JP2013199387A - Apparatus and method for pulling single crystal - Google Patents

Apparatus and method for pulling single crystal Download PDF

Info

Publication number
JP2013199387A
JP2013199387A JP2012067117A JP2012067117A JP2013199387A JP 2013199387 A JP2013199387 A JP 2013199387A JP 2012067117 A JP2012067117 A JP 2012067117A JP 2012067117 A JP2012067117 A JP 2012067117A JP 2013199387 A JP2013199387 A JP 2013199387A
Authority
JP
Japan
Prior art keywords
single crystal
radiation shield
lower opening
crystal
inner member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012067117A
Other languages
Japanese (ja)
Inventor
Shinrin Fu
森林 符
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GlobalWafers Japan Co Ltd
Original Assignee
GlobalWafers Japan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GlobalWafers Japan Co Ltd filed Critical GlobalWafers Japan Co Ltd
Priority to JP2012067117A priority Critical patent/JP2013199387A/en
Publication of JP2013199387A publication Critical patent/JP2013199387A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To control an opening diameter of a radiation shield along with pulling; to suppress generation of dislocation of a crystal; and to improve pulling speed.SOLUTION: This apparatus includes: a radiation shield 7 formed cylindrically having openings on the upper and lower sides respectively, and arranged over silicon molten liquid M in a crucible 3 so as to enclose a silicon single crystal C; an annular separation inner member 12 provided engageably with a lower opening 7c of the radiation shield; and a lifting means 14 for lifting and lowering the separation inner member with respect to the lower opening of the radiation shield; wherein the separation inner member lowered by the lifting means is engaged with the lower opening of the radiation shield, and thereby a lower opening diameter of the radiation shield is reduced.

Description

本発明は、チョクラルスキー法(以下、「CZ法」という)によって単結晶を育成しながら引き上げる単結晶引上装置及び単結晶引上方法に関する。   The present invention relates to a single crystal pulling apparatus and a single crystal pulling method for pulling up while growing a single crystal by the Czochralski method (hereinafter referred to as “CZ method”).

シリコン単結晶の育成に関し、CZ法が広く用いられている。この方法は、図7に示すように、ヒータ52の熱によりルツボ50内にシリコンの溶融液Mを形成し、その表面に種結晶Pを接触させ、ルツボ50を回転させるとともに、この種結晶Pを反対方向に回転させながら上方へ引上げることによって、種結晶Pの下端に単結晶Cを形成していくものである。具体的には、種結晶Pの先端部を溶解するネッキングが行われてネック部P1が形成され、ネック部P1から結晶径が拡径されて肩部C1が形成され、製品部分となる直胴部C2が形成される。また、直胴部C2が形成されると、結晶は縮径されて、底部(図示せず)が形成される。   The CZ method is widely used for the growth of silicon single crystals. In this method, as shown in FIG. 7, a silicon melt M is formed in the crucible 50 by the heat of the heater 52, the seed crystal P is brought into contact with the surface thereof, the crucible 50 is rotated, and the seed crystal P The single crystal C is formed at the lower end of the seed crystal P by pulling upward while rotating in the opposite direction. Specifically, necking P1 is formed by melting the tip of the seed crystal P, the neck P1 is formed, the diameter of the crystal is expanded from the neck P1, and the shoulder C1 is formed. Part C2 is formed. Further, when the straight body portion C2 is formed, the diameter of the crystal is reduced and a bottom portion (not shown) is formed.

このCZ法を実施する単結晶引上装置においては、特許文献1に開示されるように、単結晶Cの引上領域を囲むように、ルツボの上方に輻射シールド51が設けられる。この輻射シールド51は、育成する単結晶Cの外周面への輻射熱を効果的に遮断するものであって、これにより引き上げ中の単結晶Cの凝固を促進し、単結晶Cを速やかに冷却することができる。また、図示するように輻射シールド51の内側に水冷体53を配置した構成の場合には結晶からの抜熱効果が向上するため、引上速度を速くすることができる。   In the single crystal pulling apparatus that performs this CZ method, as disclosed in Patent Document 1, a radiation shield 51 is provided above the crucible so as to surround the pulling region of the single crystal C. The radiation shield 51 effectively blocks the radiant heat to the outer peripheral surface of the single crystal C to be grown, thereby promoting the solidification of the single crystal C being pulled up and quickly cooling the single crystal C. be able to. Moreover, in the case of the structure which has arrange | positioned the water cooling body 53 inside the radiation shield 51 so that it may show in figure, since the heat removal effect from a crystal | crystallization improves, pulling-up speed can be made quick.

特開平11−92272号公報JP-A-11-92272

前記のように輻射シールド51が設けられることで、育成する単結晶Cの外周面への輻射熱を効果的に遮断することができ、特に、輻射シールド51の下部開口51aの縁部と結晶周面との間の距離が小さければ、結晶冷却能力がより向上し、引上速度を更に速くすることができる。
しかしながら、前記効果を得るために、輻射シールド51の下部開口径を単結晶Cの直胴部径より僅かに大きい径とし、結晶冷却能力を高い設定とした場合、例えばネック部P1の形成時において急激に冷却されると結晶内部の熱応力が大きくなり、転位が生じた場合に、それが外方に抜け難く、除去できずに無転位化率が低下する(有転位化を抑制できない)という課題があった。
また、結晶引き上げ前半における直胴部C2の育成工程にあっては、引き上げが進んでも溶融液Mにおいて酸素が蒸発する自由表面面積が一定であるのに対し、残液は引き上げと共に減少し、溶融液Mに酸素を供給する面積(溶融液Mとルツボとの接触面積)が次第に低減するために、結晶軸に沿って酸素濃度が徐々に低下し、酸素濃度分布が結晶軸方向に均一な単結晶を得ることができないという課題があった。
By providing the radiation shield 51 as described above, radiation heat to the outer peripheral surface of the single crystal C to be grown can be effectively blocked, and in particular, the edge of the lower opening 51a of the radiation shield 51 and the crystal peripheral surface. If the distance between the two is small, the crystal cooling capacity is further improved, and the pulling speed can be further increased.
However, in order to obtain the above effect, when the lower opening diameter of the radiation shield 51 is slightly larger than the diameter of the straight body portion of the single crystal C and the crystal cooling capacity is set high, for example, when the neck portion P1 is formed. When the crystal is cooled rapidly, the thermal stress inside the crystal increases, and when dislocations occur, it is difficult to escape outwards and cannot be removed, resulting in a low dislocation rate (cannot suppress dislocations). There was a problem.
Further, in the growing process of the straight body portion C2 in the first half of the crystal pulling, the free surface area where oxygen evaporates in the melt M is constant even when the pulling progresses, whereas the residual liquid decreases with the pulling and melts. Since the area for supplying oxygen to the liquid M (the contact area between the melt M and the crucible) is gradually reduced, the oxygen concentration gradually decreases along the crystal axis, and the oxygen concentration distribution is simply uniform in the crystal axis direction. There was a problem that crystals could not be obtained.

本発明は、前記したような事情の下になされたものであり、チョクラルスキー法によってルツボからシリコン単結晶を引上げる単結晶引上装置及び単結晶引上方法において、引上に伴って輻射シールドの開口径を制御し、結晶の有転位化を抑制すると共に引上速度を向上することができ、また、酸素濃度分布が結晶軸方向に均一な単結晶を得ることのできる単結晶引上装置及び単結晶引上方法を提供することを目的とする。   The present invention has been made under the circumstances as described above. In a single crystal pulling apparatus and single crystal pulling method for pulling a silicon single crystal from a crucible by the Czochralski method, radiation is accompanied by pulling. Single crystal pulling that can control the opening diameter of the shield, suppress dislocations in the crystal and improve pulling speed, and can obtain a single crystal with a uniform oxygen concentration distribution in the crystal axis direction. An object is to provide an apparatus and a method for pulling a single crystal.

