The heater 4 is provided with a cylindrical slit portion 4 a as a heat generating portion so as to surround the crucible 3.
The crucible 3 has a double structure, and the inner side is constituted by a quartz glass crucible 3a and the outer side is constituted by a graphite crucible 3b.
The pulling mechanism 5 has a winding mechanism 5a driven by a motor and a pulling wire 5b wound up by the winding mechanism 5a, and a seed crystal P is attached to the tip of the wire 5b.

また、メインチャンバ2a内において、ルツボ3の上方且つ近傍には、単結晶Cの周囲を包囲する輻射シールド6が配置されている。この輻射シールド6は、上部と下部が開口形成され、育成中の単結晶Cにヒータ4等からの余計な輻射熱を遮蔽すると共に、炉内のガス流を整流するものである。
尚、輻射シールド6は、炉体2内において位置固定され、輻射シールド6下端と溶融液の液面M1との間の距離寸法(ギャップ)は、単結晶Cの育成に伴いルツボ3を上昇させることにより、所定の距離を維持するように制御される。
In the main chamber 2a, a radiation shield 6 surrounding the periphery of the single crystal C is disposed above and in the vicinity of the crucible 3. This radiation shield 6 has an opening at the top and bottom, shields extra radiation heat from the heater 4 and the like on the growing single crystal C, and rectifies the gas flow in the furnace.
The radiation shield 6 is fixed in the furnace body 2, and the distance dimension (gap) between the lower end of the radiation shield 6 and the liquid level M1 of the molten liquid raises the crucible 3 with the growth of the single crystal C. Thus, control is performed to maintain a predetermined distance.

また、図1に示すようにメインチャンバ2aの外側には、その周囲を囲むように上下一対のカスプ磁場印加用電磁コイル13、14が設置され、これによりルツボ3のシリコン溶融液M内にカスプ磁場を印加して単結晶を育成するMCZ法(Magnetic field applied CZ法)が実施される。本実施の形態においては、このMCZ法を用い、シリコン溶融液Mに対し所定の磁場(図2の磁力線B)を形成することにより、シリコン溶融液Mの対流を制御する。   Further, as shown in FIG. 1, a pair of upper and lower cusp magnetic field application electromagnetic coils 13 and 14 are installed outside the main chamber 2a so as to surround the periphery of the main chamber 2a. An MCZ method (Magnetic field applied CZ method) in which a single crystal is grown by applying a magnetic field is performed. In this embodiment, the MCZ method is used to form a predetermined magnetic field (magnetic field lines B in FIG. 2) on the silicon melt M, thereby controlling the convection of the silicon melt M.

また、図1に示すように単結晶引上装置1は、シリコン溶融液Mの温度を制御するヒータ4の供給電力量を制御するヒータ制御部9と、ルツボ3を引上げ軸周りに回転させるモータ10と、モータ10の回転数を制御するモータ制御部10aとを備えている。また、ルツボ3の高さを制御する昇降装置11と、昇降装置11を制御する昇降装置制御部11aと、単結晶Cの引上げ速度と結晶回転数を制御するワイヤリール回転装置制御部12とを備えている。さらには、カスプ磁場印加用電磁コイル13,14の動作制御を行う電磁コイル制御部15を備えている。これら各制御部9、10a、11a、12、15はコンピュータ8の演算制御装置8bに接続されている。   As shown in FIG. 1, the single crystal pulling apparatus 1 includes a heater control unit 9 that controls the amount of power supplied to the heater 4 that controls the temperature of the silicon melt M, and a motor that rotates the crucible 3 around the pulling axis. 10 and a motor control unit 10a that controls the rotation speed of the motor 10. Further, an elevating device 11 that controls the height of the crucible 3, an elevating device control unit 11a that controls the elevating device 11, and a wire reel rotating device control unit 12 that controls the pulling speed and the crystal rotation speed of the single crystal C. I have. Furthermore, the electromagnetic coil control part 15 which performs operation | movement control of the electromagnetic coils 13 and 14 for cusp magnetic field application is provided. Each of these control units 9, 10 a, 11 a, 12, 15 is connected to an arithmetic control device 8 b of the computer 8.

