JP5454625B2 - Silicon single crystal wafer obtained from ingot pulled by silicon single crystal pulling method - Google Patents

Silicon single crystal wafer obtained from ingot pulled by silicon single crystal pulling method Download PDF

Info

Publication number
JP5454625B2
JP5454625B2 JP2012138465A JP2012138465A JP5454625B2 JP 5454625 B2 JP5454625 B2 JP 5454625B2 JP 2012138465 A JP2012138465 A JP 2012138465A JP 2012138465 A JP2012138465 A JP 2012138465A JP 5454625 B2 JP5454625 B2 JP 5454625B2
Authority
JP
Japan
Prior art keywords
single crystal
silicon single
magnetic field
oxygen concentration
pulling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012138465A
Other languages
Japanese (ja)
Other versions
JP2012206936A (en
Inventor
和浩 原田
康弘 小暮
良一 海東
純 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2012138465A priority Critical patent/JP5454625B2/en
Publication of JP2012206936A publication Critical patent/JP2012206936A/en
Application granted granted Critical
Publication of JP5454625B2 publication Critical patent/JP5454625B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は、大口径のシリコン単結晶の引上げ方法に関し、詳しくは、石英ルツボ内の原料融液に磁場を印加しつつ、前記融液から単結晶を引上げる磁場印加CZ法(Magnetic field applied Czochralski Method;以下、MCZ法という。)により、大口径のシリコン単結晶を引上げる方法により得られたシリコン単結晶インゴットから切り出されたシリコン単結晶ウェーハに関するものである。 The present invention relates to a method for pulling a large-diameter silicon single crystal, and more specifically, a magnetic field applied CZ method (Magnetic field applied Czochralski) for pulling a single crystal from a melt while applying a magnetic field to a raw material melt in a quartz crucible. method;. hereinafter, the called MCZ method), relates to a silicon single crystal wafer sliced from more obtained silicon single crystal ingot to how to pull a silicon single crystal having a large diameter.

近年、製造する単結晶の大口径化に伴い、この単結晶の引上げに使用する石英ルツボサイズも大型化し、石英ルツボ内の融液の体積が増大してきている。この増大した体積の融液の熱対流をいかに制御するかということが課題となっている。   In recent years, with an increase in the diameter of a single crystal to be manufactured, the size of a quartz crucible used for pulling the single crystal has also increased, and the volume of the melt in the quartz crucible has increased. The challenge is how to control the thermal convection of this increased volume of melt.

その方策の一つとして、ルツボ内の原料融液に磁場を印加するMCZ法が知られている。MCZ法は、原料融液に磁場を印加することにより、磁力線に直交する方向の融液対流を抑制するものである。MCZ法における磁場の印加方法には種々の種類があるが、酸素濃度の制御や単結晶化率の向上のため、水平方向に磁場を印加するHMCZ法(Horizontal Magnetic field applied CZ法)の実用化が進んでいる。   As one of the measures, the MCZ method in which a magnetic field is applied to the raw material melt in the crucible is known. The MCZ method suppresses melt convection in a direction perpendicular to the magnetic field lines by applying a magnetic field to the raw material melt. Although there are various types of magnetic field application methods in the MCZ method, the practical application of the HMCZ method (Horizontal Magnetic field applied CZ method) that applies a magnetic field in the horizontal direction to control the oxygen concentration and improve the single crystallization rate. Is progressing.

しかし、HMCZ法により、原料融液に水平磁場を印加した場合、酸素濃度を低下させることは可能であるが、酸素濃度のミクロなばらつきが生じるという不具合があった。この不具合を解消するために従来様々な検討が行われてきた。   However, when a horizontal magnetic field is applied to the raw material melt by the HMCZ method, it is possible to reduce the oxygen concentration, but there is a problem that micro variation in the oxygen concentration occurs. Various studies have been conducted in the past to solve this problem.

例えば、結晶引上げ開始時の電磁石のコイル中心軸の垂直方向の位置を、ルツボ内融液下面の垂直方向の位置を含む適宜値に制御する方法が開示されている(例えば、特許文献1参照。)。この特許文献1では、ルツボ内の結晶成長界面近傍の融液に印加される磁場の強度を弱めて融液対流の自由度を高めるとともに、ルツボの底部近傍の融液では、これに印加される磁場の強度を強めてその対流を抑制するように構成したので、ミクロな酸素濃度のばらつきが小さい単結晶を引上げることができる。更に、酸素が主に融液に溶解するルツボ底部においては融液の対流が有効に抑制されるため、酸素濃度が低く、かつ欠陥の少ない大直径の単結晶を安定して製造することができる上、融液がルツボを浸食し難くなるので、ルツボの寿命を延ばすことができ、引上げ単結晶量当たりに要するルツボ個数を減少させることができる。   For example, a method of controlling the vertical position of the coil central axis of the electromagnet at the start of crystal pulling to an appropriate value including the vertical position of the lower surface of the melt in the crucible is disclosed (see, for example, Patent Document 1). ). In Patent Document 1, the strength of the magnetic field applied to the melt near the crystal growth interface in the crucible is weakened to increase the degree of freedom of melt convection, and the melt near the bottom of the crucible is applied to this. Since it is configured to increase the strength of the magnetic field and suppress the convection, it is possible to pull up a single crystal with a small variation in micro oxygen concentration. Further, since the convection of the melt is effectively suppressed at the bottom of the crucible where oxygen mainly dissolves in the melt, a large-diameter single crystal having a low oxygen concentration and few defects can be stably produced. In addition, since the melt hardly erodes the crucible, the life of the crucible can be extended, and the number of crucibles required for the amount of single crystal to be pulled can be reduced.

また、電磁石のコイル中心軸がルツボ内融液における深さ方向の中心部又は、これにより下方を通るように、これら電磁石とルツボとの上下方向の相対位置を設定すること、融液深さ方向の磁場強度が平均値の0.8〜1.2の範囲内に制御すること、電磁石のコイル径が単結晶引上げ開始時のルツボ内融液深さの3倍以上とすることが開示されている(例えば、特許文献2参照。)。   In addition, the relative position in the vertical direction between the electromagnet and the crucible is set so that the coil central axis of the electromagnet passes through the center in the depth direction of the melt in the crucible or the lower portion thereof, and the melt depth direction. That the magnetic field strength of the electromagnet is controlled within the range of 0.8 to 1.2 of the average value, and the coil diameter of the electromagnet is set to be not less than three times the melt depth in the crucible at the start of pulling of the single crystal. (For example, refer to Patent Document 2).

また、単結晶の引上げ量増加にあわせて、融液の液面位置がほぼ一定となるようにルツボを上昇させるとともに、磁場印加装置を該ルツボに追従上昇させる製造方法が開示されている(例えば、特許文献3参照。)。この特許文献3では、磁場を常に対流抑制等に関する最適位置に保持することができ、ひいては酸素濃度が低く均質な単結晶が得やすくなる。   Further, a manufacturing method is disclosed in which the crucible is raised so that the position of the melt surface becomes substantially constant as the amount of single crystal pulled increases, and the magnetic field application device is raised following the crucible (for example, , See Patent Document 3). In Patent Document 3, the magnetic field can always be held at the optimum position for convection suppression, and as a result, a uniform single crystal with a low oxygen concentration can be easily obtained.