前記課題を解決するためになされた、本発明に係る単結晶引上装置は、ルツボ内のシリコン溶融液に対し磁場を印加すると共に、チョクラルスキー法により前記シリコン溶融液からシリコン単結晶を引き上げる単結晶引上装置であって、上下に開口を有する円筒状に形成されると共に、前記シリコン単結晶を包囲するように前記ルツボ内のシリコン溶融液の上方に配置される輻射シールドと、前記輻射シールドの下部開口に対し係着可能に設けられた円環状の分離インナー部材と、前記分離インナー部材を前記輻射シールドの下部開口に対して昇降移動させる昇降手段とを備え、前記昇降手段により下降移動された前記分離インナー部材が前記輻射シールドの下部開口に係着することにより、前記輻射シールドの下部開口径が縮小されることに特徴を有する。
尚、前記円環状の輻射シールドの下部開口は、その端面が、所定の厚さ寸法を有する共に、径方向に相対向するように形成され、前記シリコン単結晶の直径をΦcryとすると、前記分離インナー部材の直径Φと、前記輻射シールドの下部開口の下端側直径Φと、上端側直径Φとは、それぞれ式(1)〜(3)により規定されることが望ましい。
A single crystal pulling apparatus according to the present invention, which has been made to solve the above problems, applies a magnetic field to a silicon melt in a crucible and pulls up the silicon single crystal from the silicon melt by the Czochralski method. A single crystal pulling apparatus, which is formed in a cylindrical shape having openings on the top and bottom, and is disposed above the silicon melt in the crucible so as to surround the silicon single crystal, and the radiation An annular separation inner member provided so as to be engageable with the lower opening of the shield, and an elevating means for moving the separation inner member up and down with respect to the lower opening of the radiation shield. When the separated inner member is engaged with the lower opening of the radiation shield, the lower opening diameter of the radiation shield is reduced. Having the features.
The lower opening of the annular radiation shield has an end surface having a predetermined thickness dimension and is opposed to each other in the radial direction, and when the diameter of the silicon single crystal is Φ cry , It is desirable that the diameter Φ 1 of the separation inner member, the lower end side diameter Φ 2 of the lower opening of the radiation shield, and the upper end side diameter Φ 3 are respectively defined by equations (1) to (3).

Φ=Φcry+10〜100mm・・・(1)
Φ=Φ+10〜100mm・・・(2)
Φ=Φ+10〜100mm・・・(3)
Φ 1 = Φ cry +10 to 100 mm (1)
Φ 2 = Φ 1 +10 to 100 mm (2)
Φ 3 = Φ 2 +10 to 100 mm (3)

このように構成することにより、輻射シールドの下部開口径の大きさが可変となり、例えば、結晶のネック部、肩部および底部の育成時において前記下部開口径を大きい状態とすれば、冷却能力を小さくすることができる。このため、結晶内部の熱応力が小さくなり、ネック部、肩部および底部の形成時に転位が生じた場合には、それが外方に抜けやすくすることができ、結晶の無転位化率を向上することができる。
また、結晶の直胴部の育成時には、輻射シールドの下部開口径を小さい状態とすれば、冷却能力を大きくすることができる。これにより結晶の引上速度を速くすることができ、生産性を向上することができる。
また、輻射シールドの下部開口径を小さい状態とすれば、結晶中の酸素濃度が低下し、下部開口径を大きい状態とすれば、結晶中の酸素濃度が上昇するため、分離インナー部材を昇降移動させて結晶中の酸素濃度を制御することもできる。
更に、溶融液に横磁場を印加して結晶引き上げを行う場合に、溶融液面がルツボの直胴部直下の小R部以下になると、自由表面面積の急激な減少によって融液対流が変化し、結晶外周直下の溶融液の過冷却が発生しやすいが、輻射シールドの下部開口径を小さい状態とすれば、結晶外周直下の溶融液温度が急速に上昇するため、引き上げ後半での溶融液の過冷却から誘発される有転位化を有効に抑制することができる。
By configuring in this way, the size of the lower opening diameter of the radiation shield becomes variable.For example, if the lower opening diameter is large when growing the neck, shoulder and bottom of the crystal, the cooling capacity can be increased. Can be small. For this reason, the thermal stress inside the crystal is reduced, and when dislocations occur during the formation of the neck, shoulder and bottom, it can be easily removed outwards, improving the dislocation-free rate of the crystal can do.
In addition, when the straight body portion of the crystal is grown, the cooling capacity can be increased if the lower opening diameter of the radiation shield is made small. Thereby, the pulling speed of the crystal can be increased, and the productivity can be improved.
Also, if the lower opening diameter of the radiation shield is made small, the oxygen concentration in the crystal will decrease, and if the lower opening diameter is made large, the oxygen concentration in the crystal will rise. Thus, the oxygen concentration in the crystal can be controlled.
Furthermore, when a transverse magnetic field is applied to the melt and the crystal is pulled up, the melt convection changes due to a rapid decrease in the free surface area if the melt surface is below the small R portion directly below the straight body of the crucible. However, if the lower opening diameter of the radiation shield is small, the temperature of the melt immediately below the crystal periphery increases rapidly. It is possible to effectively suppress dislocation induced from supercooling.

また、前記課題を解決するためになされた、本発明に係る単結晶引上方法は、ルツボ内にシリコン溶融液が形成されると共に前記シリコン溶融液に対し磁場が印加され、前記シリコン溶融液の上方においてシリコン単結晶を包囲するように上下に開口を有する円筒状の輻射シールドが配置され、チョクラルスキー法により前記シリコン溶融液からシリコン単結晶を引き上げる単結晶引上方法であって、前記輻射シールドの下部開口に対し係着可能であって、係着されることにより前記下部開口の径を縮小させる円環状の分離部材を、前記シリコン単結晶の育成過程に応じて昇降移動させ、シリコン単結晶の周面と前記下部開口との距離を変化させることに特徴を有する。
尚、前記シリコン単結晶の育成過程において、少なくともネック部の形成工程では、前記分離インナー部材は前記輻射シールドの上方に配置され、前記輻射シールドの下部開口に係着されず、直胴部の形成工程では、前記分離インナー部材は前記輻射シールドの下部開口に係着され、結晶底部の形成工程では、前記分離インナー部材は前記輻射シールドの上方に配置され、前記輻射シールドの下部開口に係着されないことが望ましい。
In addition, the single crystal pulling method according to the present invention, which has been made to solve the above-described problems, includes forming a silicon melt in a crucible and applying a magnetic field to the silicon melt. A method of pulling a single crystal from a silicon melt by a Czochralski method, wherein a cylindrical radiation shield having openings above and below is disposed so as to surround the silicon single crystal at the top, An annular separation member that can be engaged with the lower opening of the shield and reduces the diameter of the lower opening by being engaged is moved up and down in accordance with the growth process of the silicon single crystal, thereby It is characterized in that the distance between the peripheral surface of the crystal and the lower opening is changed.
In the process of growing the silicon single crystal, at least in the neck portion forming step, the separation inner member is disposed above the radiation shield and is not engaged with the lower opening of the radiation shield, thereby forming a straight body portion. In the step, the separation inner member is engaged with the lower opening of the radiation shield. In the crystal bottom forming step, the separation inner member is disposed above the radiation shield and is not engaged with the lower opening of the radiation shield. It is desirable.

このような方法によれば、輻射シールドの下部開口径の大きさが可変となるため、少なくとも結晶のネック部及び底部の形成工程では、前記下部開口径を大きい状態とすれば、冷却能力を小さくすることができる。このため、結晶内部の熱応力が小さくなり、ネック部及び底部の形成時に転位が生じた場合には、それが外方に抜けやすくすることができ、結晶の無転位化率を向上することができる。
また、結晶の直胴部の育成時には、輻射シールドの下部開口径を小さい状態とすれば、冷却能力を大きくすることができる。これにより結晶の引上速度を速くすることができ、生産性を向上することができる。
According to such a method, since the size of the lower opening diameter of the radiation shield is variable, at least in the process of forming the neck portion and the bottom portion of the crystal, if the lower opening diameter is made large, the cooling capacity is reduced. can do. For this reason, the thermal stress inside the crystal is reduced, and when dislocations occur during the formation of the neck and the bottom, it can be easily removed outward, and the dislocation-free rate of the crystal can be improved. it can.
In addition, when the straight body portion of the crystal is grown, the cooling capacity can be increased if the lower opening diameter of the radiation shield is made small. Thereby, the pulling speed of the crystal can be increased, and the productivity can be improved.