このように構成された単結晶引上装置1においては、最初に石英ガラスルツボ3aに原料ポリシリコンを装填し、コンピュータ8の記憶装置8aに記憶されたプログラムに基づき、図3のフローに沿って単結晶引上工程が開始される。
先ず、炉体2内が所定の雰囲気(好ましくはアルゴンガス雰囲気)となされ、ルツボ3内に装填された原料ポリシリコンが、ヒータ4による加熱によって溶融され、シリコン溶融液Mとされる(図3のステップS1)。
さらに、演算制御装置8bの指令によりモータ制御部10aと昇降装置制御部11aとが作動し、ルツボ3が所定の高さ位置において所定の回転速度(rpm)で回転動作される。
In the single crystal pulling apparatus 1 configured in this manner, first, raw material polysilicon is loaded into the quartz glass crucible 3a, and based on the program stored in the storage device 8a of the computer 8, along the flow of FIG. The single crystal pulling process is started.
First, the inside of the furnace body 2 is set to a predetermined atmosphere (preferably an argon gas atmosphere), and the raw material polysilicon charged in the crucible 3 is melted by heating by the heater 4 to form a silicon melt M (FIG. 3). Step S1).
Further, the motor control unit 10a and the lifting device control unit 11a are operated by a command from the arithmetic control device 8b, and the crucible 3 is rotated at a predetermined rotational speed (rpm) at a predetermined height position.

次いで、演算制御装置8bの指令により電磁コイル制御部15が作動し、カスプ磁場印加用電磁コイル13,14にそれぞれ所定の電流が流される。これによりシリコン溶融液M内に所定強度のカスプ磁場(図2の磁力線B)が印加される(図3のステップS2)。
また、演算制御装置8bの指令により、引上機構制御部12が作動し、巻取り機構5aが作動してワイヤ5bが下降する。そして、ワイヤ5bに取付けられた種結晶Pがシリコン溶融液Mに接触され、種結晶Pの先端部を溶解するネッキングが行われてネック部P1が形成される(図3のステップS3)。
Next, the electromagnetic coil controller 15 is actuated by a command from the arithmetic and control unit 8b, and predetermined currents are caused to flow through the cusp magnetic field applying electromagnetic coils 13 and 14, respectively. As a result, a cusp magnetic field having a predetermined strength (line of magnetic force B in FIG. 2) is applied in the silicon melt M (step S2 in FIG. 3).
Further, the pulling mechanism control unit 12 is operated by the command of the arithmetic control device 8b, the winding mechanism 5a is operated, and the wire 5b is lowered. Then, the seed crystal P attached to the wire 5b is brought into contact with the silicon melt M, and necking for melting the tip of the seed crystal P is performed to form the neck portion P1 (step S3 in FIG. 3).

ネック部P1が形成されると、演算制御装置8bの指令によりヒータ4への供給電力や、引上げ速度(通常、毎分数ミリの速度)、印加する磁場強度などをパラメータとして引上げ条件が調整され、また、ルツボ3の回転方向とは逆方向に所定の回転速度(例えば12rpm)で種結晶Pが回転される(図3のステップS4)。
そして、ネック部P1を所望の直径まで拡径する拡径部を形成し(図3のステップS5)、その後、所望の直径を維持する直胴部を形成し(図3のステップS6)、最後に、所望の直径から縮径する縮径部を形成する(図3のステップS7)。
When the neck portion P1 is formed, the pulling conditions are adjusted with parameters such as the power supplied to the heater 4, the pulling speed (usually a speed of several millimeters per minute), the magnetic field strength to be applied, etc., according to the command of the arithmetic control device 8b. Further, the seed crystal P is rotated at a predetermined rotation speed (for example, 12 rpm) in a direction opposite to the rotation direction of the crucible 3 (step S4 in FIG. 3).
Then, an enlarged diameter part for expanding the neck part P1 to a desired diameter is formed (step S5 in FIG. 3), and then a straight body part for maintaining the desired diameter is formed (step S6 in FIG. 3). Then, a reduced diameter portion that is reduced from a desired diameter is formed (step S7 in FIG. 3).