また、ルツボ軸上のルツボ内の原料融液表面の磁場強度を、ルツボ軸上のルツボ底面の磁場強度の0.8〜0.95倍に制御するか、ルツボ軸を中心に左右に対向配置された電磁石のコイル面に開き角度をつけ、その開き角度を0〜30度の範囲内に制御するシリコン単結晶の製造方法が開示されている(例えば、特許文献4参照。)。この特許文献4によれば、成長単結晶の成長方向の局所的な酸素濃度の均一性が高いシリコン単結晶を高生産性、高歩留まりで育成できる。更に、ルツボ内の原料融液表面のルツボ内壁における磁束ベクトルの傾きを14〜20度の範囲内に制御するか、左右の電磁石コイルの間隔Bとルツボ内径Aとの比、A/Bを0.3〜0.6の範囲内とするか、電磁石コイルの直径Rと引上げ開始時のルツボ内融液深さDとの比、D/Rが0.5以下とすることで、その効果を高めることができる。   In addition, the magnetic field strength of the surface of the raw material melt in the crucible on the crucible shaft is controlled to 0.8 to 0.95 times the magnetic field strength of the bottom surface of the crucible on the crucible shaft, or opposed to the left and right around the crucible shaft. A manufacturing method of a silicon single crystal is disclosed in which an opening angle is formed on the coil surface of the electromagnet and the opening angle is controlled within a range of 0 to 30 degrees (see, for example, Patent Document 4). According to Patent Document 4, it is possible to grow a silicon single crystal having high local oxygen concentration uniformity in the growth direction of the grown single crystal with high productivity and high yield. Furthermore, the inclination of the magnetic flux vector on the inner wall of the crucible on the surface of the raw material melt in the crucible is controlled within a range of 14 to 20 degrees, or the ratio B / B between the left and right electromagnet coils and the inner diameter A of the crucible, A / B is set to 0. The effect is achieved by setting the ratio within the range of 3 to 0.6 or the ratio of the diameter R of the electromagnetic coil to the melt depth D in the crucible at the start of pulling, and D / R being 0.5 or less. Can be increased.

また、鞍型形状のコイルを用いて原料融液に水平磁場を印加しつつ、単結晶中の酸素濃度を制御するために、コイルの上下方向位置を変更する単結晶成長方法が開示されている(例えば、特許文献5参照。)。この特許文献5によれば、ルツボ回転数を操作せずとも酸素濃度を制御でき、これによりルツボ回転数を低位に抑制できる。   Also disclosed is a single crystal growth method in which the vertical position of the coil is changed in order to control the oxygen concentration in the single crystal while applying a horizontal magnetic field to the raw material melt using a saddle-shaped coil. (For example, refer to Patent Document 5). According to this Patent Document 5, the oxygen concentration can be controlled without manipulating the crucible rotation speed, thereby suppressing the crucible rotation speed to a low level.

更に、原料融液の融液面からルツボの底部に向かう全域において、磁場強度を単調に漸増、又は漸減するように磁場を印加可能とされ、印加される磁場の最強強度の0.6倍〜0.9倍の範囲に設定されるシリコン単結晶引上げ装置が開示されている(例えば、特許文献6参照。)。この特許文献6によれば、引上げたシリコン単結晶インゴットの酸素濃度はインゴットの成長方向の長さ全域にわたって一定の割合で減少し、不安定な領域が生じることがなく、よって、不純物濃度が不均一に分布することを抑制でき、酸素濃度及びドーパント濃度が微小な範囲でばらつくことを防止し、ドーパント濃度のばらつきによる抵抗率のばらつきを防止し、デバイス工程においてデバイス特性及び収率を良好に保つことが可能になる。   Furthermore, in the entire region from the melt surface of the raw material melt toward the bottom of the crucible, a magnetic field can be applied so that the magnetic field strength is gradually increased or decreased monotonously, and the maximum strength of the applied magnetic field is 0.6 times to A silicon single crystal pulling apparatus set in a range of 0.9 times is disclosed (for example, see Patent Document 6). According to this Patent Document 6, the oxygen concentration of the pulled silicon single crystal ingot decreases at a constant rate over the entire length in the growth direction of the ingot, so that an unstable region does not occur, so that the impurity concentration is low. Uniform distribution can be suppressed, oxygen concentration and dopant concentration are prevented from varying in a minute range, resistivity variation due to variation in dopant concentration is prevented, and device characteristics and yield are kept good in the device process. It becomes possible.

特開平9―188590号公報(請求項1、段落[0035]、第1図)JP-A-9-188590 (Claim 1, paragraph [0035], FIG. 1) 特開平8−333919号公報(請求項1,3,5、第1図)JP-A-8-333919 (Claims 1, 3, 5 and FIG. 1) 国際公開第02/10485号パンフレット(第3頁第20行〜24行目、第4頁第10行〜14行目)WO 02/10485 pamphlet (page 3, lines 20-24, page 4, lines 10-14) 特開2000−119095号公報(請求項1〜6、段落[0005]、第1図)JP 2000-119095 (Claims 1-6, paragraph [0005], FIG. 1) 特開2004−189559号公報(請求項1、段落[0018])JP 2004-189559 A (Claim 1, paragraph [0018]) 特開2007−210865号公報(請求項2,3、段落[0014])JP 2007-210865 (Claims 2, 3, paragraph [0014])

しかしながら、結晶径を300mmウェーハ用、450mmウェーハ用と大口径化するに伴って、様々な問題が生じてきた。具体的には、上記大口径のシリコン単結晶を引上げるためには引上げ炉自体を大きくしなければならない。そうすると、従来水平磁場の印加にはヘルムホルツ型の磁場印加装置が使用されていたが、このヘルムホルツ型の磁場印加装置も大型化しなければならない。しかしながら、従来の小口径単結晶の引上げでの水平磁場印加に用いられてきたヘルムホルツ型の磁場印加装置でさえ、装置自体が大きく、また磁場の漏れも大きいため、大口径化に伴い、1台当たり、より大きな設置面積が必要となり、また、磁場漏れによる生産コストの上昇も懸念される。特に、450mmウェーハ用単結晶の引上げでは、非常に大きな設置面積となるため、ヘルムホルツ型の採用が難しい状況となっている。   However, various problems have arisen as the crystal diameter is increased to 300 mm wafers and 450 mm wafers. Specifically, the pulling furnace itself must be enlarged in order to pull up the large-diameter silicon single crystal. Then, a Helmholtz type magnetic field application device has been conventionally used for applying a horizontal magnetic field, but the Helmholtz type magnetic field application device must also be enlarged. However, even the Helmholtz-type magnetic field application device that has been used for applying a horizontal magnetic field in pulling up a conventional single-crystal single crystal has a large device itself and a large magnetic field leakage. In the meantime, a larger installation area is required, and there is a concern about an increase in production cost due to magnetic field leakage. In particular, when a single crystal for a 450 mm wafer is pulled up, the installation area becomes very large, making it difficult to adopt the Helmholtz type.