また、前記シリコン単結晶の直胴部の形成工程において、前記輻射シールドの下部開口に対し前記分離インナー部材を昇降移動させ、前記下部開口と結晶周面との距離を変化させることにより、結晶中の酸素濃度を制御してもよい。
具体的には、輻射シールドの下部開口と結晶周面との距離が小さい状態とすれば、結晶外周付近溶融液のメニスカス表面におけるガス流速が増大され、酸素蒸発しやすくなり、低酸素の溶融液が結晶直下に流入して、それが固化するため、結晶中の酸素濃度を低下させることができる。一方、下部開口と結晶周面との距離が大きい状態とすれば、結晶外周付近溶融液のメニスカス表面におけるガス流速が低減され、酸素蒸発し難くなり、高酸素の溶融液が結晶直下に流入して、それが固化するため、結晶中の酸素濃度を高くすることができる。
このため、直胴部の育成過程に伴い、分離インナー部材を昇降移動させる所定の制御を行うことにより、結晶軸に沿って酸素濃度分布が均一な単結晶を得ることができる。
Further, in the step of forming the straight body portion of the silicon single crystal, the separation inner member is moved up and down with respect to the lower opening of the radiation shield, and the distance between the lower opening and the crystal peripheral surface is changed. The oxygen concentration may be controlled.
Specifically, if the distance between the lower opening of the radiation shield and the peripheral surface of the crystal is small, the gas flow rate at the meniscus surface of the melt near the crystal periphery is increased, and oxygen is easily evaporated. Flows directly under the crystal and solidifies, so that the oxygen concentration in the crystal can be lowered. On the other hand, if the distance between the lower opening and the crystal peripheral surface is large, the gas flow velocity at the meniscus surface of the melt near the crystal periphery is reduced, making it difficult for oxygen to evaporate, and the high oxygen melt flows directly under the crystal. As it solidifies, the oxygen concentration in the crystal can be increased.
For this reason, a single crystal having a uniform oxygen concentration distribution along the crystal axis can be obtained by performing predetermined control for moving the separation inner member up and down along with the process of growing the straight body portion.

本発明によれば、チョクラルスキー法によってルツボからシリコン単結晶を引上げる単結晶引上装置において、引上に伴って輻射シールドの開口径を制御し、結晶の有転位化を抑制すると共に引上速度を向上することができ、また、酸素濃度分布が結晶軸方向に均一な単結晶を得ることができる。更に、溶融液に横磁場を印加して結晶引き上げを行う場合に、輻射シールドの下部開口径を小さい状態とすれば、結晶外周直下の溶融液温度が急速に上昇するため、引き上げ後半での溶融液の過冷却から誘発される有転位化を有効に抑制することができる。   According to the present invention, in a single crystal pulling apparatus that pulls a silicon single crystal from a crucible by the Czochralski method, the opening diameter of the radiation shield is controlled along with the pulling, and the dislocation of the crystal is suppressed and pulled. The upper speed can be improved, and a single crystal having a uniform oxygen concentration distribution in the crystal axis direction can be obtained. Furthermore, when a transverse magnetic field is applied to the melt and the crystal is pulled up, if the lower opening diameter of the radiation shield is made small, the temperature of the melt immediately below the outer periphery of the crystal rises rapidly. It is possible to effectively suppress dislocation induced from the supercooling of the liquid.

図1は、本発明に係る単結晶引上装置の構成を示す断面図である。FIG. 1 is a cross-sectional view showing a configuration of a single crystal pulling apparatus according to the present invention. 図2は、図1の単結晶引上装置において図1に示す状態から分離インナー部材を降下させ、輻射シールドの下部開口に係着させた状態を示す断面図である。FIG. 2 is a cross-sectional view showing a state where the separation inner member is lowered from the state shown in FIG. 1 and engaged with the lower opening of the radiation shield in the single crystal pulling apparatus of FIG. 図3は、図1の単結晶引上装置における単結晶引上方法の一連の工程を示すフローである。FIG. 3 is a flow showing a series of steps of the single crystal pulling method in the single crystal pulling apparatus of FIG. 図4は、図1の単結晶引上装置を一部拡大して示す断面図である。FIG. 4 is a partially enlarged cross-sectional view of the single crystal pulling apparatus of FIG. 図5は、図1の単結晶引上装置において図1に示す状態から分離インナー部材を降下させ、輻射シールドの下部開口の上方に配置した状態を示す断面図である。FIG. 5 is a cross-sectional view showing a state where the separation inner member is lowered from the state shown in FIG. 1 and arranged above the lower opening of the radiation shield in the single crystal pulling apparatus of FIG. 図6は、実施例4の結果を示すグラフである。FIG. 6 is a graph showing the results of Example 4. 図7は、従来の単結晶引上装置の構成を示す断面図である。FIG. 7 is a cross-sectional view showing a configuration of a conventional single crystal pulling apparatus.

以下、本発明に係る単結晶引上装置及び単結晶引上方法の実施形態について図面に基づき説明する。図1は本発明に係る単結晶引上装置の一部構成を示す断面図である。   Hereinafter, embodiments of a single crystal pulling apparatus and a single crystal pulling method according to the present invention will be described with reference to the drawings. FIG. 1 is a sectional view showing a partial configuration of a single crystal pulling apparatus according to the present invention.

この単結晶引上装置1は、円筒形状のメインチャンバ2aの上にプルチャンバ2bを重ねて形成された炉体2と、炉体2内に設けられたルツボ3と、ルツボ3に装填された半導体原料(原料ポリシリコン)を溶融してシリコン溶融液M(以下、単に溶融液Mと呼ぶ)とする抵抗加熱ヒータ4(以下、単にヒータと呼ぶ)と、ワイヤ6を巻き上げ、育成される単結晶Cを引上げる引上げ機構5とを備えている。
尚、ルツボ3は、二重構造であり、内側が石英ガラスルツボ3a、外側が黒鉛ルツボ3bで構成されている。また、内側の石英ガラスルツボ3aは、直胴部3a1と、その下に小R部3a2を介して底部(大R部)3a3を有している。また、前記引上げ機構5が有するワイヤ6の先端には、種結晶Pが取り付けられている。
This single crystal pulling apparatus 1 includes a furnace body 2 formed by superposing a pull chamber 2b on a cylindrical main chamber 2a, a crucible 3 provided in the furnace body 2, and a semiconductor loaded in the crucible 3. A resistance heater 4 (hereinafter simply referred to as a heater) that melts a raw material (raw material polysilicon) to form a silicon melt M (hereinafter simply referred to as melt M) and a single crystal that is grown by winding up a wire 6 And a pulling mechanism 5 for pulling up C.
The crucible 3 has a double structure, and is composed of a quartz glass crucible 3a on the inside and a graphite crucible 3b on the outside. Further, the inner quartz glass crucible 3a has a straight body portion 3a1, and a bottom portion (large R portion) 3a3 via a small R portion 3a2 therebelow. A seed crystal P is attached to the tip of the wire 6 included in the pulling mechanism 5.

また、この単結晶引上装置1においては、図1には示されないが、メインチャンバ2aの外側に磁場印加用電磁コイル(図1には示さず)が設置される。
この磁場印加用電磁コイルに所定の電流が印加されると、ルツボ3内のシリコン溶融液Mに対し所定強度の横磁場が印加されるようになっている。
即ち、本実施形態においては、溶融液M内に磁場を印加して単結晶を育成するMCZ法(Magnetic field applied CZ法)が実施され、それによりシリコン溶融液Mの対流を制御し、単結晶化の安定を図るようになされる。
Further, in the single crystal pulling apparatus 1, although not shown in FIG. 1, a magnetic field applying electromagnetic coil (not shown in FIG. 1) is installed outside the main chamber 2a.
When a predetermined current is applied to the magnetic field application electromagnetic coil, a transverse magnetic field having a predetermined intensity is applied to the silicon melt M in the crucible 3.
That is, in the present embodiment, the MCZ method (Magnetic field applied CZ method) in which a magnetic field is applied to the melt M to grow a single crystal is implemented, thereby controlling the convection of the silicon melt M and It is made to stabilize.