前記シリコン単結晶を引き上げる際の炉内圧力は40〜80torrの間で制御される。
これにより、溶融液中に溶け出した酸素の蒸発を抑制して、溶融液中の酸素を結晶中に取り込みやすくなり、かつ、溶融液表面から蒸発するオキサイドを炉外に排出させやすい状態を形成することができる。
また、モータ制御部10aの制御によりルツボ3の回転数が3〜8rpmの間で制御される。これにより、溶融液とルツボとの摩擦によって、ルツボが含む酸素を溶融液に多く溶け込ませることができる。
即ち、前記ルツボ回転数が3rpmを下回ると、溶融液Mとルツボ3との摩擦が弱まり、溶融液Mに溶け込む酸素量が減るため、高酸素濃度(1.3×1018atoms/cm以上)の結晶を得るのが困難となるためである。一方、ルツボ回転数が8rpmを超えると、溶融液Mの対流が乱れ、無転位結晶を得るのが困難になるためである。
The pressure in the furnace when pulling up the silicon single crystal is controlled between 40 and 80 torr.
This suppresses the evaporation of oxygen dissolved in the melt, making it easier for oxygen in the melt to be taken into the crystal and allowing the oxide evaporated from the melt surface to be discharged out of the furnace. can do.
Further, the rotational speed of the crucible 3 is controlled between 3 and 8 rpm by the control of the motor control unit 10a. Thereby, a large amount of oxygen contained in the crucible can be dissolved in the melt by friction between the melt and the crucible.
That is, when the crucible rotation speed is less than 3 rpm, the friction between the melt M and the crucible 3 is weakened, and the amount of oxygen dissolved in the melt M is reduced. Therefore, a high oxygen concentration (1.3 × 10 18 atoms / cm 3 or more This is because it is difficult to obtain a crystal of On the other hand, if the crucible rotation speed exceeds 8 rpm, the convection of the melt M is disturbed, making it difficult to obtain dislocation-free crystals.

また、上下のカスプ磁場印加用電磁コイル13,14により印加される磁場強度比(上部磁場/下部磁場)が、0.7〜0.95の間となるよう、電磁コイル制御部15によって各コイル13,14に流す電流が制御される。
このように前記磁場強度比を制御することにより、ルツボ3の底部から結晶直下(固液界面)に湧き上がって自由液面側に向かう溶融液対流F(図2参照)が優位に形成される。
その結果、ルツボ底部から溶融液Mに溶け込む酸素が、この対流Fに乗って単結晶Cに取り込まれやすくなり、所望の高酸素濃度の結晶を得やすくなる。
Further, each coil is controlled by the electromagnetic coil controller 15 so that the magnetic field strength ratio (upper magnetic field / lower magnetic field) applied by the upper and lower cusp magnetic field applying electromagnetic coils 13 and 14 is between 0.7 and 0.95. The current flowing through 13 and 14 is controlled.
By controlling the magnetic field strength ratio in this way, a melt convection F (see FIG. 2) that swells from the bottom of the crucible 3 directly below the crystal (solid-liquid interface) and moves toward the free liquid surface is formed preferentially. .
As a result, oxygen dissolved in the melt M from the bottom of the crucible is easily taken into the single crystal C on the convection F, and a crystal having a desired high oxygen concentration is easily obtained.