そこで、水平磁場を印加するに当たって、ヘルムホルツ型に比べて小さい起磁力で同じ強度の磁界を発生でき、また、コイルを小型化できるため小さな設置面積で済む、鞍型形状のコイルを用いた磁場印加装置を採用することが考えられるが、ヘルムホルツ型で大きなコイルを用いた場合と同程度の平行な水平磁場を得ることは難しい問題があった。具体的には、磁場中心から離れるにつれて磁場強度の変化が大きくなり、縦磁場成分の割合が大きくなる傾向があった。   Therefore, when applying a horizontal magnetic field, it is possible to generate a magnetic field of the same strength with a smaller magnetomotive force than that of the Helmholtz type, and it is possible to reduce the size of the coil so that a small installation area is required. Although it is conceivable to employ an apparatus, it has been difficult to obtain a parallel horizontal magnetic field equivalent to the case of using a Helmholtz type large coil. Specifically, as the distance from the magnetic field center increases, the change in magnetic field strength tends to increase and the ratio of the longitudinal magnetic field component tends to increase.

このように、原料融液内で、縦磁場成分の割合が大きい領域や小さい領域が生じると、融液対流の抑制効果が石英ルツボ内で不均一になって、酸素濃度の変動に繋がり易くなると推察される。更に、単結晶の引上げとともに原料融液量が変化するため、対流制御は極めて難しくなると考えられる。   As described above, when a region having a large longitudinal magnetic field component ratio or a small region occurs in the raw material melt, the effect of suppressing the melt convection becomes non-uniform in the quartz crucible and easily leads to fluctuations in oxygen concentration. Inferred. Furthermore, since the amount of the raw material melt changes with the pulling of the single crystal, convection control is considered to be extremely difficult.

本発明の目的は、鞍型形状のコイルを用いて印加する水平方向の磁場における、横磁場成分と縦磁場成分の割合を制御することで、引上げる単結晶の局所的な酸素濃度のばらつきを抑制し得る、シリコン単結晶の引上げ方法により引上げられたインゴットから切り出され、外周研削及び面取り加工が施された450mm又は675mmの大口径ウェーハに用いられるシリコン単結晶ウェーハを提供することにある。 The object of the present invention is to control the local oxygen concentration variation of the single crystal to be pulled up by controlling the ratio of the transverse magnetic field component and the longitudinal magnetic field component in the horizontal magnetic field applied using the saddle-shaped coil. can suppress, cut from more lifted ingot pulling how the silicon single crystal is to provide a silicon single crystal wafer used in the large-diameter wafer of 450mm or 675mm outer peripheral grinding and chamfering were subjected .

請求項1に係る発明は、石英ルツボを挟んで対向配置され、チャンバの外径に沿って湾曲した一対の鞍型形状のコイルにより、前記石英ルツボに貯留されたシリコン原料融液に水平方向に磁場を印加しつつ、前記原料融液からシリコン単結晶インゴットを引上げる方法により引上げられた前記シリコン単結晶インゴットを外周研削し、スライスし、面取り加工して得られたシリコン単結晶ウェーハであって、前記シリコン単結晶インゴットの直径が450mm以上であり、かつ前記面取り加工後のシリコン単結晶ウェーハの直径のうち、外周から10%の領域を除いて、前記シリコン単結晶ウェーハの酸素濃度ばらつき(面内酸素濃度差/面内酸素濃度平均値)が5%以下であることを特徴とする。 The invention according to claim 1 is arranged in a horizontal direction to the silicon raw material melt stored in the quartz crucible by a pair of saddle-shaped coils which are arranged opposite to each other with the quartz crucible sandwiched and curved along the outer diameter of the chamber. A silicon single crystal wafer obtained by peripheral grinding, slicing and chamfering the silicon single crystal ingot pulled by the method of pulling up the silicon single crystal ingot from the raw material melt while applying a magnetic field. The diameter of the silicon single crystal ingot is 450 mm or more, and the oxygen concentration variation (surface) of the silicon single crystal wafer is excluded except for a region of 10% from the outer periphery of the diameter of the silicon single crystal wafer after the chamfering process. (Internal oxygen concentration difference / in-plane oxygen concentration average value) is 5% or less.

請求項2に係る発明は、請求項1に係る発明であって、前記シリコン単結晶インゴットの直径が、458mm以上683mm以下であるシリコン単結晶ウェーハである。The invention according to claim 2 is the invention according to claim 1, wherein the silicon single crystal ingot has a diameter of 458 mm or more and 683 mm or less.

本発明のシリコン単結晶ウェーハは、鞍型形状のコイルを用いて印加する水平方向の磁場における、横磁場成分と縦磁場成分の割合を制御することで、引上げる単結晶の局所的な酸素濃度のばらつきを抑制し得るシリコン単結晶の引上げ方法を用いて、この方法により引上げられたシリコン単結晶インゴットを外周研削し、スライスし、面取り加工して得られる。このシリコン単結晶ウェーハは、面取り加工後のシリコン単結晶ウェーハの直径のうち、外周から10%の領域を除いて、シリコン単結晶ウェーハの酸素濃度ばらつき(面内酸素濃度差/面内酸素濃度平均値)を5%以下とすることができる。 The silicon single crystal wafer of the present invention has a local oxygen concentration of a single crystal to be pulled up by controlling a ratio of a transverse magnetic field component and a longitudinal magnetic field component in a horizontal magnetic field applied using a saddle-shaped coil. using the pulling method for a silicon single crystal that can suppress variations in, and the outer peripheral ground pulling the silicon single crystal ingot by the method, slicing, Ru obtained by chamfering. This silicon single crystal wafer has a variation in oxygen concentration (in-plane oxygen concentration difference / in-plane oxygen concentration average) of the silicon single crystal wafer except for a region of 10% from the outer periphery of the diameter of the silicon single crystal wafer after chamfering. Value) can be 5% or less.

鞍型形状のコイルを用いて水平方向に磁場を印加したシリコン単結晶の引上げ装置の概略図である。It is the schematic of the pulling apparatus of the silicon single crystal which applied the magnetic field to the horizontal direction using the saddle-shaped coil. その装置に用いられた一対の鞍型形状の励磁コイルを示す斜視図である。It is a perspective view which shows a pair of saddle-shaped exciting coil used for the apparatus. 特定位置における印加する磁場の縦磁場成分BZと横磁場成分BYとの関係を説明する図である。It is a figure explaining the relationship between the longitudinal magnetic field component BZ and the transverse magnetic field component BY of the magnetic field applied in a specific position. 実施例1で引上げたシリコン単結晶インゴットの直胴長305mmの位置で切り出したシリコン単結晶ウェーハにおける[Oi]面内分布を示す図である。It is a figure which shows [Oi] in-plane distribution in the silicon single crystal wafer cut out in the position of the straight body length of 305 mm of the silicon single crystal ingot pulled up in Example 1. FIG. 比較例1で引上げたシリコン単結晶インゴットの直胴長300mmの位置で切り出したシリコン単結晶ウェーハにおける[Oi]面内分布を示す図である。It is a figure which shows [Oi] in-plane distribution in the silicon single crystal wafer cut out in the position of the straight body length of 300 mm of the silicon single crystal ingot pulled up in the comparative example 1.

次に本発明を実施するための最良の形態を図面に基づいて説明する。   Next, the best mode for carrying out the present invention will be described with reference to the drawings.