また、ルツボ3内に形成される溶融液Mの上方には、育成中の単結晶Cに対するヒータ4や溶融液M等からの余計な輻射熱を遮蔽するために、上下に開口を有する円筒状の輻射シールド7が設けられている。
この輻射シールド7は、所定の厚さに形成された外筒部材8が炉体2に固定され、前記外筒部材8の内側に断熱部材9(9a、9bが2段に積層される)が設けられている。前記外筒部材8は、例えば高純度な黒鉛、或いは表面にSiCがコーティングされた黒鉛により形成されている。また、前記断熱部材9は、例えばカーボン繊維からなるフェルト材によって形成されている。
In addition, above the melt M formed in the crucible 3, a cylindrical shape having openings up and down to shield the extra radiant heat from the heater 4 and the melt M with respect to the growing single crystal C. A radiation shield 7 is provided.
The radiation shield 7 has an outer cylinder member 8 formed to a predetermined thickness fixed to the furnace body 2 and a heat insulating member 9 (9a and 9b are laminated in two stages) inside the outer cylinder member 8. Is provided. The outer cylinder member 8 is made of, for example, high-purity graphite or graphite having a surface coated with SiC. Moreover, the said heat insulation member 9 is formed with the felt material which consists of carbon fibers, for example.

また、このように外筒部材8及び断熱部材9からなる輻射シールド7は、図示するように単結晶Cの周囲を包囲する円筒状の直胴部7aと、前記直胴部7aの下端から内側に湾曲し、下部開口7cを形成する下肩部7bとを有している。前記下部開口7cは、その端面が、所定の厚さ寸法を有すると共に、径方向に相対向するように形成されている。
尚、輻射シールド7の下端と溶融液面との間のギャップGap(図4参照)は、育成する単結晶の所望の特性に応じて所定の距離を維持するよう制御される。
また、輻射シールド7の内側には、円筒状の水冷体10が配備されている。この水冷体10には、冷却水供給手段11によって冷却水が供給され、循環することによって所定温度が維持されるように構成されている。
Further, the radiation shield 7 composed of the outer cylindrical member 8 and the heat insulating member 9 as described above includes a cylindrical straight body portion 7a surrounding the periphery of the single crystal C as shown in the figure, and an inner side from the lower end of the straight body portion 7a. And a lower shoulder 7b that forms a lower opening 7c. The lower opening 7c has a predetermined thickness dimension and is formed so as to face each other in the radial direction.
The gap Gap (see FIG. 4) between the lower end of the radiation shield 7 and the melt surface is controlled so as to maintain a predetermined distance according to desired characteristics of the single crystal to be grown.
In addition, a cylindrical water-cooled body 10 is disposed inside the radiation shield 7. Cooling water is supplied to the water-cooled body 10 by the cooling water supply means 11 and is circulated to maintain a predetermined temperature.

また、プルチャンバ2bの上部には、引上軸周りに円環状に形成された分離インナー部材12を複数のワイヤ13によって昇降自在に支持する分離インナー部材昇降装置14(昇降手段)が設けられている。
この分離インナー部材12は、輻射シールド7の外筒部材8と同材質、同厚さ寸法の円環状の支持部材12aの上に前記断熱部材9aと同材質の断熱部材12bが設けられている。この分離インナー部材12は、分離インナー部材昇降装置14によって下降されると、図2に示すように輻射シールド7の下部開口7cに係着可能な形状に形成されている。即ち、分離インナー部材12が輻射シールドの下部開口7cの位置まで下降されると、図示するように分離インナー部材12の支持部材12aと輻射シールド7の外筒部材8とが連結され、分離インナー部材12の断熱部材12bと輻射シールド7の断熱部材9aとが連結されるようになっている。
A separation inner member lifting / lowering device 14 (lifting / lowering means) is provided on the upper portion of the pull chamber 2b. The separation inner member lifting / lowering device 14 supports the separation inner member 12 formed in an annular shape around the pulling shaft so as to be movable up and down by a plurality of wires 13. .
The separation inner member 12 is provided with a heat insulating member 12b made of the same material as the heat insulating member 9a on an annular support member 12a having the same material and thickness as the outer cylindrical member 8 of the radiation shield 7. When the separation inner member 12 is lowered by the separation inner member lifting device 14, the separation inner member 12 is formed in a shape that can be engaged with the lower opening 7c of the radiation shield 7, as shown in FIG. That is, when the separation inner member 12 is lowered to the position of the lower opening 7c of the radiation shield, the support member 12a of the separation inner member 12 and the outer cylinder member 8 of the radiation shield 7 are connected to each other as shown in the figure. The 12 heat insulating members 12b and the heat insulating member 9a of the radiation shield 7 are connected.

また、図4に示すように、育成する単結晶Cの直径をΦcryとすると、分離インナー部材12の直径Φ、輻射シールド7の下部開口7cの下端部直径Φ、及び上端部直径Φは、それぞれ式(1)〜(3)により規定される。 As shown in FIG. 4, when the diameter of the single crystal C to be grown is Φ cry , the diameter Φ 1 of the separation inner member 12, the lower end diameter Φ 2 of the lower opening 7 c of the radiation shield 7, and the upper end diameter Φ 3 is defined by the equations (1) to (3), respectively.

Φ=Φcry+10〜100mm・・・(1)
Φ=Φ+10〜100mm・・・(2)
Φ=Φ+10〜100mm・・・(3)
Φ 1 = Φ cry +10 to 100 mm (1)
Φ 2 = Φ 1 +10 to 100 mm (2)
Φ 3 = Φ 2 +10 to 100 mm (3)

また、図1に示すように単結晶引上装置1は、溶融液Mの温度を制御するヒータ4の供給電力量を制御するヒータ制御部20と、ルツボ3を引上げ軸周りに回転させるモータ21と、モータ21の回転数を制御するモータ制御部21aとを備えている。また、ルツボ3の高さを制御する昇降装置22と、昇降装置22を制御する昇降装置制御部22aと、引上げ機構5による単結晶Cの引上速度、回転等を制御する引上制御部23とを備えている。さらには、分離インナー部材昇降装置14による分離インナー部材12の昇降移動を制御する昇降制御部24を備えている。尚、これら各制御部20、21a、22a、23、24は、コンピュータ30に接続されている。   Further, as shown in FIG. 1, the single crystal pulling apparatus 1 includes a heater control unit 20 that controls the amount of power supplied to the heater 4 that controls the temperature of the melt M, and a motor 21 that rotates the crucible 3 around the pulling axis. And a motor control unit 21a for controlling the rotational speed of the motor 21. Also, a lifting device 22 that controls the height of the crucible 3, a lifting device control unit 22 a that controls the lifting device 22, and a pulling control unit 23 that controls the pulling speed, rotation, and the like of the single crystal C by the pulling mechanism 5. And. Furthermore, an elevating control unit 24 that controls the elevating movement of the separated inner member 12 by the separated inner member elevating device 14 is provided. These control units 20, 21 a, 22 a, 23, and 24 are connected to the computer 30.

このように構成された単結晶引上装置1において、例えば、直径300mm、直胴部長さ500mmの単結晶Cを育成する場合、次のように引き上げが行われる。即ち、最初に石英ガラスルツボ3aに原料ポリシリコンを装填し、コンピュータ30が有する記憶手段に記憶されたプログラムに基づき、図3のフローに沿って結晶育成工程が開始される。
先ず、炉体2内が所定の雰囲気(主にアルゴンガス雰囲気)となされ、ルツボ3内に装填された原料ポリシリコンが、ヒータ4による加熱によって溶融され、溶融液Mとされる。さらに、コンピュータ30の指令によりモータ制御部21aと昇降装置制御部22aとが作動し、ルツボ3が所定の高さ位置において所定の回転速度(rpm)で回転動作される(図3のステップS1)。
In the single crystal pulling apparatus 1 configured as described above, for example, when growing a single crystal C having a diameter of 300 mm and a straight body length of 500 mm, the pulling is performed as follows. That is, the raw material polysilicon is first loaded into the quartz glass crucible 3a, and the crystal growth process is started along the flow of FIG. 3 based on the program stored in the storage means of the computer 30.
First, the inside of the furnace body 2 is set to a predetermined atmosphere (mainly argon gas atmosphere), and the raw material polysilicon charged in the crucible 3 is melted by heating by the heater 4 to be a melt M. Further, the motor control unit 21a and the lifting device control unit 22a are operated by a command from the computer 30, and the crucible 3 is rotated at a predetermined rotational speed (rpm) at a predetermined height position (step S1 in FIG. 3). .