また、シリコン溶融液Mの液面M1に対して垂直である鉛直方向において、前記シリコン単結晶の中心軸上の前記鉛直方向における磁場強度が0(ガウス)となる水平位置H(液面M1と平行な面の位置:0磁場水平位置と呼ぶ)が制御される。
具体的には、前記液面M1を0(mm)位置とし、液面M1から上方向を正の方向、液面M1から下方向を負の方向としたとき、前記0磁場水平位置が−10〜+100mmの間となるように、上下一対の電子コイルの設置位置や昇降装置11によりルツボ3の高さを調整して制御する。
このように0磁場水平位置Hを制御することにより、ルツボの回転方向に流れる電流(電子)と鉛直方向の磁束密度とによってローレンツ力が形成され、結晶直下(固液界面)から溶融液の自由液面を通ってルツボ壁側に向かう溶融液対流E(図2参照)を形成することができる。
これにより、前記磁場強度比の効果と重畳して結晶直下からルツボ壁に向かう強い対流Eが形成され、液面M1に浮遊する異物(例えば、オキサイドが炉内で固化して溶融液に落下した異物)を結晶(固液界面)から遠ざけ、結晶の有転位化を防止することができる。
Further, in the vertical direction perpendicular to the liquid level M1 of the silicon melt M, the horizontal position H (the liquid level M1 and the liquid level M1) where the magnetic field strength in the vertical direction on the central axis of the silicon single crystal is 0 (Gauss). The position of the parallel plane: called zero magnetic field horizontal position) is controlled.
Specifically, when the liquid level M1 is a 0 (mm) position, the upward direction from the liquid level M1 is a positive direction, and the downward direction from the liquid level M1 is a negative direction, the 0 magnetic field horizontal position is −10. The height of the crucible 3 is adjusted and controlled by the installation position of the pair of upper and lower electronic coils and the lifting device 11 so as to be between ˜ + 100 mm.
By controlling the zero magnetic field horizontal position H in this way, a Lorentz force is formed by the current (electrons) flowing in the crucible rotation direction and the magnetic flux density in the vertical direction. Melt convection E (see FIG. 2) can be formed through the liquid surface toward the crucible wall side.
As a result, a strong convection E directed from the crystal directly to the crucible wall is formed in superposition with the effect of the magnetic field strength ratio, and foreign matter floating on the liquid surface M1 (for example, oxide solidifies in the furnace and falls into the molten liquid). The foreign matter) can be kept away from the crystal (solid-liquid interface) to prevent dislocation of the crystal.

ここで、0磁場水平位置Hが、−10mmよりも低い位置にあると、結晶直下(固液界面)から溶融液の自由液面を通ってルツボ壁側に向かう溶融液対流Eが形成されにくくなり、単結晶Cが有転位化する頻度が高くなる。一方、0磁場水平位置Hが+100mmよりも高い位置にあると、結晶直下(固液界面)からルツボ壁側に向かう溶融液対流Eが強くなり過ぎてしまい、溶融液M中の酸素が結晶に到達しにくくなり、所望の高酸素濃度の結晶を得るのが困難になるためである。   Here, when the zero magnetic field horizontal position H is lower than −10 mm, it is difficult to form the melt convection E toward the crucible wall side from directly below the crystal (solid-liquid interface) through the free liquid surface of the melt. Thus, the frequency at which the single crystal C undergoes dislocation increases. On the other hand, if the zero magnetic field horizontal position H is higher than +100 mm, the melt convection E from the position just below the crystal (solid-liquid interface) toward the crucible wall becomes too strong, and oxygen in the melt M becomes crystalline. This is because it is difficult to obtain crystals with a desired high oxygen concentration.

以上のように、本実施の形態によれば、上述したように、炉内圧力、ルツボ回転数、磁場強度比及び0磁場水平位置を所定の範囲に制御することにより、ウエハの大口径化に伴ってルツボ内の溶融液量が増加した場合でも、1.3×1018atoms/cm以上の高酸素濃度を有する単結晶を有転位化させることなく育成することができる。 As described above, according to the present embodiment, as described above, the furnace diameter, the crucible rotation speed, the magnetic field strength ratio, and the zero magnetic field horizontal position are controlled within a predetermined range, thereby increasing the wafer diameter. Accordingly, even when the amount of the melt in the crucible increases, a single crystal having a high oxygen concentration of 1.3 × 10 18 atoms / cm 3 or more can be grown without causing dislocation.

なお、前述した結晶回転数は、主に、シリコン単結晶を引き上げる際の径制御に用いられるため、特に限定されるものではないが、溶融液対流Eとの関係上、15rpm以下に制御することが好ましい。
ここで、前記結晶回転数が15rpmを超える場合には、結晶直下(固液界面)からルツボ壁側に向かう溶融液対流Eが更に強くなり、溶融液M中の酸素が結晶に到達しにくくなり、所望の高酸素濃度の結晶を得るのが困難となる場合があるためである。
また、前記結晶回転数は、引き上げるシリコン単結晶の形状を安定化させる関係上、3rpm以上であることがより好ましい。
The above-mentioned crystal rotation speed is mainly used for diameter control when pulling up the silicon single crystal, and is not particularly limited. However, in relation to the melt convection E, it should be controlled to 15 rpm or less. Is preferred.
Here, when the number of rotations of the crystal exceeds 15 rpm, the melt convection E directed from directly under the crystal (solid-liquid interface) toward the crucible wall becomes stronger, and oxygen in the melt M hardly reaches the crystal. This is because it may be difficult to obtain a crystal having a desired high oxygen concentration.
The crystal rotation speed is more preferably 3 rpm or more in order to stabilize the shape of the silicon single crystal to be pulled up.