本発明者らは、大口径のシリコン単結晶の引上げにおいて、鞍型形状のコイルを使用する場合に、局所的な酸素濃度のばらつきを抑制し、高品質なシリコン単結晶を得るためには、印加する水平方向の磁場における、横磁場成分と縦磁場成分の割合を制御する必要があることを見出し、本発明を完成した。   In order to obtain a high-quality silicon single crystal by suppressing variations in local oxygen concentration when using a saddle-shaped coil in pulling up a large-diameter silicon single crystal, the present inventors It has been found that it is necessary to control the ratio of the transverse magnetic field component and the longitudinal magnetic field component in the horizontal magnetic field to be applied, and the present invention has been completed.

即ち、本発明は、石英ルツボを挟んで対向配置され、チャンバの外径に沿って湾曲した一対の鞍型形状のコイルにより、石英ルツボに貯留された原料融液に水平方向に磁場を印加しつつ、原料融液から単結晶を引上げるシリコン単結晶の引上げ方法により引上げられたインゴットから切り出されたシリコン単結晶ウェーハである。
この引上げ方法の特徴ある構成は、石英ルツボ内壁面での半径をR、引上げる単結晶の半径をr、磁場中心位置(X,Y,Z)を(0,0,0)とするとき、印加する磁場の縦磁場成分BZと横磁場成分BYとの関係が、(0,±R,−R)の位置において|縦磁場成分BZ/横磁場成分BY|≦1.1、(0,±R/2,−R/2)の位置において|縦磁場成分BZ/横磁場成分BY|≦0.25、かつ(0,±r,−r)の位置において|縦磁場成分BZ/横磁場成分BY|≦0.25をそれぞれ満たすところにある。上記範囲をそれぞれ満たすように制御された状態でシリコン単結晶を引上げるとき、原料融液内では、引上げる単結晶の局所的な酸素濃度のばらつきに影響を与える程度の縦磁場成分の割合が大きい領域や小さい領域を生じることがなく、原料融液の対流が均一に近い状態となるため、結果として、引上げた単結晶の局所的な酸素濃度のばらつきが抑制され、酸素濃度の面内分布は安定する。
That is, the present invention applies a magnetic field in a horizontal direction to a raw material melt stored in a quartz crucible by a pair of saddle-shaped coils that are arranged opposite to each other with a quartz crucible interposed and curved along the outer diameter of the chamber. On the other hand, it is a silicon single crystal wafer cut out from an ingot pulled by a silicon single crystal pulling method for pulling a single crystal from a raw material melt.
A characteristic configuration of this pulling method is that when the radius at the inner wall surface of the quartz crucible is R, the radius of the single crystal to be pulled is r, and the magnetic field center position (X, Y, Z) is (0, 0, 0), The relationship between the longitudinal magnetic field component BZ and the transverse magnetic field component BY of the applied magnetic field is expressed as follows: | longitudinal magnetic field component BZ / transverse magnetic field component BY | ≦ 1.1, (0, ±) at the position (0, ± R, −R). At the position of R / 2, −R / 2) | vertical magnetic field component BZ / transverse magnetic field component BY | ≦ 0.25 and at the position of (0, ± r, −r) | vertical magnetic field component BZ / transverse magnetic field component Each of BY | ≦ 0.25 is satisfied. When pulling up a silicon single crystal in a state controlled so as to satisfy the above ranges, the ratio of the longitudinal magnetic field component that affects the variation in local oxygen concentration of the single crystal to be pulled is increased in the raw material melt. As a result, the convection of the raw material melt becomes almost uniform without generating large or small regions, and as a result, variation in local oxygen concentration of the pulled single crystal is suppressed, and in-plane distribution of oxygen concentration is achieved. Is stable.

なお、本発明の引上げ方法でいうZ軸は引上げ方向を、Y軸はZ軸と垂直をなし、かつ、水平方向の磁場印加方向を、X軸はY軸及びZ軸とそれぞれ垂直をなす方向をいう。   In the pulling method of the present invention, the Z-axis is the pulling direction, the Y-axis is perpendicular to the Z-axis, the horizontal magnetic field application direction, and the X-axis is perpendicular to the Y-axis and Z-axis. Say.

図1に上記方法を実施する磁場印加式シリコン単結晶の引上げ装置10を示す。この装置10のチャンバ11内には、原料融液12を貯留する石英ルツボ13が設けられ、この石英ルツボ13の外周面は図示しない黒鉛サセプタにより被覆される。石英ルツボ13の下面は上記黒鉛サセプタを介して支軸14の上端に固定され、この支軸14の下部は図示しないるつぼ駆動手段に接続される。るつぼ駆動手段は図示しないが石英ルツボ13を回転させる第1回転用モータと、石英ルツボ13を昇降させる昇降用モータとを有し、これらのモータにより石英ルツボ13が所定の方向に回転し得るとともに、上下方向に移動可能となっている。 FIG. 1 shows a magnetic field application type silicon single crystal pulling apparatus 10 for performing the above method. A quartz crucible 13 for storing the raw material melt 12 is provided in the chamber 11 of the apparatus 10, and the outer peripheral surface of the quartz crucible 13 is covered with a graphite susceptor (not shown). The lower surface of the quartz crucible 13 is fixed to the upper end of the support shaft 14 via the graphite susceptor, and the lower portion of the support shaft 14 is connected to a crucible driving means (not shown). Although the crucible driving means is not shown, it has a first rotating motor for rotating the quartz crucible 13 and an elevating motor for moving the quartz crucible 13 up and down, and the quartz crucible 13 can be rotated in a predetermined direction by these motors. It can move up and down.

石英ルツボ13の外周面は石英ルツボ13から所定の間隔をあけてヒータ16により包囲され、このヒータ16は保温筒15により包囲される。ヒータ16は石英ルツボ13に投入された高純度のシリコン多結晶体を加熱・溶解して原料融液12にする。   The outer peripheral surface of the quartz crucible 13 is surrounded by a heater 16 at a predetermined interval from the quartz crucible 13, and the heater 16 is surrounded by a heat insulating cylinder 15. The heater 16 heats and melts the high-purity silicon polycrystal charged in the quartz crucible 13 to form the raw material melt 12.

またチャンバ11の上端には図示しないが円筒状のケーシングが接続される。このケーシングには図示しない回転引上げ手段が設けられる。回転引上げ手段はケーシングの上端部に水平状態で旋回可能に設けられた引上げヘッド(図示せず)と、このヘッドを回転させる第2回転用モータ(図示せず)と、ヘッドから石英ルツボ13の回転中心に向かって垂下されたワイヤケーブル17と、上記ヘッド内に設けられワイヤーブル17を巻取り又は繰出す引上げ用モータ(図示せず)とを有する。ワイヤケーブル17の下端には原料融液12に浸してシリコン単結晶19を引上げるための種結晶18が取付けられる。   A cylindrical casing (not shown) is connected to the upper end of the chamber 11. This casing is provided with a rotating pulling means (not shown). The rotary pulling means includes a pulling head (not shown) provided at the upper end of the casing so as to be turnable in a horizontal state, a second rotating motor (not shown) for rotating the head, and the quartz crucible 13 from the head. It has a wire cable 17 that hangs down toward the center of rotation, and a pulling motor (not shown) that is provided in the head and winds or feeds the wire bull 17. A seed crystal 18 is attached to the lower end of the wire cable 17 for pulling up the silicon single crystal 19 by dipping in the raw material melt 12.