次いで、コンピュータ30の指令により磁場印加用電磁コイル(図示せず)に所定の電流が流され、溶融液M内に所定強度の横磁場が印加開始される(図3のステップS2)。
また、コンピュータ30の指令により、引上制御部23が巻取り機構5aを作動させ、ワイヤ6が降ろされる。そして、ワイヤ6に取付けられた種結晶Pが溶融液Mに接触され、種結晶Pの先端部を溶解するネッキングが行われ、ネック部P1が形成開始される(図3のステップS3)。
Next, a predetermined current is passed through a magnetic field applying electromagnetic coil (not shown) according to a command from the computer 30, and application of a transverse magnetic field having a predetermined strength into the melt M is started (step S2 in FIG. 3).
Moreover, the pulling-up control part 23 operates the winding mechanism 5a by the command of the computer 30, and the wire 6 is lowered. Then, the seed crystal P attached to the wire 6 is brought into contact with the melt M, necking for dissolving the tip portion of the seed crystal P is performed, and formation of the neck portion P1 is started (step S3 in FIG. 3).

ネック部P1が形成されると、コンピュータ30の指令によりヒータ4への供給電力や、引上げ速度(通常、毎分数ミリの速度)、磁場印加強度などをパラメータとして引上げ条件が調整され、ルツボ3の回転方向とは逆方向に所定の回転速度で種結晶Pが回転開始される。そして、結晶径が拡径されて肩部C1が形成され(図3のステップS4)、製品部分となる直胴部C2を形成する直胴工程(図3のステップS5)に移行する。   When the neck portion P1 is formed, the pulling conditions are adjusted by parameters of the power supplied to the heater 4, the pulling speed (usually a speed of several millimeters per minute), the magnetic field application intensity, and the like according to commands from the computer 30. The seed crystal P starts to rotate at a predetermined rotation speed in the direction opposite to the rotation direction. Then, the crystal diameter is expanded to form the shoulder C1 (step S4 in FIG. 3), and the process proceeds to a straight body process (step S5 in FIG. 3) for forming the straight body C2 to be a product part.

ここで、ネック部P1から肩部C1及び直胴部C2までの育成した結晶長さをLとし、図4に示すように輻射シールド7の下端と溶融液面M1とのギャップをGp(例えば20mm)とすると、下記式(4)の条件を満たす間、即ち、少なくともネック部P1及び肩部C1を形成する間は(図3のステップS7)、図1に示すように分離インナー部材12は、プルチャンバ2bの上部に位置するよう制御される(図3のステップS6)。
これにより輻射シールド7の下部開口径は大きい状態が維持され、結晶冷却能力は小さいため、引上速度は低速に制御される。このような引き上げ制御によれば、結晶内部の熱応力が小さくなるため、ネック部P1及び肩部C1の形成時に生じた転位が外方に抜けやすくなり、直胴部C2形成までの無転位化率を向上することができる。
Here, the grown crystal length from the neck part P1 to the shoulder part C1 and the straight body part C2 is L, and as shown in FIG. 4, the gap between the lower end of the radiation shield 7 and the melt surface M1 is Gp (for example, 20 mm). ), While satisfying the condition of the following formula (4), that is, at least while forming the neck portion P1 and the shoulder portion C1 (step S7 in FIG. 3), the separation inner member 12 as shown in FIG. Control is performed so as to be positioned above the pull chamber 2b (step S6 in FIG. 3).
Thus, the lower opening diameter of the radiation shield 7 is maintained large, and the crystal cooling capacity is small, so that the pulling speed is controlled to be low. According to such pulling control, since the thermal stress inside the crystal is reduced, the dislocations generated during the formation of the neck portion P1 and the shoulder portion C1 are likely to escape outward, and no dislocation is formed until the straight body portion C2 is formed. The rate can be improved.

L≦Gap+100mm・・・(4)
L>Gap+100mm・・・(5)
L ≦ Gap + 100 mm (4)
L> Gap + 100 mm (5)

また、直胴部C2の育成が進行し、式(5)の条件を満たすようになると、分離インナー部材昇降装置14により分離インナー部材12は徐々に下降され、図2に示すように輻射シールド7の下部開口7cに係着される(図3のステップS8)。
これにより、輻射シールド7の下部開口径は縮小され、結晶冷却能力が大きい状態となるため、それに合わせてより速い引上速度で直胴部C2の育成が行われる。
Further, when the growth of the straight body C2 progresses and the condition of the expression (5) is satisfied, the separation inner member 12 is gradually lowered by the separation inner member elevating device 14, and the radiation shield 7 as shown in FIG. Is engaged with the lower opening 7c (step S8 in FIG. 3).
As a result, the lower opening diameter of the radiation shield 7 is reduced and the crystal cooling capacity is increased, and accordingly, the straight body C2 is grown at a higher pulling speed.

直胴工程が終了すると(図3のステップS9)、結晶径を縮小して結晶底部(図示せず)を形成する縮径工程(図3のステップS10)が行われる。この縮径工程が開始されると、分離インナー部材12は輻射シールド7から分離されて上昇移動され、単結晶Cの引き上げ完了までプルチャンバ2bの上部に配置される(図3のステップS11)。それにより、輻射シールド7の下部開口径は大きい状態に戻り、結晶冷却能力が小さくなるため、引上速度が低速になるよう制御される。このような引き上げ制御によれば、結晶底部の形成時に転位が生じた場合に、それを外方に抜けやすくすることができる。   When the straight body process is completed (step S9 in FIG. 3), a diameter reducing process (step S10 in FIG. 3) for reducing the crystal diameter to form a crystal bottom (not shown) is performed. When this diameter reduction process is started, the separation inner member 12 is separated from the radiation shield 7 and moved upward, and is disposed above the pull chamber 2b until the pulling of the single crystal C is completed (step S11 in FIG. 3). As a result, the lower opening diameter of the radiation shield 7 returns to a large state, and the crystal cooling capacity decreases, so that the pulling speed is controlled to be low. According to such pulling control, when a dislocation occurs during the formation of the crystal bottom, it can be easily removed outward.

以上のように、本実施の形態によれば、単結晶引上装置1は、輻射シールド7の下部開口7cに対し係着可能な円環状の分離インナー部材12を有し、単結晶の引き上げ過程に応じて輻射シールド7の下部開口7cに対する前記分離インナー部材12の係着または分離制御がなされる。これにより、輻射シールド7の下部開口径の大きさが可変となり、結晶のネック部P1、肩部C1および底部の育成時には前記下部開口径が大きい状態となされ、冷却能力が小さく制御される。このため、結晶内部の熱応力が小さくなり、ネック部P1、肩部C1および底部の形成時に転位が生じた場合には、それが外方に抜けやすくすることができ、結晶の無転位化率を向上することができる。
また、結晶の直胴部C2の育成時には、輻射シールド7の下部開口径が小さい状態とされ、冷却能力が大きくなるよう制御される。これにより結晶の引上速度を速くすることができ、生産性を向上することができる。
As described above, according to the present embodiment, the single crystal pulling apparatus 1 includes the annular separation inner member 12 that can be engaged with the lower opening 7c of the radiation shield 7, and the single crystal pulling process. Accordingly, the separation inner member 12 is engaged or separated with respect to the lower opening 7c of the radiation shield 7. Thereby, the size of the lower opening diameter of the radiation shield 7 becomes variable, and when the crystal neck portion P1, shoulder portion C1 and bottom portion are grown, the lower opening diameter becomes large, and the cooling capacity is controlled to be small. For this reason, when the thermal stress inside the crystal is reduced and dislocations are generated during the formation of the neck portion P1, the shoulder portion C1, and the bottom portion, it can be easily removed outward, and the dislocation-free rate of the crystal Can be improved.
Further, when growing the straight body portion C2 of the crystal, the lower opening diameter of the radiation shield 7 is set to a small state, and the cooling capacity is controlled to be increased. Thereby, the pulling speed of the crystal can be increased, and the productivity can be improved.

尚、前記実施の形態においては、単結晶Cの育成工程において強磁場を形成することのできる横磁場を印加するものとしたが、それに限らず他の磁場印加方法を用いてもよい。
例えば、より弱い磁場を形成するカスプ磁場を用いてもよく、その場合には、溶融液Mをより安定させることができるため、ネック部P1の形成後、直ぐに分離インナー部材12を下降させて輻射シールド7の下部開口7cと係着させてよい。
In the above embodiment, a transverse magnetic field capable of forming a strong magnetic field is applied in the step of growing the single crystal C. However, the present invention is not limited to this, and other magnetic field application methods may be used.
For example, a cusp magnetic field that forms a weaker magnetic field may be used. In this case, since the melt M can be more stabilized, the separation inner member 12 is lowered immediately after the neck portion P1 is formed to emit radiation. The shield 7 may be engaged with the lower opening 7 c of the shield 7.