本発明に係る単結晶引上方法について、実施例に基づきさらに説明する。
図1乃至図3に示す前記実施の形態に基づき、表1に示す各条件(実施例1〜12,比較例1〜7)で3本ずつ単結晶の引き上げを行った。表1において、磁場強度比とは、上下一対のカスプ磁場印加用電磁コイルにより印加される上部磁場と下部磁場の磁場強度比(上部磁場/下部磁場)である。また、0磁場水平位置(mm)とは、シリコン溶融液Mの液面M1を0(mm)位置とし、前記液面M1に対して垂直である鉛直方向における前記液面M1から上方向を正の方向、前記液面M1から下方向を負の方向としたとき、前記シリコン単結晶の中心軸上の前記鉛直方向における磁場強度が0(ガウス)となる高さ(例えば、図2中の符号H)である。
また、全ての条件において、目標酸素濃度を1.3×1018atoms/cm以上、原料シリコン量を300kg、引き上げるシリコン単結晶の直径を12インチ、結晶回転数を12rpm、炉内の不活性ガス(Arガス)流量を100L/minとした。
The single crystal pulling method according to the present invention will be further described based on examples.
Based on the embodiment shown in FIGS. 1 to 3, three single crystals were pulled under the conditions shown in Table 1 (Examples 1 to 12 and Comparative Examples 1 to 7). In Table 1, the magnetic field strength ratio is a magnetic field strength ratio (upper magnetic field / lower magnetic field) between an upper magnetic field and a lower magnetic field applied by a pair of upper and lower cusp magnetic field applying electromagnetic coils. The zero magnetic field horizontal position (mm) means that the liquid level M1 of the silicon melt M is the 0 (mm) position and the upward direction from the liquid level M1 in the vertical direction perpendicular to the liquid level M1 is normal. , The height at which the magnetic field strength in the vertical direction on the central axis of the silicon single crystal is 0 (Gauss) when the downward direction from the liquid level M1 is a negative direction (for example, the sign in FIG. 2) H).
Also, under all conditions, the target oxygen concentration is 1.3 × 10 18 atoms / cm 3 or more, the amount of raw silicon is 300 kg, the diameter of the silicon single crystal to be pulled is 12 inches, the crystal rotation speed is 12 rpm, the inertness in the furnace The gas (Ar gas) flow rate was 100 L / min.

Figure 0005782323
Figure 0005782323

表2に、表1の条件に対応する実験結果として、無転位状態で引き上げられた結晶本数(無転位化本数)、及び無転位で引き上げられた結晶のうち、直胴部の結晶長0mm、500mm、1000mmの3点の位置での酸素濃度が1.3×1018atoms/cm以上であった本数(酸素濃度特性満足本数)を示す。 In Table 2, as the experimental results corresponding to the conditions in Table 1, the number of crystals pulled up in the dislocation state (the number of dislocations), and among the crystals pulled up without dislocation, the crystal length of the straight body portion is 0 mm, The number (the number of satisfactory oxygen concentration characteristics) in which the oxygen concentration at three positions of 500 mm and 1000 mm was 1.3 × 10 18 atoms / cm 3 or more is shown.

Figure 0005782323
Figure 0005782323

表2に示すように、無転位化本数と酸素濃度特性満足本数とが共に2本以上となる好ましい条件は、実施例1〜12である。
具体的には、磁場強度比が0.7〜0.95の間、0磁場水平位置が−10〜+100mmの間、炉内圧が40〜80torrの間、ルツボ回転数が3〜8rpmの間の条件において良好な結果が得られた。
As shown in Table 2, Examples 1 to 12 are preferable conditions in which both the number of dislocation-free and the number of satisfactory oxygen concentration characteristics are two or more.
Specifically, the magnetic field strength ratio is between 0.7 and 0.95, the zero magnetic field horizontal position is between -10 and +100 mm, the furnace pressure is between 40 and 80 torr, and the crucible rotation speed is between 3 and 8 rpm. Good results were obtained under the conditions.