この引上げ装置10には、チャンバ11を挟むように一対の鞍型形状の励磁コイル21,21が設けられる。一対の鞍型形状の励磁コイル21,21は互いに同形同大であり、一方の励磁コイル21を代表してその一般的な形状を説明すると、図2に示すように、励磁コイル21は、チャンバ11の外面に沿って水平方向に延びる半円状の上半円環状部21aと、その上環状部と所定の間隔を開けて下方に位置しチャンバ11の外面に沿って水平方向に延びる半円状の下半円環状部21bと、鉛直方向に延びて上半円環状部21aと下半円環状部21bの各端部を相互に連結する一対の直線状部21c,21dとを備える。一対の励磁コイル21,21はパワーリード線22により直列に接続され、図示しない電源より各励磁コイル21,21に通電されると、図1に示すように両コイル21,21の中心を結ぶ水平方向に磁束を発生するように構成される。この一対の励磁コイル21,21は、上下動可能にチャンバ11の外部に配置される。   The pulling device 10 is provided with a pair of saddle-shaped exciting coils 21 and 21 so as to sandwich the chamber 11. A pair of saddle-shaped excitation coils 21 and 21 are the same shape and size, and their general shape will be described on behalf of one excitation coil 21. As shown in FIG. A semi-circular upper semi-annular portion 21a extending horizontally along the outer surface of the chamber 11, and a semi-circular portion extending downward along the outer surface of the chamber 11 that is positioned below the upper annular portion with a predetermined distance therebetween. A circular lower semicircular portion 21b, and a pair of linear portions 21c and 21d extending in the vertical direction and interconnecting the ends of the upper semicircular portion 21a and the lower semicircular portion 21b are provided. A pair of exciting coils 21 and 21 are connected in series by a power lead wire 22, and when energized to each exciting coil 21 and 21 from a power source (not shown), a horizontal line connecting the centers of both coils 21 and 21 as shown in FIG. It is configured to generate magnetic flux in the direction. The pair of exciting coils 21 and 21 are arranged outside the chamber 11 so as to be movable up and down.

次にこのシリコン単結晶の引上げ装置を用いた上記引上げ方法を説明する。 Next, the above pulling method using this silicon single crystal pulling apparatus will be described.

図1に示すように、石英ルツボ13に高純度のシリコン多結晶体及びドーパント不純物を投入し、ヒータ16によりこの高純度のシリコン多結晶体を加熱、溶解して原料融液12にする。そして、シリコン単結晶19の引上げ開始時の原料融液12の液面位置と、励磁コイル21,21の鉛直方向の中心、即ち、磁場中心位置とが、磁場中心位置を融液表面位置に対して上にr×0.5から下にr×1.5の範囲となるように、一対の励磁コイル21,21の鉛直方向の位置が定められる。   As shown in FIG. 1, a high-purity silicon polycrystal and a dopant impurity are put into a quartz crucible 13, and the high-purity silicon polycrystal is heated and melted by a heater 16 to obtain a raw material melt 12. The liquid surface position of the raw material melt 12 at the start of pulling of the silicon single crystal 19 and the vertical centers of the exciting coils 21 and 21, that is, the magnetic field center position are the same as the melt surface position. The vertical position of the pair of exciting coils 21 and 21 is determined so that the range is r × 0.5 from the top to r × 1.5 from the bottom.

次いで、図示しない電源より各励磁コイル21,21に通電して、図1に示すように両コイル21,21を結ぶ水平方向に磁束を発生させる。   Next, the exciting coils 21 and 21 are energized from a power source (not shown) to generate a magnetic flux in the horizontal direction connecting the coils 21 and 21 as shown in FIG.

ここで、鞍型形状の励磁コイル21,21により生じる磁場は、励磁コイル21,21の鉛直方向の中心に生じる実線で示す磁場については、横磁場成分のみから構成されるが、その実線で示す磁場から上下に離れた所に生じる一点鎖線で示す磁場では、結晶中心軸(コイル21,21の中間)以外において、磁場中心から離れると縦磁場成分が増大する。引上げる単結晶インゴットが大口径化されるほど石英ルツボの大きさも大きくなるため、この傾向は顕著となる。   Here, the magnetic field generated by the saddle-shaped excitation coils 21 and 21 is composed of only the transverse magnetic field component for the magnetic field indicated by the solid line generated at the center in the vertical direction of the excitation coils 21 and 21, but is indicated by the solid line. In the magnetic field indicated by the alternate long and short dash line generated at a position away from the magnetic field in the vertical direction, the longitudinal magnetic field component increases with distance from the magnetic field center except for the crystal central axis (in the middle of the coils 21 and 21). This tendency becomes remarkable because the size of the quartz crucible increases as the diameter of the single crystal ingot to be pulled up increases.

そのため、本実施の形態では、図3に示すように、特定位置における印加する磁場の縦磁場成分BZと横磁場成分BYとの関係が、以下の式をそれぞれ満たすように制御し、この状態でシリコン単結晶インゴットを引上げる。   Therefore, in this embodiment, as shown in FIG. 3, the relationship between the longitudinal magnetic field component BZ and the transverse magnetic field component BY of the magnetic field to be applied at a specific position is controlled so as to satisfy the following expressions, respectively. Pull up the silicon single crystal ingot.

具体的には、石英ルツボ内壁面での半径をR、引上げる単結晶の半径をr、磁場中心位置(X,Y,Z)を(0,0,0)とするとき、印加する磁場の縦磁場成分BZと横磁場成分BYとの関係が、(0,±R,−R)の位置において|縦磁場成分BZ/横磁場成分BY|≦1.1、(0,±R/2,−R/2)の位置において|縦磁場成分BZ/横磁場成分BY|≦0.25、かつ(0,±r,−r)の位置において|縦磁場成分BZ/横磁場成分BY|≦0.25をそれぞれ満たすように制御するものである。   Specifically, the radius of the quartz crucible inner wall surface is R, the radius of the single crystal to be pulled is r, and the magnetic field center position (X, Y, Z) is (0, 0, 0). When the relationship between the longitudinal magnetic field component BZ and the transverse magnetic field component BY is at the position of (0, ± R, −R), the | longitudinal magnetic field component BZ / transverse magnetic field component BY | ≦ 1.1, (0, ± R / 2, −R / 2) at the position | vertical magnetic field component BZ / transverse magnetic field component BY | ≦ 0.25 and at the position (0, ± r, −r) | vertical magnetic field component BZ / transverse magnetic field component BY | ≦ 0. .25 is controlled so as to satisfy each of .25.

このうち、(0,±R,−R)の位置において|縦磁場成分BZ/横磁場成分BY|≦1.0、(0,±R/2,−R/2)の位置において|縦磁場成分BZ/横磁場成分BY|≦0.2、かつ(0,±r,−r)の位置において|縦磁場成分BZ/横磁場成分BY|≦0.2をそれぞれ満たすように制御することが特に好ましい。   Of these, at the position of (0, ± R, −R), the | vertical magnetic field component BZ / transverse magnetic field component BY | ≦ 1.0, and at the position of (0, ± R / 2, −R / 2) | vertical magnetic field It is possible to perform control so as to satisfy | longitudinal magnetic field component BZ / transverse magnetic field component BY | ≦ 0.2 at the position of component BZ / transverse magnetic field component BY | ≦ 0.2 and (0, ± r, −r). Particularly preferred.