また、前記実施の形態において、直胴部C2の形成工程にあっては、引上速度を速くすることを目的として分離インナー部材12の昇降制御を行うものとしたが、結晶軸方向に沿って酸素濃度が均一な単結晶を得ることを目的として分離インナー部材12の昇降制御を行ってもよい。
具体的には、直胴部C2の育成時において、酸素濃度を増大させたい場合、分離インナー部材12をプルチャンバ2bの上部に配置し、輻射シールド7の下部開口7cと結晶周面との距離を大きくすればよい。それにより、結晶外周付近の溶融液のメニスカス表面のガス流速が遅くなり、酸素蒸発し難くなり、高酸素濃度の溶融液が結晶直下に流入して、それが固化するため、結晶酸素濃度を増大させることができる。
一方、酸素濃度を減少させたい場合、分離インナー部材12を下降させて輻射シールド7の下部開口7cと係着させ、輻射シールド7の下部開口径を縮小すればよい。それにより、結晶外周付近の溶融液のメニスカス表面のガス流速が速くなり、酸素蒸発しやすくなり、低酸素濃度の溶融液が結晶直下に流入して、それが固化するため、結晶酸素濃度を減少させることができる。
このため、直胴部C2の育成過程に伴い、分離インナー部材12を昇降移動させる所定の制御を行うことにより、結晶軸方向に沿って酸素濃度分布が均一な単結晶を得ることができる。
Moreover, in the said embodiment, in the formation process of the straight body part C2, the raising / lowering control of the separation inner member 12 was performed for the purpose of increasing the pulling speed, but along the crystal axis direction. The raising / lowering control of the separation inner member 12 may be performed for the purpose of obtaining a single crystal having a uniform oxygen concentration.
Specifically, when growing the straight body portion C2, if it is desired to increase the oxygen concentration, the separation inner member 12 is disposed above the pull chamber 2b, and the distance between the lower opening 7c of the radiation shield 7 and the crystal peripheral surface is set. Just make it bigger. This slows down the gas flow velocity at the meniscus surface of the melt near the crystal periphery, making it difficult for oxygen to evaporate, and the high oxygen concentration melt flows directly under the crystal and solidifies, increasing the crystal oxygen concentration. Can be made.
On the other hand, when it is desired to reduce the oxygen concentration, the separation inner member 12 is lowered and engaged with the lower opening 7c of the radiation shield 7 to reduce the lower opening diameter of the radiation shield 7. As a result, the gas flow velocity at the meniscus surface of the melt near the outer periphery of the crystal increases, oxygen evaporates easily, and the low oxygen concentration melt flows directly under the crystal and solidifies, reducing the crystal oxygen concentration. Can be made.
For this reason, a single crystal having a uniform oxygen concentration distribution along the crystal axis direction can be obtained by performing predetermined control for moving the separation inner member 12 up and down along with the growing process of the straight body portion C2.

また、図5に示すように分離インナー部材12と輻射シールド7の下部開口7cとにより単結晶Cに対して所定長さの壁を形成し、結晶長さ方向の酸素濃度分布がより均一化するように制御をおこなってもよい。
更に、溶融液Mに横磁場を印加して結晶引き上げを行う場合に、溶融液面がルツボ3の小R部以下になると、自由表面面積の急激な減少によって融液対流が変化し、結晶外周直下の溶融液Mの過冷却が発生しやすいが、輻射シールド7の下部開口径を小さい状態とすれば、結晶外周直下の溶融液温度が急速に上昇するため、引き上げ後半での溶融液Mの過冷却から誘発される有転位化を有効に抑制することができる。
Further, as shown in FIG. 5, the separation inner member 12 and the lower opening 7c of the radiation shield 7 form a wall having a predetermined length with respect to the single crystal C, and the oxygen concentration distribution in the crystal length direction becomes more uniform. Control may be performed as described above.
Furthermore, when a transverse magnetic field is applied to the melt M and the crystal is pulled up, if the melt surface falls below the small R portion of the crucible 3, the melt convection changes due to a rapid decrease in the free surface area, and the crystal periphery Although the supercooling of the melt M immediately below is likely to occur, if the lower opening diameter of the radiation shield 7 is made small, the melt temperature immediately below the crystal periphery rises rapidly. It is possible to effectively suppress dislocation induced from supercooling.

本発明に係る単結晶引上装置及び単結晶引上方法について、実施例に基づきさらに説明する。本実施例では、前記実施の形態に示した単結晶引上装置を用いて単結晶引き上げを行い、引き上げた結晶について検証した。   The single crystal pulling apparatus and single crystal pulling method according to the present invention will be further described based on examples. In this example, single crystal pulling was performed using the single crystal pulling apparatus described in the above embodiment, and the pulled crystal was verified.

[実施例1]
実施例1の具体的な条件としては、32インチルツボへの原料シリコンのチャージ量を300kg、育成する単結晶の直径を300mm、結晶直胴部長さを500mm、横磁場の強度(磁束密度)を3000ガウス、磁場位置を0mmとした。また、図4に示した輻射シールド下端と溶融液面とのギャップGapを20mmとし、分離インナー部材の直径Φを330mmとし、輻射シールドの下部開口の下端側直径Φを380mm、上端側直径Φを430mmとした。
この条件において、前記実施形態と同様に図3のステップに従って、10本の単結晶引き上げを行い、ネック部を径平均5mmで長さ300mmまで形成し、その時における無転位化達成本数を検証した。また、結晶引き上げ完了後の無転位化達成率を検証した。
[Example 1]
As specific conditions of Example 1, the charge amount of the raw material silicon to the 32-inch crucible is 300 kg, the diameter of the single crystal to be grown is 300 mm, the length of the straight body of the crystal is 500 mm, and the strength (magnetic flux density) of the transverse magnetic field is 3000 Gauss and the magnetic field position were 0 mm. Further, the gap Gap between radiation shield bottom and melt surface shown in FIG. 4 and 20 mm, the diameter [Phi 1 separate inner member and 330 mm, a lower end diameter [Phi 2 of the lower opening of the radiation shield 380 mm, the upper end diameter the Φ 3 was 430mm.
Under these conditions, 10 single crystals were pulled up according to the steps of FIG. 3 in the same manner as in the above embodiment, and the neck portion was formed with a diameter average of 5 mm to a length of 300 mm, and the number of dislocations achieved at that time was verified. In addition, the dislocation-free achievement rate after completion of crystal pulling was verified.

[比較例1]
比較例1として、分離インナー部材を用いず、輻射シールドの下部開口径を330mm(即ち、開口径が小さい状態)に固定し、単結晶の引上げをおこなった。その他の条件は、実施例1と同様である。
表1に、実施例1および比較例1の結果を示す。
[Comparative Example 1]
As Comparative Example 1, the separation inner member was not used, and the lower opening diameter of the radiation shield was fixed to 330 mm (that is, the opening diameter was small), and the single crystal was pulled up. Other conditions are the same as in the first embodiment.
Table 1 shows the results of Example 1 and Comparative Example 1.

Figure 2013199387
Figure 2013199387

表1に示すように、本発明にかかる実施例1では300mm長さのネック部形成時の無転位化本数が8本、比較例1では1本となった。即ち、実施例1では、ネック部形成時において、輻射シールドの下部開口径が比較例1の場合よりも大きいために、冷却効果が低下し、転位が生じても、それが外方に抜けて除去されやすいことが認められた。
また、引き上げ完了後の無転位化率は、実施例1では80%、比較例1では10%となり、ネック部形成後の直胴部形成において無転位化率を大幅に向上できることを確認した。
As shown in Table 1, in Example 1 according to the present invention, the number of dislocation-free when forming a 300 mm long neck portion was 8, and in Comparative Example 1, the number was 1. That is, in Example 1, when the neck portion is formed, the lower opening diameter of the radiation shield is larger than in the case of Comparative Example 1, so that the cooling effect is reduced, and even if dislocation occurs, it falls out. It was found that it was easily removed.
Further, the dislocation-free rate after completion of the pulling was 80% in Example 1 and 10% in Comparative Example 1, and it was confirmed that the dislocation-free rate can be significantly improved in the straight body portion formation after the neck portion formation.