以上の実施例の結果より、本発明に係る単結晶引上方法によれば、引き上げる単結晶が大型のものであっても、酸素濃度が1.3×1018atoms/cm以上の高酸素濃度を有する単結晶を有転位化させることなく育成することができることを確認した。 From the results of the above examples, according to the single crystal pulling method according to the present invention, even if the single crystal to be pulled is large, the oxygen concentration is 1.3 × 10 18 atoms / cm 3 or more. It was confirmed that a single crystal having a concentration can be grown without causing dislocation.

1 単結晶引上装置
2 炉体
3 ルツボ
4 ヒータ
4a 発熱部
5 引上機構
6 輻射シールド
C 単結晶
M シリコン溶融液
P 種結晶
DESCRIPTION OF SYMBOLS 1 Single crystal pulling apparatus 2 Furnace body 3 Crucible 4 Heater 4a Heat generating part 5 Pulling mechanism 6 Radiation shield C Single crystal M Silicon melt P Seed crystal

Claims (2)

ヒータの加熱によりルツボ内にシリコン溶融液を形成し、前記ルツボの周囲に配置された上下一対の電磁コイルにより、前記シリコン溶融液に対してカスプ磁場を印加すると共に、チョクラルスキー法により前記ルツボから1.3×1018atoms/cm(old−ASTM)以上の酸素濃度を有するシリコン単結晶を引き上げる単結晶引上方法であって、
前記シリコン単結晶を引き上げる際の炉内圧力を40〜80torr、ルツボ回転数を3〜8rpmの間で制御すると共に、
前記上下一対の電磁コイルにより印加される上部磁場と下部磁場の磁場強度比(上部磁場/下部磁場)を0.80〜0.90の間で制御し、
かつ、前記シリコン溶融液の液面を0(mm)位置とし、前記液面に対して垂直である鉛直方向における前記液面から上方向を正の方向、前記液面から下方向を負の方向としたとき、前記シリコン単結晶の中心軸上の前記鉛直方向における磁場強度が0(ガウス)となる0磁場水平位置を−10〜+100mmの間に制御することを特徴とする単結晶引上方法。
A silicon melt is formed in the crucible by the heating of the heater, and a cusp magnetic field is applied to the silicon melt by a pair of upper and lower electromagnetic coils arranged around the crucible, and the crucible is obtained by the Czochralski method. A single crystal pulling method for pulling up a silicon single crystal having an oxygen concentration of 1.3 × 10 18 atoms / cm 3 (old-ASTM) or higher from
While controlling the furnace pressure when pulling up the silicon single crystal between 40 to 80 torr and the crucible rotation speed between 3 and 8 rpm,
Controlling the magnetic field strength ratio (upper magnetic field / lower magnetic field) between the upper magnetic field and the lower magnetic field applied by the pair of upper and lower electromagnetic coils between 0.80 and 0.90 ;
And the liquid level of the silicon melt is 0 (mm), and the upward direction from the liquid level in the vertical direction perpendicular to the liquid level is a positive direction, and the downward direction from the liquid level is a negative direction. A single crystal pulling method, wherein a zero magnetic field horizontal position at which the magnetic field strength in the vertical direction on the central axis of the silicon single crystal is 0 (Gauss) is controlled between −10 and +100 mm. .
前記シリコン単結晶を引き上げる際の結晶回転数は、15rpm以下に制御することを特徴とする請求項1に記載の単結晶引上方法。   The method for pulling a single crystal according to claim 1, wherein the crystal rotation speed when pulling up the silicon single crystal is controlled to 15 rpm or less.
JP2011160431A 2011-07-22 2011-07-22 Single crystal pulling method Active JP5782323B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011160431A JP5782323B2 (en) 2011-07-22 2011-07-22 Single crystal pulling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011160431A JP5782323B2 (en) 2011-07-22 2011-07-22 Single crystal pulling method

Publications (2)

Publication Number Publication Date
JP2013023415A JP2013023415A (en) 2013-02-04
JP5782323B2 true JP5782323B2 (en) 2015-09-24

Family

ID=47782161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011160431A Active JP5782323B2 (en) 2011-07-22 2011-07-22 Single crystal pulling method

Country Status (1)