これにより、原料融液12内では、引上げる単結晶の局所的な酸素濃度のばらつきに影響を与える程度の縦磁場成分の割合が大きい領域や小さい領域を生じることがなく、原料融液の対流が均一に近い状態となる。結果として、引上げた単結晶の局所的な酸素濃度のばらつきが抑制され、酸素濃度の面内分布は安定する。   Thereby, in the raw material melt 12, there is no region where the ratio of the longitudinal magnetic field component is large or small enough to affect the variation in local oxygen concentration of the single crystal to be pulled up, and the convection of the raw material melt is not caused. Is almost uniform. As a result, variation in local oxygen concentration of the pulled single crystal is suppressed, and the in-plane distribution of oxygen concentration is stabilized.

なお、上記制御は、励磁コイル21の大きさや形状などによって調節することができる。   The above control can be adjusted according to the size and shape of the exciting coil 21.

続いて、上記のように印加する水平方向の磁場を制御した状態で、るつぼ駆動手段により支軸14を介して石英ルツボ13を、所定の速度で反時計方向に回転させる。このルツボ回転の速度は例えばシリコン単結晶インゴット19の所望の酸素濃度など結晶品質によって異なる。そして回転引上げ手段の図示しない引上げ用モータによりワイヤケーブル17を繰出して種結晶18を降下させ、種結晶18の先端部を原料融液12に接触させる。その後種結晶18を徐々に引上げることにより種絞り部を形成し、その種結晶18の下方にシリコン単結晶インゴット19を育成させる。シリコン単結晶インゴット19を引上げる際に、種結晶18が所定の速度で時計方向に回転するようワイヤケーブル17を回転させる。   Subsequently, in a state in which the horizontal magnetic field to be applied is controlled as described above, the quartz crucible 13 is rotated counterclockwise at a predetermined speed by the crucible driving means via the support shaft 14. The speed of this crucible rotation varies depending on the crystal quality such as the desired oxygen concentration of the silicon single crystal ingot 19. Then, the wire cable 17 is fed out by a pulling motor (not shown) of the rotary pulling means to lower the seed crystal 18, and the tip of the seed crystal 18 is brought into contact with the raw material melt 12. Thereafter, the seed crystal 18 is gradually pulled to form a seed constriction portion, and a silicon single crystal ingot 19 is grown below the seed crystal 18. When pulling up the silicon single crystal ingot 19, the wire cable 17 is rotated so that the seed crystal 18 rotates clockwise at a predetermined speed.

上記方法において、引上げるシリコン単結晶インゴットの直径は450mm以上、好ましくは458mm以上683mm以下である。即ち、大口径の450mm用ウェーハ、675mm用ウェーハに使用することができる大きさである。ここで、シリコン単結晶インゴットの大きさがウェーハとして使用する大きさよりも若干大きめとなっているのは、インゴットから製品として出荷されるウェーハとするまでに、外周研削や面取りなどの機械加工が施されて、その直径が小さくなることを考慮しているためである。 In the above method, the diameter of the silicon single crystal ingot to be pulled is 450 mm or more, preferably 458 mm or more and 683 mm or less. That is, it is a size that can be used for a 450 mm wafer and a 675 mm wafer having a large diameter. Here, the size of the silicon single crystal ingot is slightly larger than the size used as a wafer. Machining such as peripheral grinding and chamfering is performed before the wafer is shipped as a product from the ingot. This is because it is considered that the diameter becomes smaller.

例えば、直径450mm用ウェーハの単結晶を引上げる場合には、石英ルツボ13を例えば0.1〜1回転/分の速度で反時計方向に回転させ、ワイヤケーブル17を5〜6回転/分の速度で時計方向に回転させることが好ましい。   For example, when pulling up a single crystal of a wafer having a diameter of 450 mm, the quartz crucible 13 is rotated counterclockwise, for example, at a speed of 0.1 to 1 rotation / minute, and the wire cable 17 is rotated 5 to 6 rotations / minute. It is preferred to rotate clockwise at speed.

このようにして引上げられたシリコン単結晶インゴットは、局所的な酸素濃度のばらつきが抑制されたものとなる。   The silicon single crystal ingot pulled up in this way has a suppressed variation in local oxygen concentration.

そして、本発明のシリコン単結晶ウェーハは、上記方法により引上げられたシリコン単結晶インゴットを外周研削し、スライスし、面取り加工して得られたシリコン単結晶ウェーハである。この局所的な酸素濃度のばらつきが抑制されたインゴットから切り出されたウェーハは、面取り加工後のシリコン単結晶ウェーハの直径のうち、外周から10%の領域を除いて、シリコン単結晶ウェーハの酸素濃度ばらつき(面内酸素濃度差/面内酸素濃度平均値)を5%以下とすることができる。   The silicon single crystal wafer of the present invention is a silicon single crystal wafer obtained by grinding, slicing, and chamfering a silicon single crystal ingot pulled up by the above method. The wafer cut out from the ingot in which the variation in local oxygen concentration is suppressed, except for the region of 10% from the outer periphery of the diameter of the silicon single crystal wafer after chamfering, the oxygen concentration of the silicon single crystal wafer The variation (in-plane oxygen concentration difference / in-plane oxygen concentration average value) can be 5% or less.

次に本発明の実施例を比較例とともに詳しく説明する。
<実施例1>
図1に示すような、450mmウェーハ用のシリコン単結晶の引上げ装置10のチャンバ11を挟むように一対の鞍型励磁コイル21,21を配置した。即ち、チャンバ11内に設けられた石英ルツボ13は、石英ルツボの直胴部の厚さを含めた石英ルツボの外径が36インチ(約900mm)であった。石英ルツボ内壁面での半径をRはおよそ450mm、引上げるシリコン単結晶インゴットの半径rはおよそ230mmである。
Next, examples of the present invention will be described in detail together with comparative examples.
<Example 1>
As shown in FIG. 1, a pair of saddle-shaped exciting coils 21 and 21 are arranged so as to sandwich a chamber 11 of a silicon single crystal pulling apparatus 10 for a 450 mm wafer. That is, the quartz crucible 13 provided in the chamber 11 had an outside diameter of 36 inches (about 900 mm) including the thickness of the straight body portion of the quartz crucible. The radius R of the inner wall surface of the quartz crucible is about 450 mm, and the radius r of the silicon single crystal ingot to be pulled up is about 230 mm.