[実施例2]
実施例2では、溶融液に横磁場を印加し、結晶育成後半における無転位化率について検証した。具体的には、溶融液面(自由表面)が石英ルツボの小R部を通過する前に、無転位化結晶10本を選び、分離インナー部材を輻射シールドの下部開口に係着した状態で引き上げし、溶融液面がルツボの小R部を通過時の無転位達成本数及び引上完了時の無転位化達成率を検証した。その他の条件は、実施例1と同じである。
[Example 2]
In Example 2, a transverse magnetic field was applied to the melt, and the dislocation-free rate in the latter half of the crystal growth was verified. Specifically, before the molten liquid surface (free surface) passes through the small R portion of the quartz crucible, 10 dislocation-free crystals are selected and the separation inner member is pulled up while being engaged with the lower opening of the radiation shield. Then, the number of dislocations achieved when the melt surface passed through the small R portion of the crucible and the dislocation-free achievement rate upon completion of pulling were verified. Other conditions are the same as those in the first embodiment.

[比較例2]
比較例2では、実施例2と同様に溶融液面(自由表面)が石英ルツボの小R部を通過する前に、無転位化結晶10本を選び、分離インナー部材をプルチャンバ上部に配置した状態で引き上げし、溶融液面がルツボの小R部を通過時の無転位達成本数及び引上完了時の無転位化達成率を検証した。その他の条件は、実施例1と同じである。
表2に、実施例2および比較例2の結果を示す。
[Comparative Example 2]
In Comparative Example 2, as in Example 2, 10 dislocation-free crystals were selected before the molten liquid surface (free surface) passed through the small R portion of the quartz crucible, and the separation inner member was placed in the upper portion of the pull chamber. The number of dislocations achieved when the melt surface passed through the small R portion of the crucible and the dislocation-free achievement rate when the pulling was completed were verified. Other conditions are the same as those in the first embodiment.
Table 2 shows the results of Example 2 and Comparative Example 2.

Figure 2013199387
Figure 2013199387

表2に示すように、実施例2では引上後の無転位化達成率が90%と高かったが、比較例2では50%となり、溶融液の過冷却から誘発される結晶育成後半の有転位化も有効に抑制できることを確認した。
[実施例3]
実施例3では、実施例1と同じ条件とし、前記実施形態と同様に図3のステップに従って、単結晶引き上げを行い、結晶直胴部の(比較例3に対する)相対引上速度、及び結晶のグローイン欠陥の(比較例3に対する)相対密度を検証した。
尚、この直胴工程において、分離インナー部材は輻射シールドの下部開口に係着され、開口径が小さい状態である。
As shown in Table 2, in Example 2, the dislocation-free achievement rate after pulling was as high as 90%, but in Comparative Example 2, it was 50%, and it was present in the latter half of crystal growth induced by supercooling of the melt. It was confirmed that dislocations can also be effectively suppressed.
[Example 3]
In Example 3, the same conditions as in Example 1 were used, and the single crystal pulling was performed according to the steps of FIG. 3 as in the above embodiment, the relative pulling speed of the crystal body (relative to Comparative Example 3), and the crystal The relative density of the glow-in defect (relative to Comparative Example 3) was verified.
In this straight body process, the separation inner member is engaged with the lower opening of the radiation shield, and the opening diameter is small.

[比較例3]
比較例3として、分離インナー部材を用いず、輻射シールドの下部開口径を380mm(即ち、開口径が大きい状態)に固定し、単結晶の引上げをおこなった。その他の条件は、実施例3と同様である。
表3に、実施例2および比較例2の結果を示す。
[Comparative Example 3]
As Comparative Example 3, the separation inner member was not used, and the lower opening diameter of the radiation shield was fixed to 380 mm (that is, the opening diameter was large), and the single crystal was pulled up. Other conditions are the same as in Example 3.
Table 3 shows the results of Example 2 and Comparative Example 2.

Figure 2013199387
Figure 2013199387

表3に示すように、本発明にかかる実施例3では結晶引上速度を比較例3に比べて30%向上することができ、グローイン欠陥(大サイズの欠陥)の密度も大幅に低減されることを確認した。   As shown in Table 3, in Example 3 according to the present invention, the crystal pulling speed can be improved by 30% as compared with Comparative Example 3, and the density of glow-in defects (large size defects) is also greatly reduced. It was confirmed.

[実施例4]
実施例4では、カスプ磁場を印加し、結晶長さ方向に対する酸素濃度を均一にするため、輻射シールドに対する分離インナー部材の位置を変化させながら単結晶の引き上げをおこなった。その他の条件は実施例1と同様とし、結晶中の酸素濃度を検証した。
[Example 4]
In Example 4, in order to apply a cusp magnetic field and make the oxygen concentration uniform in the crystal length direction, the single crystal was pulled up while changing the position of the separation inner member with respect to the radiation shield. Other conditions were the same as in Example 1, and the oxygen concentration in the crystal was verified.

[比較例4]
比較例4では、輻射シールドの下部開口径を330mm(即ち、開口径が小さい状態)に固定し、単結晶の引上げをおこなった。その他の条件は、実施例4と同様である。
[Comparative Example 4]
In Comparative Example 4, the lower opening diameter of the radiation shield was fixed to 330 mm (that is, the opening diameter was small), and the single crystal was pulled up. Other conditions are the same as in Example 4.

[比較例5]
比較例5では、輻射シールドの下部開口径を380mm(即ち、開口径が大きい状態)に固定し、単結晶の引上げをおこなった。その他の条件は、実施例4と同様である。
図6に、実施例4および比較例4,5の結果をグラフとして示す。図6のグラフの横軸は結晶の固化率であり、縦軸は酸素濃度である。
尚、実施例4では、図6の固化率0.1に達するまでは分離インナー部材を輻射シールドの下部開口に係着し、その後、分離して分離インナー部材を次第に徐々に上昇させ、固化率0.6の時点で分離インナー部材の底部が溶融液面からGap(20mm)+100mmとなるよう制御した。さらに、その後はさらに分離インナー部材を上昇させ、プルチャンバ上部の位置に配置した。
このグラフに示すように、比較例4,5では、固化率が大きくなるに従い、酸素濃度の低下が著しいが、実施例4によれば、結晶長さ方向に沿って酸素濃度分布が略均一になることを確認した。
[Comparative Example 5]
In Comparative Example 5, the lower opening diameter of the radiation shield was fixed at 380 mm (that is, the opening diameter was large), and the single crystal was pulled up. Other conditions are the same as in Example 4.
In FIG. 6, the result of Example 4 and Comparative Examples 4 and 5 is shown as a graph. The horizontal axis of the graph of FIG. 6 is the crystal solidification rate, and the vertical axis is the oxygen concentration.
In Example 4, the separation inner member is engaged with the lower opening of the radiation shield until the solidification rate of 0.1 in FIG. 6 is reached, and thereafter, the separation inner member is gradually raised to gradually increase the solidification rate. At the time of 0.6, the bottom of the separation inner member was controlled to be Gap (20 mm) +100 mm from the melt surface. Further, after that, the separation inner member was further raised and arranged at the position above the pull chamber.
As shown in this graph, in Comparative Examples 4 and 5, as the solidification rate increases, the oxygen concentration significantly decreases. However, according to Example 4, the oxygen concentration distribution is substantially uniform along the crystal length direction. It was confirmed that

以上の実施例1乃至4の結果より、本発明に係る単結晶引上装置及び引上方法によれば、結晶の有転位化を抑制すると共に引上速度を向上することができ、また、結晶軸方向の酸素濃度分布が均一な単結晶を得ることができることを確認した。   From the results of Examples 1 to 4 above, according to the single crystal pulling apparatus and pulling method according to the present invention, it is possible to suppress dislocation of the crystal and improve the pulling speed. It was confirmed that a single crystal having a uniform oxygen concentration distribution in the axial direction can be obtained.