Country Link
JP (1) JP5782323B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5974978B2 (en) 2013-05-29 2016-08-23 信越半導体株式会社 Silicon single crystal manufacturing method
KR101723739B1 (en) * 2015-09-08 2017-04-05 주식회사 엘지실트론 Single crystal ingot growing apparatus and the growth method by it
KR101942320B1 (en) * 2017-08-10 2019-04-08 에스케이실트론 주식회사 An apparatus for growing a crystal ingot and a method for growing a crystal ingot using the same
CN112342611A (en) * 2020-09-10 2021-02-09 徐州鑫晶半导体科技有限公司 Crystal production process
JP2023081196A (en) * 2021-11-30 2023-06-09 株式会社Sumco Magnet for manufacturing apparatus of single crystal, manufacturing apparatus of single crystal, and manufacturing method of single crystal

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3228173B2 (en) * 1997-03-27 2001-11-12 住友金属工業株式会社 Single crystal manufacturing method
JP4045666B2 (en) * 1998-09-08 2008-02-13 株式会社Sumco Method for producing silicon single crystal
JP4151148B2 (en) * 1999-02-19 2008-09-17 株式会社Sumco Method for producing silicon single crystal
JP2003055092A (en) * 2001-08-16 2003-02-26 Sumitomo Mitsubishi Silicon Corp Method of pulling silicon single crystal
JP2007031274A (en) * 2005-07-27 2007-02-08 Siltron Inc Silicon single crystal ingot and wafer, growing apparatus and method thereof
JP5104437B2 (en) * 2008-03-18 2012-12-19 株式会社Sumco Carbon doped single crystal manufacturing method
JP4953386B2 (en) * 2008-03-18 2012-06-13 コバレントマテリアル株式会社 Pulling method of silicon single crystal
WO2010002795A1 (en) * 2008-06-30 2010-01-07 Memc Electronic Materials, Inc. Controlling a melt-solid interface shape of a growing silicon crystal using an unbalanced magnetic field and iso-rotation
JP5504664B2 (en) * 2009-03-25 2014-05-28 株式会社Sumco Silicon epitaxial wafer and manufacturing method thereof
EP2412849B1 (en) * 2009-03-25 2016-03-23 SUMCO Corporation Silicon wafer and method for manufacturing same

Also Published As

Publication number Publication date
JP2013023415A (en) 2013-02-04

Similar Documents

Publication Publication Date Title
JP4919343B2 (en) Single crystal pulling device
JP5831436B2 (en) Method for producing silicon single crystal
US7282095B2 (en) Silicon single crystal pulling method
JP5782323B2 (en) Single crystal pulling method
JP5240191B2 (en) Silicon single crystal pulling device
JP2009114054A (en) Method for producing semiconductor single crystal having improved oxygen concentration characteristics
WO2017159028A1 (en) Method for producing silicon monocrystal
JP2014080302A (en) Single crystal pulling apparatus and single crystal pulling method
JP2015205793A (en) Method for drawing up single crystal
JP4917519B2 (en) Method for producing silicon single crystal
JP5309190B2 (en) Method for manufacturing a semiconductor wafer made of silicon
JP2010018446A (en) Method for producing single crystal and single crystal pulling apparatus
JP2004196569A (en) Silicon single crystal pulling method
CN114616361B (en) Method for producing silicon single crystal
JP2009057232A (en) Silicon single crystal growing method and its apparatus
JP4151148B2 (en) Method for producing silicon single crystal
WO1999037833A1 (en) Single crystal pull-up apparatus
JP2005145724A (en) Method for manufacturing silicon single crystal and silicon single crystal
JP2013028476A (en) Method of drawing single crystal
WO2022254885A1 (en) Method for producing silicon monocrystal
JP5454625B2 (en) Silicon single crystal wafer obtained from ingot pulled by silicon single crystal pulling method
JP5056603B2 (en) Silicon single crystal pulling method and silicon single crystal wafer obtained from ingot pulled by the method
JP2013082571A (en) Silicon single crystal wafer, epitaxial wafer and manufacturing method thereof
JP2013199387A (en) Apparatus and method for pulling single crystal
JP4785764B2 (en) Single crystal manufacturing method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121206

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130205

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140623

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20141201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150714

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150717

R150 Certificate of patent or registration of utility model

Ref document number: 5782323

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250