この励磁コイル21,21の鉛直方向の位置は、原料融液12の液面位置と一致するように配置した。また、引上げ開始時において、図3に示すように、(0,±R,−R)の位置、即ち、(0,±450,−450)において│縦磁場成分BZ/横磁場成分BY│=0.9、(0,±R/2,−R/2)の位置、即ち、(0,±225,−225)において│縦磁場成分BZ/横磁場成分BY│=0.2、(0,±r,−r)の位置、即ち、(0,±230,−230)において│縦磁場成分BZ/横磁場成分BY│=0.2となるようにした。   The vertical positions of the exciting coils 21 and 21 were arranged so as to coincide with the liquid surface position of the raw material melt 12. At the start of pulling, as shown in FIG. 3, at the position (0, ± R, −R), that is, (0, ± 450, −450), | vertical magnetic field component BZ / transverse magnetic field component BY | = 0.9, at the position of (0, ± R / 2, −R / 2), that is, (0, ± 225, −225), | vertical magnetic field component BZ / transverse magnetic field component BY | = 0.2, (0 , ± r, -r), ie, (vertical magnetic field component BZ / transverse magnetic field component BY) = 0.2 at (0, ± 230, -230).

このような水平方向磁場印加式単結晶引上げ装置にて直胴部の直径が458mmのシリコン単結晶棒19を、回転速度が5〜6回/分であって引上げ速度が0.4〜0.5mm/分で引上げた。   In such a horizontal magnetic field application type single crystal pulling apparatus, the silicon single crystal rod 19 having a diameter of the straight body portion of 458 mm is rotated at a rotational speed of 5-6 times / min and a pulling speed of 0.4-0. Pulled up at 5 mm / min.

また、引上げたシリコン単結晶インゴットを外周研削し、直胴長305mmの位置でスライスし、面取り加工して得られたシリコン単結晶ウェーハにおける[Oi]面内分布を図4に示す。   Further, FIG. 4 shows the [Oi] in-plane distribution in a silicon single crystal wafer obtained by subjecting the pulled silicon single crystal ingot to peripheral grinding, slicing at a position of a straight body length of 305 mm, and chamfering.

<比較例1>
図1に示すような、450mmウェーハ用のシリコン単結晶の引上げ装置10のチャンバ11を挟むように一対の鞍型励磁コイル21,21を配置した。即ち、チャンバ11内に設けられた石英ルツボ13は、石英ルツボの直胴部の厚さを含めた石英ルツボの外径が36インチ(約900mm)であった。石英ルツボ内壁面での半径をRはおよそ450mm、引上げるシリコン単結晶インゴットの半径rはおよそ230mmである。
<Comparative Example 1>
As shown in FIG. 1, a pair of saddle-shaped exciting coils 21 and 21 are arranged so as to sandwich a chamber 11 of a silicon single crystal pulling apparatus 10 for a 450 mm wafer. That is, the quartz crucible 13 provided in the chamber 11 had an outside diameter of 36 inches (about 900 mm) including the thickness of the straight body portion of the quartz crucible. The radius R of the inner wall surface of the quartz crucible is about 450 mm, and the radius r of the silicon single crystal ingot to be pulled up is about 230 mm.

この励磁コイル21,21の鉛直方向の位置は、原料融液12の液面位置と一致するように配置した。また、引上げ開始時において、図3に示すように、(0,±R,−R)の位置、即ち、(0,±450,−450)において│縦磁場成分BZ/横磁場成分BY│=1.5、(0,±R/2,−R/2)の位置、即ち、(0,±225,−225)において│縦磁場成分BZ/横磁場成分BY│=0.26、(0,±r,−r)の位置、即ち、(0,±230,−230)において│縦磁場成分BZ/横磁場成分BY│=0.26であった。   The vertical positions of the exciting coils 21 and 21 were arranged so as to coincide with the liquid surface position of the raw material melt 12. At the start of pulling, as shown in FIG. 3, at the position (0, ± R, −R), that is, (0, ± 450, −450), | vertical magnetic field component BZ / transverse magnetic field component BY | = 1.5, at the position of (0, ± R / 2, −R / 2), that is, (0, ± 225, −225), | vertical magnetic field component BZ / transverse magnetic field component BY | = 0.26, (0 , ± r, −r), that is, | longitudinal magnetic field component BZ / transverse magnetic field component BY | = 0.26 at (0, ± 230, −230).

そして、実施例1と同様に、水平方向磁場印加式単結晶引上げ装置にて直胴部の直径が458mmのシリコン単結晶棒19を、回転速度が5〜6回/分であって引上げ速度が0.4〜0.5mm/分で引上げた。   Then, similarly to Example 1, the silicon single crystal rod 19 having a diameter of the straight body portion of 458 mm in the horizontal magnetic field application type single crystal pulling apparatus was rotated at a speed of 5-6 times / min and the pulling speed was It pulled up at 0.4-0.5 mm / min.

引上げたシリコン単結晶インゴットを外周研削し、直胴長300mmの位置でスライスし、面取り加工して得られたシリコン単結晶ウェーハにおける[Oi]面内分布を図5に示す。   FIG. 5 shows the [Oi] in-plane distribution of a silicon single crystal wafer obtained by subjecting the pulled silicon single crystal ingot to peripheral grinding, slicing at a position of a straight body length of 300 mm, and chamfering.

<比較評価>
図4から明らかなように、実施例1で引上げたインゴットから切り出されたシリコン単結晶ウェーハでは、結晶中心から外周近傍にかけて酸素濃度がほぼ一定に推移しており、本発明で規定した範囲を満たすように制御して引上げたシリコン単結晶インゴットから切り出されたシリコン単結晶ウェーハは、デバイス製造に必要な領域において、良好な[Oi]面内分布が得られることが確認された。[Oi]測定には、FT−IRを用い、ビームサイズは4mmφとした。
<Comparison evaluation>
As is clear from FIG. 4, in the silicon single crystal wafer cut out from the ingot pulled up in Example 1, the oxygen concentration is substantially constant from the crystal center to the vicinity of the outer periphery, and satisfies the range defined in the present invention. It was confirmed that the silicon single crystal wafer cut out from the silicon single crystal ingot pulled up by controlling in this way has a good [Oi] in-plane distribution in a region necessary for device manufacture. [Oi] For measurement, FT-IR was used, and the beam size was 4 mmφ.

なお、このシリコン単結晶ウェーハの外周から10%の領域を除いた領域(図4中の「r×90%」で示した領域)における、面内酸素濃度差は0.20atoms/ccであり、また面内酸素濃度平均値は12.8atoms/ccであった。これらの値から酸素濃度ばらつき(面内酸素濃度差/面内酸素濃度平均値)を求めたところ、酸素濃度ばらつきは、5%以下であった。 The in-plane oxygen concentration difference in the region excluding 10% region from the outer periphery of the silicon single crystal wafer (region indicated by “r × 90%” in FIG. 4) is 0.20 atoms / cc, The average value of the in-plane oxygen concentration was 12.8 atoms / cc. When the oxygen concentration variation (in-plane oxygen concentration difference / in-plane oxygen concentration average value) was determined from these values, the oxygen concentration variation was 5% or less .

一方、図5に示すように、比較例1で引上げたインゴットから切り出されたシリコン単結晶ウェーハの酸素濃度は、結晶中心から外周にかけて大きく変動していることが確認され、特に工夫を施さずに、単に鞍型形状のコイルを採用しただけでは、大口径のシリコン単結晶インゴットを引上げる場合に、酸素濃度のばらつきの問題を解消することができていないことが判った。   On the other hand, as shown in FIG. 5, it was confirmed that the oxygen concentration of the silicon single crystal wafer cut out from the ingot pulled up in Comparative Example 1 greatly fluctuated from the center of the crystal to the outer periphery, and no particular effort was made. It has been found that simply adopting a saddle-shaped coil cannot solve the problem of variation in oxygen concentration when pulling up a large-diameter silicon single crystal ingot.