1 単結晶引上装置
2 炉体
3 ルツボ
4 ヒータ
5 引上げ機構
6 ワイヤ
7 輻射シールド
7c 下部開口
8 外筒部材
9 断熱部材
10 水冷体
12 分離インナー部材
13 ワイヤ
14 分離インナー部材昇降装置(昇降手段)
C 単結晶
C1 肩部
C2 直胴部
M シリコン溶融液
P 種結晶
P1 ネック部
DESCRIPTION OF SYMBOLS 1 Single crystal pulling apparatus 2 Furnace body 3 Crucible 4 Heater 5 Pulling mechanism 6 Wire 7 Radiation shield 7c Lower opening 8 Outer cylinder member 9 Heat insulation member 10 Water-cooled body 12 Separation inner member 13 Wire 14 Separation inner member raising / lowering device (elevating means)
C single crystal C1 shoulder C2 straight body M silicon melt P seed crystal P1 neck

Claims (5)

ルツボ内のシリコン溶融液に対し磁場を印加すると共に、チョクラルスキー法により前記シリコン溶融液からシリコン単結晶を引き上げる単結晶引上装置であって、
上下に開口を有する円筒状に形成されると共に、前記シリコン単結晶を包囲するように前記ルツボ内のシリコン溶融液の上方に配置される輻射シールドと、前記輻射シールドの下部開口に対し係着可能に設けられた円環状の分離インナー部材と、前記分離インナー部材を前記輻射シールドの下部開口に対して昇降移動させる昇降手段とを備え、
前記昇降手段により下降移動された前記分離インナー部材が前記輻射シールドの下部開口に係着することにより、前記輻射シールドの下部開口径が縮小されることを特徴とする単結晶引上装置。
A single crystal pulling apparatus that applies a magnetic field to the silicon melt in the crucible and pulls up the silicon single crystal from the silicon melt by the Czochralski method,
It is formed in a cylindrical shape having openings at the top and bottom, and can be engaged with a radiation shield disposed above the silicon melt in the crucible so as to surround the silicon single crystal and a lower opening of the radiation shield. An annular separation inner member provided in the upper and lower lift means for moving the separation inner member up and down with respect to the lower opening of the radiation shield,
The single crystal pulling apparatus according to claim 1, wherein the diameter of the lower opening of the radiation shield is reduced by engaging the separation inner member moved downward by the lifting means with the lower opening of the radiation shield.
前記円環状の輻射シールドの下部開口は、その端面が、所定の厚さ寸法を有する共に、径方向に相対向するように形成され、
前記シリコン単結晶の直径をΦcryとすると、
前記分離インナー部材の直径Φと、前記輻射シールドの下部開口の下端側直径Φと、上端側直径Φとは、それぞれ式(1)〜(3)により規定されることを特徴とする請求項1に記載された単結晶引上装置。
Φ=Φcry+10〜100mm・・・(1)
Φ=Φ+10〜100mm・・・(2)
Φ=Φ+10〜100mm・・・(3)
The lower opening of the annular radiation shield is formed so that its end face has a predetermined thickness dimension and is opposed to the radial direction,
When the diameter of the silicon single crystal is Φ cry ,
The diameter Φ 1 of the separation inner member, the lower end side diameter Φ 2 of the lower opening of the radiation shield, and the upper end side diameter Φ 3 are respectively defined by equations (1) to (3). The single crystal pulling apparatus according to claim 1.
Φ 1 = Φ cry +10 to 100 mm (1)
Φ 2 = Φ 1 +10 to 100 mm (2)
Φ 3 = Φ 2 +10 to 100 mm (3)
ルツボ内にシリコン溶融液が形成されると共に前記シリコン溶融液に対し磁場が印加され、前記シリコン溶融液の上方においてシリコン単結晶を包囲するように上下に開口を有する円筒状の輻射シールドが配置され、チョクラルスキー法により前記シリコン溶融液からシリコン単結晶を引き上げる単結晶引上方法であって、
前記輻射シールドの下部開口に対し係着可能であって、係着されることにより前記下部開口の径を縮小させる円環状の分離部材を、前記シリコン単結晶の育成過程に応じて昇降移動させ、シリコン単結晶の周面と前記下部開口との距離を変化させることを特徴とする単結晶引上方法。
A silicon melt is formed in the crucible and a magnetic field is applied to the silicon melt, and a cylindrical radiation shield having openings above and below is disposed so as to surround the silicon single crystal above the silicon melt. A single crystal pulling method for pulling up a silicon single crystal from the silicon melt by the Czochralski method,
An annular separation member that can be engaged with the lower opening of the radiation shield and reduces the diameter of the lower opening by being engaged is moved up and down according to the growth process of the silicon single crystal, A method for pulling a single crystal, wherein the distance between the peripheral surface of the silicon single crystal and the lower opening is changed.
前記シリコン単結晶の育成過程において、
少なくともネック部の形成工程では、前記分離インナー部材は前記輻射シールドの上方に配置され、前記輻射シールドの下部開口に係着されず、
直胴部の形成工程では、前記分離インナー部材は前記輻射シールドの下部開口に係着され、
結晶底部の形成工程では、前記分離インナー部材は前記輻射シールドの上方に配置され、前記輻射シールドの下部開口に係着されないことを特徴とする請求項3に記載された単結晶引上方法。
In the process of growing the silicon single crystal,
At least in the step of forming the neck portion, the separation inner member is disposed above the radiation shield, and is not attached to the lower opening of the radiation shield.
In the step of forming the straight body portion, the separation inner member is engaged with the lower opening of the radiation shield,
4. The single crystal pulling method according to claim 3, wherein, in the crystal bottom portion forming step, the separation inner member is disposed above the radiation shield and is not engaged with a lower opening of the radiation shield.
前記シリコン単結晶の直胴部の形成工程において、
前記輻射シールドの下部開口に対し前記分離インナー部材を昇降移動させ、前記下部開口と結晶周面との距離を変化させることにより、結晶中の酸素濃度を制御することを特徴とする請求項3または請求項4のいずれかに記載された単結晶引上方法。
In the step of forming the straight body of the silicon single crystal,
The oxygen concentration in the crystal is controlled by moving the separation inner member up and down relative to the lower opening of the radiation shield and changing the distance between the lower opening and the crystal peripheral surface. The single crystal pulling method according to claim 4.
JP2012067117A 2012-03-23 2012-03-23 Apparatus and method for pulling single crystal Pending JP2013199387A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012067117A JP2013199387A (en) 2012-03-23 2012-03-23 Apparatus and method for pulling single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012067117A JP2013199387A (en) 2012-03-23 2012-03-23 Apparatus and method for pulling single crystal

Publications (1)

Publication Number Publication Date
JP2013199387A true JP2013199387A (en) 2013-10-03

Family

ID=49519922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012067117A Pending JP2013199387A (en) 2012-03-23 2012-03-23 Apparatus and method for pulling single crystal

Country Status (1)

Country Link
JP (1) JP2013199387A (en)

Similar Documents

Publication Publication Date Title
JP4919343B2 (en) Single crystal pulling device
JP5831436B2 (en) Method for producing silicon single crystal
JP6302192B2 (en) Single crystal growth apparatus and method
JP2014080302A (en) Single crystal pulling apparatus and single crystal pulling method
JP5782323B2 (en) Single crystal pulling method
JP2015205793A (en) Method for drawing up single crystal
JP2018058710A (en) Production method of silicon single crystal, and silicon single crystal
JP2010018446A (en) Method for producing single crystal and single crystal pulling apparatus
JP5392040B2 (en) Single crystal manufacturing apparatus and single crystal manufacturing method
KR100991088B1 (en) Apparatus and Method for manufacturing semiconductor single crystal ingot using CUSP magnetic field
JP5415052B2 (en) Ultra-low defect semiconductor single crystal manufacturing method and manufacturing apparatus thereof
CN114616361B (en) Method for producing silicon single crystal
JP2007254200A (en) Method for manufacturing single crystal
JP6597857B1 (en) Heat shielding member, single crystal pulling apparatus and single crystal manufacturing method
JP4272449B2 (en) Single crystal pulling method
JP4899608B2 (en) Semiconductor single crystal manufacturing apparatus and manufacturing method
JP2013199387A (en) Apparatus and method for pulling single crystal
JP2017043510A (en) Manufacturing method and apparatus for silicon single crystal
JP4907568B2 (en) Single crystal pulling apparatus and single crystal manufacturing method
JP2008189523A (en) Method for manufacturing single crystal
JP7184029B2 (en) Method for manufacturing single crystal silicon ingot
WO2022254885A1 (en) Method for producing silicon monocrystal
KR20190088653A (en) Method and apparatus for silicon single crystal growth
JP2013028476A (en) Method of drawing single crystal
JP6488975B2 (en) Pulling method of silicon single crystal

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20141201