10 引上げ装置
11 チャンバ
12 原料融液
13 石英ルツボ
14 支軸
15 保温筒
16 ヒータ
17 ワイヤケーブル
18 種結晶
19 シリコン単結晶
21 鞍型形状の励磁コイル
DESCRIPTION OF SYMBOLS 10 Pulling-up apparatus 11 Chamber 12 Raw material melt 13 Quartz crucible 14 Support shaft 15 Heat insulation cylinder 16 Heater 17 Wire cable 18 Seed crystal 19 Silicon single crystal 21 Vertical coil-shaped exciting coil

Claims (2)

石英ルツボを挟んで対向配置され、チャンバの外径に沿って湾曲した一対の鞍型形状のコイルにより、前記石英ルツボに貯留されたシリコン原料融液に水平方向に磁場を印加しつつ、前記原料融液からシリコン単結晶インゴットを引上げる方法により引上げられた前記シリコン単結晶インゴットを外周研削し、スライスし、面取り加工して得られたシリコン単結晶ウェーハであって、
前記シリコン単結晶インゴットの直径が450mm以上であり、かつ前記面取り加工後のシリコン単結晶ウェーハの直径のうち、外周から10%の領域を除いて、前記シリコン単結晶ウェーハの酸素濃度ばらつき(面内酸素濃度差/面内酸素濃度平均値)が5%以下である
ことを特徴とするシリコン単結晶ウェーハ。
The raw material is applied while applying a magnetic field in a horizontal direction to the silicon raw material melt stored in the quartz crucible by a pair of saddle-shaped coils that are arranged opposite to each other with a quartz crucible sandwiched along the outer diameter of the chamber. the silicon single crystal ingot from the melt and the outer circumference grinding the silicon single crystal ingot was pulled up by the pulling method was sliced, and a silicon single crystal wafer obtained by chamfering,
The diameter of the silicon single crystal ingot is 450 mm or more, and the oxygen concentration variation (in-plane) of the silicon single crystal wafer is excluded except for a region of 10% from the outer periphery of the diameter of the silicon single crystal wafer after the chamfering process. (Oxygen concentration difference / in-plane oxygen concentration average value) is 5% or less.
前記シリコン単結晶インゴットの直径は、458mm以上683mm以下である請求項1記載のシリコン単結晶ウェーハ。2. The silicon single crystal wafer according to claim 1, wherein a diameter of the silicon single crystal ingot is 458 mm or more and 683 mm or less.
JP2012138465A 2012-06-20 2012-06-20 Silicon single crystal wafer obtained from ingot pulled by silicon single crystal pulling method Active JP5454625B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012138465A JP5454625B2 (en) 2012-06-20 2012-06-20 Silicon single crystal wafer obtained from ingot pulled by silicon single crystal pulling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012138465A JP5454625B2 (en) 2012-06-20 2012-06-20 Silicon single crystal wafer obtained from ingot pulled by silicon single crystal pulling method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008152663A Division JP5056603B2 (en) 2008-06-11 2008-06-11 Silicon single crystal pulling method and silicon single crystal wafer obtained from ingot pulled by the method

Publications (2)

Publication Number Publication Date
JP2012206936A JP2012206936A (en) 2012-10-25
JP5454625B2 true JP5454625B2 (en) 2014-03-26

Family

ID=47187012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012138465A Active JP5454625B2 (en) 2012-06-20 2012-06-20 Silicon single crystal wafer obtained from ingot pulled by silicon single crystal pulling method

Country Status (1)

Country Link
JP (1) JP5454625B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5928363B2 (en) * 2013-02-01 2016-06-01 信越半導体株式会社 Evaluation method of silicon single crystal wafer

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4422813B2 (en) * 1999-03-26 2010-02-24 シルトロニック・ジャパン株式会社 Method for producing silicon single crystal
JP2003055092A (en) * 2001-08-16 2003-02-26 Sumitomo Mitsubishi Silicon Corp Method of pulling silicon single crystal
JP2003109961A (en) * 2001-10-01 2003-04-11 Sumitomo Mitsubishi Silicon Corp Epitaxial silicon wafer and its manufacturing method
JP4345276B2 (en) * 2002-08-30 2009-10-14 株式会社Sumco Pulling-up method of magnetic field applied silicon single crystal
JP4513407B2 (en) * 2004-05-06 2010-07-28 株式会社Sumco Method for producing single crystal
JP2007145666A (en) * 2005-11-29 2007-06-14 Toshiba Ceramics Co Ltd Method for manufacturing silicon single crystal
JP4899608B2 (en) * 2006-04-20 2012-03-21 株式会社Sumco Semiconductor single crystal manufacturing apparatus and manufacturing method
JP2007284324A (en) * 2006-04-20 2007-11-01 Sumco Corp Manufacturing device and manufacturing method for semiconductor single crystal
JP5251137B2 (en) * 2008-01-16 2013-07-31 株式会社Sumco Single crystal silicon wafer and manufacturing method thereof
JP2009203091A (en) * 2008-02-26 2009-09-10 Ibiden Co Ltd Crucible holding member

Also Published As

Publication number Publication date
JP2012206936A (en) 2012-10-25

Similar Documents

Publication Publication Date Title
TW219955B (en)
JP5240191B2 (en) Silicon single crystal pulling device
JP2010100474A (en) Method for optimizing horizontal magnetic field in pulling-up silicon single crystal, and method for manufacturing silicon single crystal
WO2014091671A1 (en) Method for producing monocrystalline silicon
JP2008189525A (en) Single crystal pulling apparatus
JP5131170B2 (en) Upper heater for single crystal production, single crystal production apparatus and single crystal production method
WO2006025238A1 (en) Magnetic field application method of pulling silicon single crystal
JP5782323B2 (en) Single crystal pulling method
JP4758338B2 (en) Manufacturing method of single crystal semiconductor
JP2018058710A (en) Production method of silicon single crystal, and silicon single crystal
JP5454625B2 (en) Silicon single crystal wafer obtained from ingot pulled by silicon single crystal pulling method
JP5056603B2 (en) Silicon single crystal pulling method and silicon single crystal wafer obtained from ingot pulled by the method
JP2004189559A (en) Single crystal growth method
TWI797764B (en) Method for producing single crystal, magnetic field generator and apparatus for producing single crystal
JP2009292684A (en) Silicon single crystal production method and production apparatus therefore
JP2000239096A (en) Production of silicon single crystal
TWI784314B (en) Manufacturing method of single crystal silicon
JP2007145666A (en) Method for manufacturing silicon single crystal
JP7509528B2 (en) Method for producing silicon single crystals
WO2022254885A1 (en) Method for producing silicon monocrystal
KR100831052B1 (en) Method for controlling oxygen content in silicon single crystalline ingot, ingot produced thereby
JP2008019128A (en) Apparatus for producing single crystal, method for producing single crystal, and single crystal
JP2007210865A (en) Silicon single crystal pulling device
JP6488975B2 (en) Pulling method of silicon single crystal
JP2005306669A (en) Apparatus for pulling up silicon single cryststal and method therefor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131223

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5454625

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250